PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coating of poly(l-lactide-co-glycolide) scaffolds with collagen/glycosaminoglycan matrices and their effects on osteoblast behaviour

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Collagen type I and glycosaminoglycans (GAGs) were immobilized on the surfaces of two types of porous biodegradable poly(L-lactide-co-glycolide) (PLGA) scaffolds with pore size in the range of 250-320 µm and 400-600 µm. Two methods of coating were evaluated differing in the way of how the fibrillogenesis solution was introduced into the pores. The distribution of the immunostained collagen in the volume of the scaffolds was analysed with a laser confocal microscope (LSM). The total amount of collagen and GAGs was measured by Sirius Red and Toluidine Blue assays, respectively. The potential of the scaffolds for cell colonization and differentiation was tested in a dynamic cell culture system using human osteosarcoma cells (SAOS-2). The proliferation of SAOS-2 cells was measured by determining the DNA content on days 2 and 7, while differentiation was analyzed by Calcium- and Phosphate-Assays on days 7 and 14. Differentiation of cells was improved by increasing the pore diameter of the scaffolds, and artificial extracellular matrix (aECM) coatings had an additional positive effect for the scaffolds of both pore sizes.
Rocznik
Strony
9--13
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Department of Biomaterials, Faculty of Materials Science and Ceramics , Krakow, Poland
autor
  • AGH University of Science and Technology, Department of Biomaterials, Faculty of Materials Science and Ceramics , Krakow, Poland
  • Center of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
  • Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität, Dresden, German
autor
  • Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität, Dresden, German
  • Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität, Dresden, German
autor
  • Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität, Dresden, German
Bibliografia
  • [1] Vert M., Polymeric biomaterials: Strategies of the past vs. strategies of the future. Prog Polym Sci 32, 2007, 755-761.
  • [2] Harbers G.M., Grainger D.W., Cell-material interactions: Fundamental design issues for tissue engineering and clinical considerations W Guelcher S. A., J.O. Hollinger (Editors) An introduction to biomaterials, CRC Taylor & Francis, Boca Raton, 2006, 15-45.
  • [3] Lu X., Leng Y., Zhang X., Xu J., Qin L, Chan C.W., Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo. Biomaterials 26,2005,1793-1801.
  • [4] Postiglione L, Di Domenico G., Ramaglia L, di Lauro A.E., Di Meglio F., Montagnani S., Different titanium surfaces modulate the bone phenotype of Saos-2 osteoblast-like cells. Eur J Histochem 48, 2004,213-222.
  • [5] Knabe C, Howlett C.R., Klar F., Zreiqat H., The effect of different titanium and hydroxyapatite-coated dental implant surfaces on phenotypic expression of human bone-derived cells. J Biomed Mater Res A 71, 2004, 98-107.
  • [6] Douglas T, Hempel U., Mietrach C., Heinemann S., Schamweber D., Worch H., Fibrils of different collagen types containing immobilised proteoglycans (PGs) as coatings: characterisation and influence on osteoblast behaviour. Biomolecular Eng 24, 2007, 455-458.
  • [7] Rentsch C., Rentsch B., Breier A., Hofmann A., Manthey S., Schamweber D., Biewener A., Zwipp H, Evaluation of the osteogenic potential and vascularization of 3D poly(3)hydroxybutyrate scaffolds implanted subcutaneously in nude rats. J Biomed Mater Res A (JBMR-A-08-0051), accepted August 2008.
  • [8] Douglas T., Heinemann S., Mietrach C., Hempel U., Bierbaum S., Scharnweber D., Worch H., Interactions of collagen types I and II with chondroitin sulfates A-C and their effect on osteoblast adhesion. Biomacromolecules 2007, 8, 1085-1092.
  • [9] Rammelt S., Illert T., Bierbaum S., Scharnweber D., Zwipp H., Schneiders W., Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials 27, 2006, 5561-5571.
  • [10] Dobrzyński P., Kasperczyk J., Janeczek H., Bero M., Sythesis of biodegradable copolymers with the use of low toxic zirconium compounds. 1. Copolymerisation of glycolide with L-lactide initatied by Zr(acac). Macromolecules 34, 2001, 5090-5098.
  • [11] Pamula E., Menaszek E., In vitro and in vivo degradation of poly(L-lactide-co-glycolide) films and scaffolds. J Mater Sci: Mater Med 19, 2008, 2063-70.
  • [12] Pamula E., Filova, L. Bacakova, V. Lisa, Adamczyk D., Resorbable polymeric scaffolds for bone tissue engineering: The influence of their microstructure on the growth of human osteoblast-like MG 63 cells. J Biomed Mater Res 89A, 2008, 432-443.
  • [13] Morejon-Alonso L, Carrodeguas R., Garcia-Menocal J., Perez J., Manent M., Effect of sterilization on the properties of CDHA-OCP-β-TCP biomaterial. Mater Res 10, 2007, 15-20.
  • [14] Pamula E., Bacakova L, Filova E., Buczyńska J., Dobrzyński P., Noskowa L., Grausova L., The influence of pore size on colonization of poly(L-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro. J Mater Sci: Mater Med 19, 2008, 425-435.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHD-0003-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.