PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The thermodynamical theory of elasto-viscoplasticity accounting for microshear banding and induced anisotropy effects

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Termodynamiczna teoria sprężysto-lepkoplastyczności uwzględniająca efekty mikropasm ścinania oraz indukowanej anizotropii
Języki publikacji
EN
Abstrakty
EN
The main objective of the present paper is the development of thermo-elasto-viscoplastic constitutive model of a material which takes into consideration induced anisotropy effects as well as observed contribution to strain rate effects generated by microshear banding. Physical foundations and experimental motivations for both induced anisotropy and microshear banding effects have been presented. The model is developed within the thermodynamic framework of the rate type covariance constitutive structure with a finite set of the internal state variables. A set of internal state variables consists of one scalar and two tensors, namely the equivalent inelastic deformation e/p the second order microdamage tensor [symbol] with the physical interpretation that ([formula]) defines the volume fraction porosity and the residual stress tensor (the backstress) alpha. The equivalent inelastic deformation [symbol] describes the dissipation effects generated by viscoplastic flow phenomena, the microdamage tensor [symbol] takes into account the anisotropic intrinsic microdamage mechanisms on internal dissipation and the back stress tensor alpha aims at the description of dissipation effects caused by the kinematic hardening. To describe suitably the influence of both induced anisotropy effects and the stress triaxiality observed experimentally the new kinetic equations for the microdamage tensor [symbol] and for the back stress tensor alpha are proposed. The relaxation time Tm is used as a regularization parameter. To describe the contribution to strain rate effects generated by microshear banding we propose to introduce certain scalar function which affects the relaxation time Tm in the viscoplastic flow rule. Fracture criterion based on the evolution of the anisotropic intrinsic microdamege is formulated. The fundamental features of the proposed constitutive theory have been carefully discussed. The purpose of the development of this theory is in future applications for the description of important problems in modem manufacturing processes, and particularly for meso-, micro-, and nano-mechanical issues. This description is needed for the investigation by using the numerical methods how to avoid unexpected plastic strain localization and localized fracture phenomena in new manufacturing technology.
PL
Głównym celem obecnej pracy jest opracowanie termo-sprężysto-lepkoplastycznego modelu konstytutywnego materiału, który uwzględnia efekty indukowanej anizotropii, jak również wpływ na wrażliwość materiału, prędkość deformacji spowodowanej tworzeniem się mikropasm ścinania. Przedstawiono fizykalne podstawy oraz eksperymentalne motywacje dla efektów wywołanych przez obydwa rodzaje indukowanych anizotropii oraz przez tworzenie się mikropasm ścinania. Model materiału został opracowany w ramach termodynamicznej, kowariantnej struktury konstytutywnej typu prędkościowego ze skończonym zbiorem parametrów wewnętrznych. Przyjęto, że zbiór parametrów wewnętrznych składa się z jednej wielkości skalarnej i dwóch tensorów, mianowicie z ekwiwalentnej niesprężystej deformacji e/p, tensora mikrouszkodzeń drugiego rzędu [symbol] (z fizykalną interpretacją, że ([wzór]) definiuje objętościowy udział porowatości) oraz tensora naprężeń resztkowych alfa. Ekwiwalentna niesprężysta deformacja [symbol] opisuje efekty dyssypacji generowane przez zjawisko lepkoplastycznego płynięcia, tensor mikrouszkodzeń [symbol] uwzględnia anizotropowe mechanizmy wewnętrznego mikrouszkodzenia w opisie wewnętrznej dyssypacji, natomiast tensor alfa opisuje efekty dyssypacji wywołane kinematycznym wzmocnieniem materiału. Aby opisać wpływ efektów obydwu indukowanych anizotropii i uwzględnienia efektów trójosiowości stanu naprężenia zaobserwowanych doświadczalnie zaproponowano nowe równanie kinetyczne dla tensora mikrouszkodzenia [symbol] i dla tensora naprężeń resztkowych alfa. Czas relaksacji Tm został wykorzystany jako parametr regularyzacji. Aby opisać udział wrażliwości materiału na prędkość deformacji generowanego przez tworzenie się mikropasm ścinania, zaproponowano wprowadzenie pewnej funkcji skalarnej, która wpływa na czas relaksacji Tm w procesie płynięcia lepkoplastycznego. Sformułowano kryterium zniszczenia bazujące na ewolucji anizotropowego wewnętrznego mikrouszkodzenia. Przeprowadzono szczegółową analizę wszystkich podstawowych cech zaproponowanej teorii konstytutywnej. Opracowana teoria może być wykorzystana w przyszłości do opisu ważnych problemów związanych z technologicznymi procesami, w szczególności dla zbadania zjawisk w meso-, micro-, i nanomechanice. Te opisy są potrzebne do szczegółowego zbadania za pomocą metod numerycznych jak uniknąć niepotrzebnych plastycznych lokalizacji oraz zjawiska zlokalizowanego zniszczenia w nowych procesach technologicznych.
Rocznik
Strony
25--42
Opis fizyczny
Bibliogr. 80 poz., rys., wykr.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • Abraham R., Marsden J.E. 1988: Foundations of Mechanics, Second Edition, Addison-Wesley, Reading Mass., 1978.
  • Abraham R., Marsden J.E., Ratiu T. 1988, Manifolds, Tensor Analysis and Applications. Springer, Berlin 1988.
  • Barbee T.W., Seaman L., Crewdson R., Curran D. 1972: Dynamic fracture criteria for ductile and brittle metals. J. Mater., 7, 393—401.
  • Bassani J.L. 1994: Plastic flow of crystals. Adv. Appl. Mech., 30, 191—258.
  • Boehler J.P. (Ed.) 1990: Yelding, Damage, and Failure of Anisotropic Solids. Proc. IU-TAM/ICT Symposium, Villard-de Lans, 24—28 August 1987, Mech. Eng. Public. Limited, London 1990.
  • Campbell J.D.; Ferguson W.G. 1970: The temperature and strain-rate dependence of the shear strength of mild steel. Phil. Mag., 81, 63-82.
  • Chang Y.W., Asaro R.J. 1980: Lattice rotations and shearing in crystals. Arch. Mech., 32,369-388.
  • Coleman B.D., Noll W.1963: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal.,13;167--178.
  • Curran D.K., Seaman L., Shockey D.A. 1977: Dynamic failure in solids. Physics Today, January, 46-55.
  • Curran D.R., Seaman L., Shockey D.A. 1981 Linking dynamic fracture to microstructural processes. [in:] Shock Waves and High-Strain Rate Phenomena in Metals: Concepts and Curran, D.R., Seaman, L., Shockey, D.A. 1987, Dynamic failure of solids, Physics Reports, 147, 253-388.
  • Dafalias Y.F. 1983: Corotational rates for kinematic hardening at large plastic deformations. J. Appl. Mech., 50, 561-565.
  • Dornowski W., Perzyna P. 1999: Constitutive modelling of inelastic solids for plastic flow processes under cyclic dynamic loadings. Transaction of the ASME, J. Eng. Materials and Technology, 121; 210-220.
  • Dornowski W., Perzyna P. 2000: Localization phenomena in thermo--viscoplastic flow processes under cyclic dynamic loadings. Computer Assisted Mechanics and Engineering Sciences, 7, 117-160.
  • Dornowski W., Perzyna P. 2002:.Numerical analysis of macrocrack propagation along a bima-terial interface under dynamic loading processes. Int. J. Solids and Structures 39, 4949-4977.
  • Dowling A.R., Harding J., Campbell D.J. 1970: The dynamic punching of metals. J. Inst. of Metals, 98, 215-224, 1970.
  • Duszek M.K., Perzyna P. 1991a: On combined isotropic and kinematic hardening effects in plastic flow processes. Int. J. Plasticity, 7, 351-363.
  • Duszek M.K., Perzyna P. 1991b: The localization of plastic deformation in thermoplastic solids. Int. J. Solids Structures, 27, 1419-1443.
  • Duszek-Perzyna M.K., Korbel K., Perzyna P. 1997: Adiabatic shear band localization in single crystals under dynamic loading processes. Arch. Mechanics, 49, 1069-1090.
  • Duszek-Perzyna M.K., Perzyna P. 1993: Adiabatic shear band localization in elastic-plastic single crystals. Int. J. Solids Structures, 30(1), 61-89.
  • Duszek-Perzyna M.K., Perzyna P. 1994: Analysis of the influence of different effects on criteria for adiabatic shear band localization in inelastic solids. [in:] Material Instabilities: Theory and Applications, ASME Congress, Chicago, 9-11 November 1994, Batra R.C, Zbib H.M. (Eds), AMD, vol. 183/MD, Vol. 50, ASME, New York, 1994, 59-85.
  • Duszek-Perzyna M.K., Perzyna P. 1995: Acceleration waves in analysis of adiabatic shear band localization. [in:] Nonlinear Waves in Solids, Proc. IUTAM Symposium, August 15-20, I993, Victoria, Canada; Wegner J.L., Norwood F.R. (Eds), 128-135, ASME Book No AMR, 137, 1995.
  • Duszek-Perzyna M.K., Perzyna P. 1996: Adiabatic .shear band localization of inelastic single crystals in symmetric double slip process. Archive of Applied Mechanics, 66, 369-384.
  • Duszek-Perzyna M.K., Perzyna P. 1998: Analysis of anisotropy and plastic spin effects on localization phenomena. Arch. Appl. Mechanics, 68, 352-374.
  • Follansbee P.S. 1986: Metallurgical Applications of Shock - Wave and High-Strain-Rate Phenomena. Murr L.E., StaudhammerK.P., Meyeres M.A. (eds), 451-480, Marcel Dekker, New York, 1986.
  • Glema A., Lodygowski T., Nowak Z., Perzyna P., Voyiadjis G.Z. 2005: Thermo-elasto-visco-plastic model of a material with non-local and anisotropic intinsic microdamage. McMat 2005, Mechanies and Materials Conference, June 1-3, 2005, Baton Rouge, LA, USA.
  • Glema A., Lodygowski T., Perzyna P. 2000:Interaction of deformation waves and localization phenomena in inelastic solids. Computer Methods in Applied Mechanics and Engineering, 183, 123-140.
  • Glema A., Lodygowski T., Perzyna P. 2001: The role of dispersion for the description of strain localization in materials under impact loading. European Conference on Computational Mechanics, June 26-29, Cracow, Poland, 2001.
  • Glema A., Lodygowski T., Perzyna P. 2003: Localization of plastic deformations as a result of wave interaction. CAM&ES, 3, 81--91.
  • Glema A., Lodygowski T., Perzyna P., Sumelka W. 2006: Constitutive anizotropy induced by plastic strain localization. 35th Solid Mechanics Conference, Krakow, Poland, September 4-8, 2006.
  • Grebe H.A., Pak H.R., Meyers M.A. 1985: Adiabatic shear hand localization in titanium and Ti-6PctAl-4PctV alloy. Met. Trans., 16A, 761-775.
  • Jia D.. Ramesh K., Ma E. 2003: Effects on nanocrystalline and ultrafine grain sizes on constitutive behaviour and shear bands in iron. Acta Materialia, 51, 3495--3509.
  • Johnson J.N. 1981: Dynamic fracture and spallation in ductile solids. J. Appl. Phys., 52, 2812-2825.
  • Korbel K., Nowak Z., Perzyna P., Pęcherski R.B. 2006: Viscoplasticity of nanometals based on Burzyński yield condition. 35th Solid Mechanics Conference, Krakow, Poland, September 4--8, 2006.
  • Kumar A., Kumble R.Gg. 1969: Viscous drag on dislocation at high strain rates in copper. J. Appl. Physics, 40, 3475-3480.
  • Lisiecki L.L., Nelson D.R., Asaro R.J..1982: Lattice rotations, necking and localized deformation in f.c.c. single crystals. Scripta Met., 16, 441-449.
  • Loret B. 1983: On the effects of plastic rotation in the finite deformation of anisotropic elasto-plastic materials. Mech. Mater., 2, 287-304.
  • Lodygowski T., Perzyna P. 1997: Numerical modelling of localized fracture of inelastic solids in dynamic loading processes. Int. J. Num. Meth. Engng., 40, 4137-4158.
  • Lodygowski T. Perzyna P. 1997: Localized fracture of inelastic polycrystalline solids under dynamic loading processes. Int. J. Damage Mechanics, 6, 364--407.
  • Marsden J.E., Hughes T.J.R. 1983: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs, New York 1983.
  • Mason J.J., Rosakis J.A., Ravichandran R. 1994: On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the Kolsky bar. Mechanics of Materials, 17, 135-145.
  • Meyers H.C. 1994: Dynamic Behaviour of Materials. John Wiley, New York 1994.
  • Meyers M.A., Aimone C.T. 1983: Dynamic fracture (spalling) of metals. Prog. Mater. Sci., 28, 1-96.
  • Meyers M.A., Mishra A., Benson D.J. 2006: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci., 5l, 427-556.
  • Nemes J.A., Eftis J. 1993:Constitutive modeling of the dynamic fracture of smooth tensile bars. Int. J. Plasticity, 9, 243-270.
  • Nowak Z., Perzyna P., Pęcherski R.B., 2007: Description of viscoplastic flow accounting for shear banding. Arch. Metallurgy and Materials, 52, 217-222.
  • Oldroyd J.1950: On the formulation of rheological equations of state. Proc. R. Soc. Lond. A200, 523--541.
  • Perzyna P. 1963: The constitutive equations for rate sensitive plastic materials. Quart. Appl. Math., 20, 321--332.
  • Perzyna P. 1966: Fundamental problems in viscoplasticity. Advances in Applied Mechanics, 9, 343--377.
  • Perzyna P. 1971: Thermodynamic theory of viscoplasticity. Advances in Applied Mechanics, 11, 313--354.
  • Perzyna P. 1977: Coupling of dissipative mechanisms of viscoplastic flow . Arch. .Mechanics, 29, 607--624.
  • Perzyna P. 1980: Modified theory of viscoplasticity. Application to advanced flow and instability phenomena. Arch. Mechanics, 32, 403-420.
  • Perzyna P. 1984: Constitutive modelling of dissipative solids for postcritical behaviour and fracture. ASME J. Eng. Materials and Technology,106, 410-419.
  • Perzyna P. 1986a: Internal state variable description of' dynamic fracture of ductile solids. lnt. J. Solids Structures, 22, 797-818.
  • Perzyna P. 1986b: Constitutive modelling for brittle dynamic fracture in dissipative solids. Arch. Mechanics, 38, 725-738.
  • Perzyna P. 1988: Temperature and rate dependent theory of plasticity of crystalline solids. Revue Phys. Appl. 23, 445-459.
  • Perzyna P. 1994: Instability phenomena and adiabatic shear band localization in thermoplastic flow processes. Acta Mechanica, 106, 173-205.
  • Perzyna P. 1995: Interactions of elastic-viscoplastic waves and localization phenomena in solids. IUTAM Symposium on Nonlinear Waves in Solids, August 15-20, 1993, Victoria, Canada; Wegner J.L, Norwood F.R. (Eds), ASME 1995, 114-121.
  • Perzyna P. 1998: Constitutive modelling of dissipative solids for localization and fracture. [In:] Localization and Fracture Phenomena in Inelastic Solids, Perzyna P. (Ed.), Springer, Wien, New York, 1998, 99-242.
  • Perzyna P. 2001: Thermo-elasto-viscoplasticity and damage. In: Handbook of Materials Behaviour Models Lemaitre J. (Ed.), Academic Press, New York, 821-834, 2001.
  • Perzyna P. 2002: Thermodynamical theory of inelastic single crystals. Engineering Transactions, 50, 107-164.
  • Perzyna P, 2005: The thermodynamical theory of elasto-viscoplasticity. Engineering Transactions, 53, 235-316.
  • Perzyna P., Drabik A. 1989: Description of micro-damage process by porosity parameter for nonlinear viscoplasticity. Arch. Mechanics, 41, 895-908.
  • Perzyna P., Drabik A. 2006: Micro-damage mechanism in adiabatic processes. Engineering Transactions (in print).
  • Perzyna P., Korbel K. 1996: Analysis of the influence of substructure of crystal on the localization phenomena of plastic deformation. Mechanics of Materials, 24, 141-158.
  • Perzyna P., Korbel K. 1998: Analysis of the influence of various effects on criteria for adiabatic shear band localization in single crystals. Acta Mechanica, 129, 31-62.
  • Perzyna P., Voyiadjis G.Z. 2005: Thermodynamic theory of elasto-viscoplasticity for induced anisotropy effects. McMat 2005, Mechanics and Materials Conference, June 1-3, 2005, Baton Rouge, LA, USA.
  • Pęcherski R.B. 1998: Macroscopic effects micro-shear banding in plasticity of metals. Acta Mechanica, 131, 203-224.
  • Rashid M.M., Gray G.T., Nemat--Nasser S. 1992: Heterogeneous deformations in copper single crystals at high and low strain rates. Philosophical Magazine, A, 65, 707-735, 1992.
  • Rosenfield A.R., Hahn G.T. 1966: Numerical description of the ambient low-temperature, and high-strain rate, flow and fracture behaviour of plain carbon steel. Trans. Am. Soc. Metals, 59, 962-980.
  • Seaman L., Curran D.R., Shockey D.A. 1976: J. Appl. Phys., 47, 4814-4820.
  • Shima S., Oyane M. 1976: Plasticity for porous solids. Int. J. Mech. Sci., 18, 285 .291.
  • Shockey D.A., Seaman L., Curran D.R. 1973: In: Metallurgical Effects at High Strain Rates. Rohde R.W., Butcher B.M., Holland J.R., Karnes C.H. (Eds.), Plenum Press, New York 1973, 473.
  • Shockey D.A., Seaman L., Curran D.R. 1985: The microstatistical fracture mechanics approach to dynamic fracture problem. Int. J. Fracture, 27, 145-157.
  • Sidey D., Coffin L.F. 1979: Low-cycle fatigue damage mechanisms at high temperature. in: Fatigue Mechanisms, Proc. ASTM STP 675 Symposium, Kansas City; Mo., May 1978, Fong J.T. (Ed.), Baltimore, 1979, 528—568.
  • Spitzig W.A. 1981: Deformation behaviour of nitrogenated Fe-Ti-Mn and Fe—Ti single crystals. Acta Metall. 29, 1359-1377.
  • Taylor G.I., Quinney H. 1934; The latent energy remaining in a metal after cold working. Proc. R. Soc. Lond., A143, 307-326.
  • Teodosiu C., Sidoroff F. 1976: A theory of finite elastoplasticity of single crystals. Int. J. Engng. Sci., 14, 165-176.
  • Truesdell C., Noll W. 1985: The Non-Linear Field Theories of Mechanics. [in:] Handbuch der Physik II1/3, Flugge S. (Ed.), Springer-Verlag Berlin 1965.
  • Van der Giessen E.1991: Micromechanical and thermodynamic aspects of the plastic spin. Int. J. Plasticity, 7, 365-386.
  • Voyiadjis G.Z., Ju J.-W., Chaboche J.-L. (Eds) 1998: Damage Mechanics in Engineering Materials. Elsevier, Amsterdam 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHM-0001-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.