PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prototype of innovating bone tissue preserving THRA endoprosthesis with multi-spiked connecting scaffold manufactured in selective laser melting technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the prototype of innovating bone tissue preserving THRA endoprosthesis with multi-spiked connecting scaffold - the main result of our research project: "Experimental investigation and design of the constructional properties of bone-porous implants fixations" (4T07C05629, Polish Ministry of Science, finished in February 2008) presented also as plenary lecture at the 18th International Conference "Biomaterials in Medicine and Veterinary Medicine" in Rytro (Poland), 2008. Three-dimensional selective laser melting (SLM), a direct metal manufacturing (DMM) technology from rapid prototyping/rapid manufacturing (PR/RM) group, was successfully applied to manufacture these prototypes of Ti6AI7Nb powder. We share our observations and remarks on the prototypes manufacturing in SLM laser additive technology.
Rocznik
Strony
2--6
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Kazimierz Wielki University, Department of Medical Bioengineering Fundamentals, Institute of Technology, Bydgoszcz, Poland
autor
  • Kazimierz Wielki University, Department of Medical Bioengineering Fundamentals, Institute of Technology, Bydgoszcz, Poland
  • Department of Spine Surgery, Oncologic Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznań, Poland
autor
  • Kazimierz Wielki University, Department of Medical Bioengineering Fundamentals, Institute of Technology, Bydgoszcz, Poland
  • Chair of Machine Design Fundamentals, Poznan University of Technology, Poznań, Poland
Bibliografia
  • [1] Bourell D, Wohlert M, Harlan N, Das S, Beaman JJ. Powder Densification Maps in Selective Laser Sintering, Advanced Engineering Materials, 2002, Vol. 4 (9),663-669.
  • [2] Cowin S. Bone poroelasticity, J. Biomech., 1999, 32, 217-238.
  • [3] Gibson I, (Ed.), Advanced Manufacturing Technology for Medical Applications. J. Wiley & Sons Ltd., London, 2005.
  • [4] Greene W, Netter's Orthopaedics, Saunders, London, 2005.
  • [5] Kruth J-P, Mercelis P, Van Vaerenbergh J. Binding mechanism in selective laser sintering and selective laser melting, 2005, Rapid Prototyping Journal, Vol. 11, 26-36.
  • [6] Long M, Rack HJ, Titanium alloys in total joint replacement - a materials science perspective, Biomaterials, 1998, Vol. 19, 1621-1639.
  • [7] Mielniczuk J, Rogala P, Uklejewski R, Winiecki M, Jokś G, Auguściński A, Berdychowski M. Modelling of the needle-palisade fixation system for the total hip resurfacing arthroplasty endoprosthesis. Trans VŚB-TU Ostrava, Metallurgical Series, 2008; 51(1):160-166.
  • [8] Mielniczuk J, Uklejewski R, Winiecki M, Rogala P, The poroparameters for evaluation of structural-osteoinductive and mechanical properties of bone-implant porous coating interface. Part 1. Theoretical background on the basis of the poroelastic model of bone, J. Biomech., 2006, 39, Suppl.1, S14.
  • [9] Milz S, Putz R, Quanitaive morfology of subchondral plate of tibial plateau", J. Anat, 1994, Vol. 185, pp. 103-110.
  • [10] MTT Technologies Group: http://www.mtt-group.com/
  • [11] Murr LE, Ouinones SA, Gaytan SM, Lopez Ml, Rodela A, Martinez EY, Hernandez DH, Martinez E, Medina F, Wicker RB, Microstructure and mechanical behavior of Ti6Al4V produced by rapid-layer manufacturing, for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials, 2009, Vol. 2, 20-32.
  • [12] Rehme O, Emmelmann C. Reproducibility for properties of Selective Laser Melting products. In: E. Beyer et al. (Ed.). Proceedings of the Third International WLT-Conference on Lasers in Manufacturing 2005, Munich, June 2005.
  • [13] Rogala P, Canadian Patent No 2,200,064: Method and endoprosthesis to apply this implantation, 2002.
  • [14] Rogala P, European Patent Nr 072418 B1: Endoprosthesis, 1999.
  • [15] Rogala P, Mielniczuk J, Uklejewski R, Winiecki M, Auguściński A, Berdychowski M. Laser forming vs. electrical discharge machining of needle-palisade fixation systems for cementless THRA endoprosthesis preprototypes. Machine Dynamics Problems, 2008; 32(1):80-87.
  • [16] Rogala P, Uklejewski R, Stryła W. Modern poroelastic biomechanical model of bone tissue. Part 1. Biomechanical function of fluids in bone, (in Polish), Chir. Narządów Ruchu Ortop. Pol., 2002, 67, 309-316.
  • [17] Rogala P, Uklejewski R, Stryła W. Modern poroelastic biomechanical model of bone tissue. Parts 2. Structure of pore space in cortical and trabecular bone, (in Polish), Chir. Narządów Ruchu Ortop. Pol., 2002, 67, 395-403.
  • [18] Rogala P, Uklejewski R, Stryła W., New needle-palisade technology for hip and other joints endoprostheses fixation. Implications for postoperative rehabilitation. Int. J. Rehab. Res., 2007. 30, Suppl. 1, 57-58.
  • [19] Rogala P, Uklejewski R, Winiecki M, Mielniczuk J. Structural Bone-Implant Compatibility in Design of the Needle-Palisade Fixation System for Total Hip Resurfacing Arthroplasty Endoprosthesis. Machine Dynamics Problems, 2008; 32(2):57-62.
  • [20] Rogala P, Uklejewski R. Needle-palisade fixation for total resurfacing arthroplasties of hip and other joints - Biomechanical principles. Journal of Biomechanics 2006; Vol. 39, Suppl. 1, S513.
  • [21] Rogala P, Uklejewski R. Needle-palisade fixation for total resurfacing arthroplasties of hip and other joints. - Biomechanical principles (Extended Summary). In: Liepsch D, (Ed.): 5th World Congress of Biomechanics - Volume of Selected Papers, MEDIMOND, Bologna, Italy, 2006.
  • [22] Rogala P, US Patent No 5,91,759: Acetabulum endoprosthesis and head, 1999.
  • [23] Santos EC, Shiomi M, Osakada K, Laoui T, Rapid prototyping of metal components by laser forming", International Journal of Machinę Tool & Manufacture, 2006, Vol. 46, 1459-1468.
  • [24] Sercombe T, Jones N, Day R, Kop A. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting, Rapid Prototyping Journal, 2008, Vol. 14, No. 5, 300-304.
  • [25] Stryła W, Uklejewski R, Rogala P, Modern two-phase biomechano-electrophysiological model of bone tissue. Implications for rehabilitation research and practice, Int. J. Rehab. Res., 2004, 27, Suppl. 1, 175-177.
  • [26] Uklejewski R, Kędzia A, Rogala P. Living porous bone as biomechatronic system, In: Abousleiman YN, Cheng AHD, Ulm FJ, (Eds.), Poromechanics - Biot Centenial, Balkema Publs. Leiden-London-N.York-Philadelphia-Singapore, 2005, 20-25.
  • [27] Uklejewski R, Rogala P, Stryła W, Kędzia A. Bone as organ viewed as biomechatronic system (Extended Summary). In: Liepsch D, (Ed.): 5th World Congress of Biomechanics - Volume of Selected Papers, MEDIMOND, Bologna, Italy, 2006.
  • [28] Uklejewski R, Rogala P, Stryła W, Kędzia A. Bone as organ viewed as biomechatronic system, J. Biomech.. 2006. 39, Suppl. 1, S11.
  • [29] Uklejewski R, Rogala P, Winiecki M, Mielniczuk J, Auguściński A, Berdychowski M. Modern trends in bioengineering design of low-invasive joint endoprostheses. Inżynieria biomateriałów, 2008, Vol. 11, Nr 77-80, 32-33.
  • [30] Uklejewski R, Rogala P, Winiecki M, Mielniczuk J. Prototype of minimally invasive hip resurfacing endoprosthesis - bioengineering design and manufacturing. Acta of Bioengineering and Biomechanics, 2009, Vol. 11, No 2.
  • [31] Uklejewski R, Winiecki M, Mielniczuk J, Rogala P, Auguściński A, The poroaccessibility parameters for three-dimensional characterization of orthopedic implants porous coatings, Metrology MS, 2008, 15, 215-226.
  • [32] Uklejewski R, Winiecki M, Rogala P, Mielniczuk J, Auguściński A, Stryła W. Structural and biomechanical biocompatibility in bone-porous implant fixation region - on the basis of two-phase poroelastic biomechanical model of bone tissue. Inżynieria biomateriałów, 2007; Vol. 10(69-72):93-95.
  • [33] Uklejewski R, Winiecki M, Rogala P, On the structural-adaptive compatibility of bone with porous coated implants on the base of the traditional one-phase and the modern two-phase poroelastic biomechanical model of bone tissue, Inżynieria biomateriałów, 2006, Vol. 9(54-55), 1-13.
  • [34] Uklejewski R. Bone as porous medium filled with fluid, (in Polish), IPPT PAN Reports 16, 1992.
  • [35] Winiecki M, Auguściński A, Rogala P, Mielniczuk J, Uklejewski R, The poroparameters for evaluation of structural-osteoinductive and mechanical properties of bone-implant porous coating interface. Part 2. Experimental results, J. Biomech., 2006, 39, Suppl. 1.S469.
  • [36] Winiecki M, The lnvestigation on the Microgeometrical Constructional Properties of Porous Endoosseous Implants and the Influence of these Properties on the Strength of the Bone-Implant Model Fixation (in Polish), PhD Thesis, Poznań University of Technology, Poznań, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHD-0003-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.