
1. INTRODUCTION

Any body’s displacement from one position to another may
be performed as sum of two motions: translational motion of
the body and the body’s rotation round its one fixed point. As
regards translational motion, it is the simplest type of the so-
lid body motion and usually there are no problems with its re-
search. But it is opposite situation with the body’s rotation
round one fixed point. In addition, solid body with one fixed
point is the mechanical model of many real technical appar-
atuses, devices, real motions of natural and artificial celestial
bodies. For example, motion of gyroscope, very important
part of many technical instruments, is the solid body rotation
round one fixed point. Motions of Earth, Moon, planets and
artificial satellites may be considered in many cases as mo-
tion of the solid body with one fixed point. That is why this
motion and this mechanical model are of great importance in
theoretical mechanics.

2. THEORY

Let’s consider motion of the heavy solid body with one fixed
point O. “Heavy” means that the body is under gravity action
Mg, where M is the body mass, g is an acceleration of the
gravitation force. Let’s choose two Cartesian coordinate sys-

tems with the general beginning in the point O: the coordina-
te system OXYZ fixed in space and the spinning with the
body coordinate system Oxyz with the axes, directed along
the body’s main axes of inertia (Fig. 1).

Gravitation force is applied in the body’s centre of mass
with coordinates a, b, c concerning the mobile coordinate
system. Let �, �, � – direct cosines of the mobile axes with
axis OZ.
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STABILIZACJA I KONTROLA RUCHU STA£YCH, CIÊ¯KICH CIA£
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noznacznie objaœniaj¹cych czêœæ liniow¹. Okreœlono ca³kê i normê. Przetestowano stabilnoœæ przetransformowanego
systemu. Rozwi¹zano problemy niestabilnego sterowania w sensie Lapunowa. Znaleziono wielkoœæ ma³ych si³, po których
dodaniu asymptotycznie stabilizowany jest ruch cia³a. Badano zmiany funkcji ca³kowych sterowanego systemu.
W³aœciwoœci steruj¹cych si³ i ich wp³yw na ruch cia³ zosta³y okreœlone.

S³owa kluczowe: ciê¿kie cia³o sta³e, równania Eulera-Poissona, sterowanie ruchem, stabilnoœæ asymptotyczna w sensie
Lapunowa

* Al-Faraby Kazak National University, Almaty, Kazakstan; zaure_ra@mail.ru

Fig. 1. Training data for NN predictive control



Motion of the body is described by the well-known sys-
tem of the ordinary differential equations of Euler and Pois-
son (Arkhangelsky 1977):
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where:
p, q, r – projections of an angular speed of the body

rotation on the mobile axes,
A, B, C – body’s main moments of inertia.

This problem has three first integrals (see, for example, in
the work (Arkhangelsky 1977)). First two of them are given by
general theorems of theoretical mechanics. Integral of energy
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where h is the constant of integral.
Integral of squares

Ap�+ Bq�+ Cr�= const.

And geometrical integral or integral of cosines
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It was ascertained that the system (1) may be solved ana-
lytically if we find only one additional first integral. This ad-
ditional first integral was found only in three cases, which
became classical ones: case of Euler, case of Lagrange and
case of Kovalevskaya. In all these cases there are restrictions
on distribution of mass in the body, i.e. on the form of an el-
lipsoid of inertia, and on the position of the body’s centre of
mass. Besides them there are about twenty cases with spe-
cific initial conditions, they are described well in the work
(Gorr et al. 1978). But in 1975 Kozlov V.V. proved that ana-
lytical solution couldn’t exist in the general case of the prob-
lem, when A � B � C and position of the body’s centre of
mass was arbitrary (Kozlov 1975). Thus, the question of
qualitative research of the problem appears. In this work we
carry out the qualitative analysis of the motion, investigate
the motion on Lyapunov’s stability on the first approxima-
tion and find the motion control with a help of additional
force moments.

3. NEW RESULTS DISCUSSION

Let’s apply the linear change of variables (p, q, r, �, �, �)
� (u1, u2, u3, u4, u5, u6) of the next sort:
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where l is the unit, having the following dimension
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Then the equations (1) are reduced to the system of the
non-dimensional equations with explicitly expressed linear
part:
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Let’s investigate this system on stability on the first ap-
proximation. The characteristic equation of the system of the
first approximation will be:

� � �6 4 2 2 0� � �N P (3)

Here under the constants N and P2 the following expres-
sions were designated:
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The equation (3) gives two zero characteristic roots and
the biquadrate equation:
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The roots of equation (4) depend on its discriminant sign.
If discriminant is more or equal to zero, all the characteristic
roots have zero real parts. According to the Lyapunov’s the-
orem (Malkin 1966) about stability on the first approxima-
tion we can’t say something about motion stability in these
cases. If discriminant less then zero, the equation (4) breaks
up into two quadratic equations:
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And its roots will be the following:
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It may be estimated that expression 2P – N is more than
zero. It means that the characteristic roots (5) have negative
real parts and characteristic roots (6) have positive real parts.
As Re �5,6 > 0, according to the Lyapunov’s theorem the
non-perturbed motion is unstable.

Now we’ll try to make unstable motion in the last case the
stable one with a help of some additive moments of forces.
Let’s add to the right parts of the equations of the system (2)
the terms of the form �Kui, i = 1, ..., 6, where � < 1,
K P N� – –2 .

We’ll have the following system of the differential equa-
tions:
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Here only the first and forth equations are written, the
others can be obtained by the circle permutation of the quan-
tities (A, B, C), (a, b, c), (u4, u5, u6).

The characteristic equation for the system (7) will be:
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The roots �i of equation (8) are:
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Taking into account that K < 0 and constraining � within
the limits 0.5 < � < 1, we shall obtain the negative real parts
for all the roots of the characteristic equation. Hence, the
Lyapunov’s theorem about asymptotical stability of the non-
-perturbed motion of the controlled system (7) is true.

In order to define the nature of controlling forces let’s re-
alize reverse change of the variables:

(u1, u2, u3, u4, u5, u6) � (p, q, r, �, �, �).

In the right parts of first three equations of the system (7)
in comparison with initial system (1) the small additional
moment with the vector, opposite to the vector of kinetic mo-
ment K Api Aqj CrkO � � � , is observed. As is known, the
kinetic moment of the mechanical system concerning the
point O is defined by the formula:
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Then, considering properties of the vector product, the
additional moment can be written down in the form:
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Hence, the force, creating the controlling moment, has the
following expression:

F Km v� � ��� .

As in our problem the potential does not depend explicitly
on time, capacity of the additional forces can be defined by
the formula:
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As � > 0, K < 0, capacity N* is negative, and, hence, the
additional forces are the dissipative ones.

Small additional members in the right parts of last three
equations of the system (7) characterize a small deviation of
the direction of the gravity force from the axis OZ.

The first integrals of the system (1) change in new vari-
ables. Integral of energy has the next form:
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Geometrical integral:
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Now if we multiply the integral (9) by l and add the inte-
gral (10), we’ll have as a result the integral of the norm type:
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The same integral can be obtained from the motion equa-
tions. Multiplying the first equation by u1, the second – by u2

and so on and summing the obtained expressions, we’ll have:
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which gives us again the expression (11).
If make the same procedure for the controlled system (7),

we will have as a result:
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Let’s designate I u u u u u u� � � � � �1
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expression (12) gives:
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Solving this ordinary differential equation, we’ll have:

I C e Kt� 2
2� ,

where C2 is some constant. As a factor K < 0, when t tends to
infinity, I vanishes, i.e. the body motion is slowed down and,
finally, it stops.

4. CONCLUSIONS

1. The linear change of the variables, which reduced the
initial system to the system of the non-dimensional equ-
ations with explicitly expressed linear part, had been su-
ggested. The transformed system of the equations was
investigated on stability on the first approximation.

2. For the case of the instable by Lyapunov solution the con-
trol problem was defined, i.e. the small forces were searc-
hed, by addition of which the body motion was stabilized.
It was shown that such forces existed and could be de-
termined.

3. The first integral of the norm type was found. Change of
the first integrals of the controlled system was researched.
Nature of the controlling forces was determined and their
influence upon the body motion was revealed.

4. Thereby, the problem of the motion control was solved
for the problem of dynamics of the heavy solid body with
one fixed point.
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