
1. INTRODUCTIONS

Human body can be considered as a very complex, active
biomechanical system. However, majority of existing bio-
mechanical models of sitting human operator body were bu-
ilt as passive, lumped parameter systems (Coermann 1962,
Gierke 1971, Hopkins, 1971, Muskian 1976, Ksi¹¿ek 1979,
Potiemkin 1979, ISO 7962, Kiene 1989, Smith 1992,
Mansfield 1996, Yoshimura 1996 and Wei 1998). The struc-
tures of these models were a priori assumed and the param-
eters of these structures were identified by comparison of the
corresponding theoretical and experimental quantities such
as transmissibility functions, impedances or apparent
masses.

The first active human biomechanical models (AHBM)
of the sitting human body were proposed and presented in
(Ksi¹¿ek 1997a, 1997b, 1998, 1999a, 1999b). In the pre-
sented paper these models were adopted as the objects sub-
jected to vibration. Investigation concerning an aspect of
synthesis of optimal vibration isolation for such models was
target of the work.

The optimization of vibration isolation of the active mod-
els was already considered in different aspects in (Ksi¹¿ek
2003, 2004, 2005). In the presented paperthe optimization of
vibration isolation based on the linear quadratic regulator

(LQR) theory (Bryson 1981, 2002, Mathworks 2001), was
applied as the first design step in seeking a state – feedback
law, that minimizes chosen a priori cost function named fur-
ther the criterion of optimization of vibration isolation sys-
tem. The form of this function was assumed taking into ac-
count structure of AHBM-VIS system and existing interna-
tional standards concerning human body expositions to
vibration (ISO 2631, PN-91/N-01354 and Engel 1993).

2. PROBLEM PRESENTATION
AND ASSUMPTIONS

In the Figure 1 the structure of the dynamical system com-
posed of active model of sitting human body (AHBM) and
vibration isolation system (VIS) was presented. Structure
and values of parameters of the AHBM were adopted from
(Ksi¹¿ek 1999b, 2004). The active human body model
(AHBM) is composed of masses m1, m2, dampers with dam-
ping coefficients: �1, �1, springs with stiffness coefficients
k1, k1 and actuator A developing active force Fa acting be-
tween masses m1 and m2. Vibration isolation system (VIS) is
represented by seat of mass m3, damper with damping coeff-
icient �3 and spring with stiffness coefficient k3. Force Fst is
the force developed by regulator LQR.
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SUMMARY

In the paper the linear quadratic regulator (LQR) theory was applied to optimization of vibration isolation system of sitting
human operator body subjected to vertical excitations. The optimization approach was applied to system composed of act-
ive human body model (AHBM) and passive, linear vibration isolation system (VIS). Synthesis of optimal LQR for the given
system was done for two existing, active biodynamical models “back-off” and “back-on” of sitting human body. Optimiz-
ation was done for chosen form of vibration isolation criterion. Analytical formula of that form, corresponding to present
standards concerning the human body expositions to vibration, was presented. Influence of the LQR on dynamical be-
havior of the system composed of AHBM and VIS was estimated on the basis of numerical calculations, discussed and gra-
phically presented.
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ZASTOSOWANIE TEORII REGULATORA LQR DO OPTYMALIZACJI WIBROIZOLACJI CIA£A
SIEDZ¥CEGO CZ£OWIEKA

W pracy przedstawiono zastosowanie liniowego regulatora kwadratowego (LQR) do optymalizacji uk³adu wibroizolacji
cia³a siedz¹cego cz³owieka – operatora poddanego drganiom pionowym. Dobór optymalnego regulatora przeprowadzo-
no dla dwóch wersji aktywnego modelu cia³a siedz¹cego cz³owieka, modelu z oparciem i modelu bez oparcia. Regulator
LQR by³ zastosowany do uk³adu z³o¿onego z aktywnego modelu cia³a cz³owieka (AHBM) i liniowego uk³adu wibroizolacji
(VIS). Optymalizacja zosta³a przeprowadzona dla za³o¿onej postaci kryterium, odpowiadaj¹cej obecnym normom doty-
cz¹cym ekspozycji cia³a cz³owieka na wibracje. Wp³yw regulatora LQR na zachowanie siê uk³adu AHBM-VIS przedsta-
wiono w postaci graficznej, na podstawie wyników przeprowadzonych obliczeñ numerycznych.
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3. EQUATIONS OF MOTION OF THE SYSTEM AHBM-VIS

The differential equations of motion for the system illustrated in the Figure 1 can be written in the form (3.1) taking into
account the descriptions mentioned in paragraph 2.
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In (Ksi¹¿ek 1999a 1999b) was shown that the force Fa has different form for the position “back-off” and position
“back-on” of the sitting human body. These two different forms are marked as Fa

back-off and Fa
back-on. The analytical expres-

sions for these forces are presented by the formulae (3.2) and (3.3).
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Force developed by passive part of VIS is given by the formula (3.4)
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The equations (3.1) can be rewritten in the following form
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Introducing new variables

� �y x x x x x x
T

� 1 2 3 1 2 3
� � � (3.6)

� �w x x
T

� 0 0
� (3.7)

u Fst�[ ] (3.8)

where:
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Fig. 1. Structure of Active Human Body Models (AHBM) and Vibration Isolation System (VIS)

� �w x x
T

� 0 0
� – vector of generalized forcing forces,

u = Fst – vector of generalized control forces, equations (3.5) take form



In matrix form we have

�y Ay Bu Dw� � � (3.10)

The corresponding matrices for “back-off” and “back-on” models have the following forms
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4. APPLICATION OF LQR METHOD

4.1. Theoretical background

The LQR method for the problem presented in (3.10) can be applied under assumption that we have all full-state feedback (i.e.
that we can measure all six states of (3.9)). In that case we can find the minimizing gain matrix K, which determines the fe-
edback control law.
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The gain K is obtained by solving an Riccati equation and is called the LQ-optimal gain. The procedure of getting of the
gain K can be presented in the following steps:

1. Writing the Hamiltonian of the form
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2. Construction of the following differential equations
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3. Getting, after some conformal mathematical transformation, equation of Riccati
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The solution of the equation (4.5) is time – varying gain K(t) = BTS(t) + NT. In this case the controller takes the form
u(t) = –K(t)y(t). When T tends to constant value as the time-to-go becomes large, the controller effectively becomes regulator,
i.e. a feedback controller

u t Ky t( ) – ( )� (4.6)

with constant gains K =const, which must be calculated from the following relation
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In that case the differential equation (4.5) transforms to algebraic one
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The matrices Q, R, N,called the weighting matrices, are the components of the criterion of optimization which can be, in
general form, written as follows
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4.2. Application of LQR theory to AHBM-VIS model

For the system AHBM-VIS the criterion (4.9) was assumed in the following form
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where �i (i = 1...9) are the weighting multipliers in criterion (4.10). These multipliers can be transformed as follows
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Comparing criterion (4.9) with (4.10) and taking into account that Q = QT, components of the matrix Q can be presented by
columns of its lower triangle as follows
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Matrix N has the form

N
k
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k

m
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� � �

3

1 3

3 3

2 3

3 3

1 2 3 3

31 1 1)
–
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� �
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�
�
�

�

�
�
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(4.13)

and R is one component matrix

R
m

�
�

�
�
�

�

�
�
�

�

��
3

3 31( – )
(4.14)

5. NUMERICAL SOLUTIONS

5.1. Numerical data

The numerical values of the parameters of the AHBM and VIS models were taken from (Bryson 1981) and presented in
Table 5.1.

In numerical calculations considered system was subjected to harmonic excitation described by the following variables

w
f

f t w
f

f t1 2
0
2 0 2

0
2 0

1

4
2

1

2
2� �

 
 

 
 cos ( ), sin ( ) (5.1)

It was assumed that acceleration ��x is a harmonic function with frequency f0 and its amplitude is 1 m/s2.
Where f0 corresponds to first resonance frequency of the system.
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Parameters of models “Back-off”
m1 + m2 = 70.8 kg

Parameters of models “Back-on”
m1 + m2 = 70.8 kg

m1 [kg] 9.1 m1 [kg] 66

m2 [kg] 61.7 m2 [kg] 4.8

m3 [kg] 35 m3 [kg] 35

k1 [N/m] 11972.5557 k1 [N/m] 51189.32

k2 [N/m] 224456.7485 k2 [N/m] 63335.50

k3 [N/m] 9950 k3 [N/m] 9950

� 1 [Ns/m] 3251.9783 � 1 [Ns/m] 1704.17

� 2 [Ns/m] 519.0440 � 2 [Ns/m] 1262.59

� 3 [Ns/m] 860 � 3 [Ns/m] 860

k11 [N/m] 97323.2354 k11 [N/m] 123251.32

k12 [Ns/m] –2226.0653 k12 [Ns/m] –1781.04

k13 [N/m] –1960.5176 k13 [N/m] –104227.69

k14 [Ns/m] 1164.3525 k14 [Ns/m] 759.69

f0 [Hz] 1.55 f0 [Hz] 1.58

Table 5.1

Numerical values of the parameters of AHBM and VIS model (Bryson 1981)



5.2. Results of numerical calculations

Numerical calculations were presented for �i = 0.5, i = 1…9 For such values of �i the values of K are given as follows

Kback-off = [–82588.9 –30800.6 91303.8 –2426.04 –1986.87 1580.32] T

Kback-on = [–74591. 903462. –441635. 10062.7 –400.684 –12902.7] T

Numerical simulations were conducted assuming different types of excitations but presented results correspond to sinusoi-
dal excitation with frequency f0.

Exemplary time histories of the most important variables of the models were shown in Figures 2–11. In the Figures 2 and 3
the relative displacements with and without LQR regulator were compared.
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Fig. 5. Time history of acceleration ��x3 ( �y6) for “back-on” model

Fig. 2. Time history of relative displacement x1 – x3(y1 – y3)
for “back-off” model

Fig. 3. Time history of relative displacement x1 – x3(y1 – y3)
for “back-on” model

Fig. 4. Time history of acceleration ��x3 ( �y6) for “back-off” model

Fig. 6. Time history of acceleration ��x1 ( �y3) for “back-off” model Fig. 7. Time history of acceleration ��x2 ( �y4) for “back-off” model



Figures 2 and 3 show big influence of application of con-
trol force on the values of relative displacements of the
masses of the model. The displacements for the models with
application of LQR are about ten times lower than the same
displacements without regulator. There are however slight
differences between the “back-off” and “back-on” models.
This is the results of bigger stiffness of “back-on” model.
Analogical results, but not presented in the paper, were con-
firmed by calculations concerning the relative displacements
x2 – x3(y2 – y3), and x3 – x0(y3 – y0).

In Figures 4 and 5 the time histories of accelerations of
mass m3 for “back-off” and “back-on” models were pre-
sented. In this particular case, decrease of acceleration of
mass of seat for the system with LQR is almost eight times
lower than for the system without LQR.

The relation between the accelerations of masses m1 and
m2 for the model “back-off” were shown in Figures 6 and 7.

The relation between the accelerations of masses m1 and
m2 for the model “back-on” were shown in Figures 8 and 9.

In Figures 10 and 11 the chosen results of numerical sim-
ulation were presented on the phase plane. Such approach, as
a direct presentation of transformation (3.6) can be very use-
ful in interpretation of initial, non-stationary state of the
AHBM-VIS system. Exemplary results were shown for mass
m1 of “back-off” model without and with LQR.

The calculation to this work has been completed on the
computer and by means of the software made by ACK and
available in Cyfronet (MNISW/Sun6800/PK/155/2006).

6. CONCLUDED REMARKS

Investigations concerning the vibration isolation of human
body operators, at present state of knowledge, are founded
on rather simple structures of biomechanical models and
simple, sometimes one parameter criteria. Such approaches
yield final results which are very simplified and very distant
from the expectations. It seems obvious that more complex,
but realistic biomechanical models and suitable criteria of vi-
bration isolation must be applied to ameliorate comfort of the
operator. In the presented paper the complex, active biomec-
hanical models of sitting human operator body and criteria
composed of nine components (composed of accelerations
and relative displacements) were applied in the LQR proced-
ure of optimization of considered system. The accelerations
can be considered as the indicators of the forces acting on the
masses of models. The relative displacements can be consid-
ered as indicators of stresses or strains in elements connect-
ing particular parts of the human body.
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Fig. 8. Time history of acceleration ��x1 ( �y3) for “back-on” model Fig. 9. Time history of acceleration ��x2 ( �y4) for “back- on” model

Fig. 10. Phase portrait of � ( )x t1 (y3(t)) and x1(t)(y1(t)) for the model

“back-off” without LQR, t = 1...15 s

Fig. 11. Phase portrait of � ( )x t1 (y3(t)) and x1(t)(y1(t)) for the model

“back-off” with LQR, t = 1...15 s



In the paper the accelerations of masses m1, m2, m3 and
relative displacements x1–x3 (y1–y3), x2–x3 (y2–y3), x3–x0

(y3–y0), were assumed as measurable quantities and were the
base for the construction of criterion of optimization of vi-
bration isolation system. Procedure based on LQR theory
can be considered as the first step to full synthesis of optimal
vibration isolation system by LQG regulator.
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