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BEURLING’S THEOREMS
AND INVERSION FORMULAS
FOR CERTAIN INDEX TRANSFORMS

Abstract. The familiar Beurling theorem (an uncertainty principle), which is known for the
Fourier transform pairs, has recently been proved by the author for the Kontorovich-Lebedev
transform. In this paper analogs of the Beurling theorem are established for certain index
transforms with respect to a parameter of the modified Bessel functions. In particular, we
treat the generalized Lebedev-Skalskaya transforms, the Lebedev type transforms involving
products of the Macdonald functions of different arguments and an index transform with
the Nicholson kernel function. We also find inversion formulas for the Lebedev-Skalskaya
operators of an arbitrary index and the Nicholson kernel transform.
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1. INTRODUCTION

Let Ry = (0,00) and the cosine Fourier transform of a Lebesgue integrable function
f(y) € L1(Ry4; dy) be defined as usual by

En@ =2 [ o) cosayay o

Beurling’s theorem [3] says that if

//mmnmmwmw<& (2)

Ry Ry
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then f = 0. Recently (cf. [15]) we have proved an analog of Beurling’s theorem for
the Kontorovich-Lebedev transform [4,9,10]

K lf] = / " Ki) f(y)dy, = >0, 3)

which is associated with the modified Bessel function K, (z) [2] as the kernel. The
latter function is a fundamental solution of the differential equation
o d*u n du (22 + 12) 0
22—t z— — (2 U=
dz? dz a
and can be represented by the integrals of the Fourier and Mellin types [7, Vol. 1],
[9,10], respectively:

K,(z)= / e~ Y cosh pu du, (4)
0
R AN e S
Kuw) =5 (3) /O 1= L, (5)
The modified Bessel function reveals the following asymptotic behavior [2]
m\/2 _,
Ku2)=(5)  e+00/2),  z—oo, (6)
and near the origin:
2Rerl K (2) = 2471 () + o(1), 2 — 0, p #0, (7)
Ko(z) =—logz+ O(1), z— 0. (8)

So, if f(y) belongs to the weighted Lebesgue space L1 (R4 ; Ko(y)dy) of those measur-
able functions on R for which

/ 1) Eo(y)dy < oo,

and

/ / P K] Ko (y)dady < oo, (9)

Ry Ry

then f =0.

In this paper, analogous theorems and inversion formulas will be established for
certain index transforms [9,10]. Precisely, we will study the Lebedev-Skalskaya type
transforms [6,12], the Lebedev transform involving a square of the Macdonald function
as the kernel [5,11], an index transform involving a product of the modified Bessel
functions of different arguments [14] and an index transform with the Nicholson func-
tion [13].
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2. THE LEBEDEV-SKALSKAYA TYPE TRANSFORMS

Let us consider the following integral operators
oo
Re K.[f] = / Re K.()f()dy, = = a +ir, 7 € Ry, (10)
0

Im Kz[f]:/OOOIm K.(y)f(y)dy, z=a+ir, T € Ry, (11)

where o € R is a fixed parameter and by

Re K.(y) = 5 [K-(y) + K-()], (12)
i K.(y) = o [K.(y) — Ke()], (13)

we as usual denote the real and imaginary parts, respectively, of the modified Bessel
function K, (y). We call these operators the Lebedev-Skalskaya type transforms of a

general complex index, which were introduced in [10, Chapter 6]. The case o = 0
in (10) evidently corresponds to the Kontorovich-Lebedev operator (3) and v = 5 in

(10), (11) leads us to the Lebedev-Skalskaya transforms [6]. Using (4), we easily find
integral representations of functions (12), (13):

Re K, (y) = / e~ " cosh s cos Tu du, (14)

0

o

Im K,(y) = / e~ eosh U ginh qusin Tu du. (15)

0

These kernels satisfy the following estimates (cf. [10, p.172]):

IRe Koir(y)| < eiéTKa (y cosd), (16)
Im Ko7 (y)] < €727 Ka(ycos ), (17)

where § is chosen in the interval [0,%). Therefore, when f € Li(Ry; Kq(y)dy),
transforms (10), (11) are well defined and exist as Lebesgue integrals.
We are ready to prove the following Beurling theorem for the Lebedev-Skalskaya

type transforms (10), (11).
Theorem 1. Let f € L1(Ry; K, (y)dy), and let

//wwMKMAMKMH@M@<m,aeR (18)
Ry Ry
//mmeummme@mw<w,aeme. (19)
Ry Ry

Then f =0.
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Proof. Tt is sufficient to prove the theorem for the Re-transform (10) under condition
(16) since for the Im-transform (11) the proof is quite similar. Evidently, we can
assume that f(y) # 0 on a set of positive measure K, (y)dy, for otherwise there is
nothing to prove. Due to the inequality Ko 4(y) > Ka(y), condition (18) implies

00> / / PR Koria ]| Kiojsa (v)dedy > / £ @) Ko ()dy / Re Kool f]] de
Ry Ry R, R,

Therefore, Re Kotiz[f] € L1(Ry;dz). The latter condition guarantees the existence
of the cosine Fourier transform of Re K, 4i.[f]. We will show that

(FiRe Karil 1) = cosha [ [~ v sy (20)

Indeed, denoting by h(A) the right-hand side of (20), we find

/Ih(A)IdA < \/Z//e‘y‘“"mlf(y)costhdydA = \/i/ [f (W) Ka(y)dy < oo.
Ry Ry

Ry Ry

So h € L1(Ry;d\) and (F.h)(x) can be now easily calculated by using (14) and
Fubini’s theorem. Thus we obtain

(Foh)(z) = /000 cos TA /000 e YA £(1)) cosh addyd\ =
= | Re Kaialo) ) = Re Koyl

Since Re Ky4iz[f] € L1(R4;dx), the inversion theorem for the cosine Fourier trans-
form gives (F.Re Kq1iz[f])(A) = h()\) and we establish equality (20).

Let us verify Beurling condition (2) for the pair Re Ktz [f], (FeRe Kotix[f])(N).
There is

[ [ IRe KasilA(FiRe Kl OV o dx <

<Vor / / |Re K, yix|f]] coshazA / e~V eOShA| £(4))| cosh ady dx d)\ <
0

Ry Ry

<Var [ [11@Re Kot 7] Kiapolv)dody < .

Ry Ry

Thus Re Kq1i:[f] = 0. Combined with (20), the latter condition yields

(o]
| ey =0 ae vy (21)
0
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for any f € Li(Ry; Ko(y)dy). We will show that in this case f = 0. In fact,
choosing any zg > 1 we treat the left-hand side of equality (21) as the Laplace integral
(Lf)(cosh \), where

(LF)(z) = / v f(y)dy, (22)

which is zero via (21) at least at the countable set of points satisfying the con-
dition z, = cosh\, = zy + jn, 5 > O0,n = 0,1,2,... . Moreover, since for
feLi(Ry; Ko(y)dy) (see (6), (7)), there is

o0
/ e—ycosh)\n|f(y>|dy<Oo7 n=20,1,2,...,
0

then by virtue of [1, Chapter I] we get f(y) = 0 for almost all y € Ry, i.e., f =0 in
the Lebesgue sense. In the same manner, we can verify Beurling condition (2) for the
pair Im Ko yiz[f], (Felm Koyiz[f]) under condition (19). Theorem 1 is proved. O

However, when conditions (18), (19) fail, integral equations (10), (11) may have
nonzero solutions. When o = %, these solutions were found in [6] as inversion formulas
of the Lebedev-Skalskaya transforms given by

4 oo

f@) = /O coshn7Re Ky 4, (2)Re Ky, [fldr, (23)
4 (o)

flz) = 2=/, coshmrlm Ky ;- (2)Im K1, [fld, (24)

respectively. Here we will find analogs of (23), (24) for a general « by using Sneddon’s
operational method [8, Chapter 6] recently applied in [16] to solve integral equations
from a certain class, which generalize Kontorovich-Lebedev equation (3). Indeed, if
f € Li(Ry; Ka(ycosd)dy) C L1 (Ry; Ka(y)dy), 6 € (0,%), then via (16) we deduce
the estimate of the Re-transform (10)

Re Korir[f]] < ™07 / Koy cos )| (1)l dy,

which gives Re Kqoyir[f] € L1(Ry;d7). Taking into account (1), equality (20) imme-
diately implies

2 / Re Kopir [f]-<5T% g7 = / Ve (), (25)
0 0

s cosh au

But the Re-transform (10) can be continued on R as an even function with respect
to 7. Moreover, assuming that a # 0, we apply the Fourier transform with respect
to u to both sides of (25), and we change the order of integration by Fubini’s theorem.
Taking into account (4) and calculating an elementary integral, we finally arrive at

the equality
1 [ Re Kuovirlf
— K; 26

2a/oocosh( (x—1) / i (26)
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If we show that the left-hand side of (26) belongs to Ly (R; |z|e™!*l/2dz), then by virtue
of the inversion theorem for the Kontorovich-Lebedev transform (3) (see [9,15]), at
each Lebesgue point of f, we obtain

o 1 > T I > Re KaJriT [f] T
1) = g | 2 Kut) [ o (£ ey (27)

The latter fact can be verified assuming that Re Ko i [f] € Li(R;ea/"dr),

~1,1)\ {0}. So

oo
/ |x|err\m|/2
—o00

oo
< 2/ |x\e”|x‘/2/ IRe Kaiir[f]] e Ta11*drda <
—o0 —o0

Tldr <

* Re Ka-i-i'r[f]
/OQ cosh( (xfT))d

< 2/ |x\e%(1_ﬁ)|m|da:/ IRe Koyirlf]] el dr < 0.

— 00 — 00

Hence the left-hand side of (26) belongs to L1 (R;|z|e™l*1/2dz) and we get (27). Em-
ploying again Fubini’s theorem, due to the estimate (see inequality (1.100) from [10])

/ ‘x|eﬂ-z|sz I/ ‘Re KOH_IT[fH deJT S

oo cosh (£ (z — 7))

< Kofyeoss) [ _fat"C e | R Kt e < o

when ¢ is taken from the interval <7r (1 — ﬁ) , 2) we finally arrive at the inversion
formula for the transform (10):
— [ Raly.DRe Kusirlr (28)

where the kernel is given by

B 1 oo ﬂ'wKim( )
Raly,7) = 2m2ay /OO cosh (£ (z — 7))

We will now expand the value of kernel (29) on any real value of the parameter «
writing it in a different form. Employing the following representation (cf. [10, p. 125]):

K 30
cosh( (x—7) / a(r= o (30)

we substitute the integral into (29) and change the order of integration via Fubini’s
theorem. Thus we obtain

dz, «€(-1,1)\ {0}. (29)

Ra(y, ) dt 2e " T Kio () K i () (t)da. (31)

2
a
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The use of Fubini’s theorem here can be motivated as above by the estimate

|t [ etk 0l <
0 —o0 *

< e%‘TlKo(ycosé)/ Ko(tcosé)dt/ |x|e(”76(1+|37))‘z|d1’ < o0,
0

— 00

Jal+1° 2
can be treated as a Fourier convolution. Using the formula

forally >0, T€e Rand § € ( ite] ’T) , a € (=1,1)\ {0}. The inner integral in (31)

:L‘K’LCE (y) = % / e_y cosh Sinhu eixudu, (32)
— 00

as a consequence of (4), the inverse Fourier transform and a differentiation under
integral sign, we substitute its right-hand side into (31) and change the order of
integration due to the absolute and uniform convergence of the corresponding iterated
integral at least for || < 1. Calculating the inner integral with respect to = (cf. 7,
Vol. 2]), we get

Ra(y’,r) — %/0 dt/ e Y cosh u—t cosh(a(u—ir)) sinh u ei‘rudu' (33)

Hence an integration with respect to ¢ and simple manipulations finally give the
expression of the kernel R (y, 7)

Ra (y7 T) =

e /OO e Y coshu sinh u
X
o cos?ar + sinh? au (34)

X [cos am cosh cvu sin ur + sin ar sinh cw cos ut] du,

T2

where the latter integral in (11)) is absolutely and uniformly convergent on any com-
pact set of real values of a. Since the integral in (29) is a continuous function with
respect to a € (—1,1)\ {0}, by (34) we obtain an extension of the kernel R, (y,7) on
all real values of .

We summarize our results in the following

Theorem 2. Let f(y) € L1(Ry; Ky(ycosd)dy), where a € (—1,1)\ {0} and § €
<7r (1 — ﬁ) , g) If Re Kotirlf] € Ll(R;eﬁMdr), then at each Lebesgue point
y € Ry of f, inversion formula (28) of the Re-transform (10) holds with kernel (29),
which can be calculated by formula (34) being valid for all o € R.

Some interesting examples of kernel (34) and inversion formula (28) can be
obtained directly. For instance, let @« = 0. Then (10) coincides with the
Kontorovich-Lebedev operator (3). Meanwhile from (34) we find with (32)

that Ro(y,7) = T;T:; K;:(y), which leads us to the inversion formula for the
Kontorovich-Lebedev transform [4,9,10]:
1 > T™T
1) = | e Kl Kol flar (3)
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It is easily seen that R (y,7) is even with respect to a.. If o = 1, we get Ri(y,7)=

%Re K1 ,i;(y) and easily again come to inversion formula (23) for the Lebedev
-Skalskaya Re-transform. We can derive a new pair of reciprocal formulas putting
o = 1. In this case, we recall (14), (15) to deduce

V2 Re (K yor ) — K yor @) + T ( K i0) + K )]

and we find the following pair of direct and inverse integral transforms

Ri(y,7) =

™

Re Kpilf] = [ Re Ky o) f0)ds.

23 [

fly) = [cosh T Re ( Kayir(y) — K %Hr(y)) +

71—2 0
+ sinh 77 Im ( Kayir(y) + Ko HT(y))] Re K1, [fldr.

The limit case of || = 1 in (29) can be added to our consideration via the uniform
convergence of the integral. In this case, the kernel Re Kj;,(y) in (10) is equal to
L K¢, (y) (see [2]). Hence from (34), (15) we deduce:

T dy
erT [ Te™ [ Kir(y)
R ymz——/ Im Ki4i-(y)dy = — / dy.
1( ) 2 ; 1+ ( ) 2 ) Y

Consequently, under additional conditions on f, integrating by parts and differenti-
ating under the integral sign, we again come to the Kontorovich-Lebedev reciprocal
formulas (3), (35).

Finally, in this section we consider an inversion of the general Im -transform (11).
In the same manner, we establish an analog of equation (25), which becomes

2 [ sinTu o

“ I Ka i o dr = —ycoshu du.

2 [ Kol = [ et ay (36)
Taking the cosine Fourier transform (1) from both sides of (36), changing the order
of integration and calculating the inner integrals with (4) and relation (2.5.46.9) in
[7, Vol. 1], we end up for « # 0 with the equation

1 [ sinh(77/a)
- /0 Im Kotir[f] cosh(mz/a) + cosh(

«

—tr= [ e 6

Reasoning as above for the Re-case, we invert the Kontorovich-Lebedev transform in
(37) and we arrive at the following inversion formula for the Im-transform (11)

F0) = [ To ) Kol (39)
where
_ 2sinh(n7/a) [ xsinhmz Ky (y)
Taly,7) = T2y /0 cosh(mz/a) + cosh(nr/a) do, lof <1, a#£0. (39)
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Making use of (32), we substitute it in (39) and change the order of integration by
Fubini’s theorem. The inner integral can then be calculated for |a| < 1 employing
relation (2.5.49.3) in [7, Vol. 1]. As a result it becomes

2 e}

oy, ) = —= e YU ginhu Im {
™ Jo

sin 7 (u + m))} "

sinh a(u + im

Taking the imaginary part in the latter integrand, we write kernel (39) in the final
form, which is valid for all & € R\{0}:

2 [ eyeoshugingy
Lty =2 |
0

T2

— ——5— (sin am cosh au cosh w7 sin ur—
sin® am + sinh” au

— cos ar sinh qu sinh 77 cos ut) du, « # 0. (40)
Therefore, the following theorem for the Im-transform (11) holds true.

Theorem 3. Let f(y) € Li(Ry; Ky(ycosd)dy), where o € [—1,1]\ {0} and § €
(77 (1 L ) ”). If Im K,1-[f] € Ll(RJr;e‘TWleT), then at each Lebesgue point

-&), 3
y € Ry of f inversion formula (38) of the Im-transform (11) takes place with the
kernel (39), which can be calculated by formula (40) being valid for all o € R\{0}.

Concerning examples of the Im-transforms and their kernels, we first note that
Zo(y,7) is odd with respect to «. Letting a = 1, from (40) we get Z1(y,7) =
2 sinh 7K, (y), which again leads us to Kontorovich-Lebedev operator (3) and
its inversion formula (35). If a = 3, by (40) via (15) we easily confirm that
Ii(y,7) = <4 coshr Im K1 4i-(y), which leads to inversion formula (24) of the

Lebedev-Skalskaya Im-transform. And finally putting o = 1 in (40) we calculate
the corresponding integral using (14), (15) and end up with a new pair of the
Lebedev-Skalskaya type transforms

n Kpplf) = [T Ky ) ),

f(y)=27\7& OOO

—sinhrr Re (K5, () = Ky 1, (9) | Im K [flar

Remark 1. The case of o = 0 in (40) is naturally excluded, since the direct kernel
Im K;;(y) =0 and (11) yield the null-operator.

[COSh w7 Im ( K%HT(y) + K%Hr(y)) -

3. OTHER INDEX TRANSFORMS

In this section we will prove analogs of Beurling’s theorem for the following index
transforms: the Lebedev transform with the square of the modified Bessel function
[5,11]

Kzl = [ " K2 (0) F )y, (41)
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index transform with the Nicholson function as the kernel [13]

Poalfl = [ [0+ Y200 £ (12)

where J,(y), Y,(y) are Bessel functions of the first and second kind [2], and an
index transform involving a product of the modified Bessel functions of different
arguments [14]

Kielf) = [ [ K (VAT ) B (VI ) £ (a3

The following holds true.
Theorem 4. Let f € Li(Ry; K3 (y)dy) and

//|f(y) |K2 Ydxdy < 0. (44)
Ry Ry

Then f =0.

Proof. Assuming as in Theorem 1 that f(y) # 0 on a set of positive measure K2 (y)dy,
we get the estimate

00 > \F)KLIf| K2(y)dady > | |f(W)| K (w)dy | |KZ[f]] da.
/) oo |

Therefore K2,[f] € L1(Ry;dz). Hence using integral representations (see relation
(2.16.51.6) in [7, Vol. 2])

e A
/ K2 (y) cos \x dx = gKo <2y cosh 2> , (45)
0

> A
K2 (y) = / K <2y cosh 2) cos Az d, (46)
0

we calculate the composition of Lebedev operator (41) and the cosine Fourier trans-
form (1) showing that

(F. KZ[f \/> / Ko <2ycosh>\> f(y)dy. (47)

Indeed, the right-hand side of (47 is Lebesgue integrable with respect to A € R,
because the function K (Zy cosh 5 ) f(y) is Lebesgue integrable as a function in two

variables (cf. (46))

[ [ % (2ycosh )|f( ‘dyd)\*/Ko )£ ()ldy < oo.

Ry Ry
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Thus taking the cosine Fourier transform (1) of the right-hand side of (47) and chang-
ing the order of integration via Fubini’s theorem, we calculate the inner integral with
the use of (46) and we obtain K2 [f]. Since it belongs to Li(R4;dx), the inversion
theorem for the cosine Fourier transform yields (47).

Beurling condition (2) for the pair K2 [f], (F.K2[f])(A\) implies

[ [IanERL e i <

Ry Ry
hax\ Kol 2 h — dydzd\ =
<\ﬁR/R/| \cosx/o 0<ycos >|f()y:v
=21 |f () K2 [f]| K2 (y)dydz < oco.
) Joor

Therefore, K2,[f] = 0 for all z € R, as a continuous function under the condition
f € Li(Ry; K3(y)dy). In fact, integral (41) is absolutely and uniformly convergent,
since

/ Wl |dy</ K2 )|/ (9)ldy < oo.

However, the kernel K2, (y) can be represented by the integral (cf. [7, Vol. 2], relation
(2.16.9.1))

1 [ 2 dt
Ki) =3 [ e ERLmT. (48)

Substituting integral (48) into (41) and changing the order of integration by Fubini’s
theorem, because of the estimate

[ [ e imaar < [T [T e E o) -

(49)
— [ KRl < .
we find that K2 [f] = K;.[h] = 0 (see (3)), where
) =G [ e (50)

Further, relations (49) guarantee the condition h(t) € Li(Ry; Ko(t)dt) and the exis-
tence of the composition

(Fc\/fwf)(coshu)) () = Kunll] = 0,

where Laplace operator (22) is an integrable function, i.e., (Lf)(coshu) € Li(Ry; du).
Thus h = 0 a.e. and we arrive at the equation

/OOO e 5 fy)dy = 0 (51)
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for almost all t > 0. To end the proof, we make an elementary substitution in (51)
and come out with the equation

° dy 1
e—P’yf yizo’p:—’t>0,
e y
treating its left-hand side as a Laplace transform (Lg)(p — po), p > po > 0 of the
integrable function g(y) = e Po¥ f(‘\[) since (see (6), (8)),

o0 d o0
[ el =z [ ey < .
0 VY 0
By (51) (Lg)(p — po) is zero at at least the countable set of points p, = py + jn,
j>0,n=1,2,.... Hence, as in the proof of Theorem 1, we conclude that f =0 a.e.
Theorem 4 is proved. O

Index transform (42) is based on the following Nicholson formula for the sum of
squares of Bessel functions [2, p. 54]

J2/2( )+ /2( / Ko(2ysinh A) coshzA dX, y > 0. (52)

x

This transform was introduced for the first time in [13] as an adjoint operator to
(42), where the integration was performed with respect to the pure imaginary index
of Nicholson function (52). Here we will prove an analog of Beurling’s theorem for
operator (42) and will find its inversion by the Sneddon operational method [8].

Theorem 5. Let f € L1 (Ry; [JE(y) + YE(y)] dy) and
//|f VTYialf1] [ 725(9) + Y2(v)] dady < . (53)
Ry R,

Then f =0.

Proof. Assuming again that f(y) # 0 on a set of positive measure K2 (y)dy, from (52)
we deduce:

w>//u@ﬂmmpmu+ymﬂmmz

Ry Ry

/v y)+ Y2l @/um || da.

Therefore, JY;,[f] € L1(Ry;dz). Reasoning as in the proofs of Theorems 1, 4 we
establish the equality

kvl = 22 [T oy sy (54)
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where the right-hand side is integrable with respect to A due to the estimate (see (52)):

/ dA
0

=% [T+ Y0 1wy < o
Further, Beurling condition (2) for the pair JY;,[f], (FeJYiz[f])(A) gives

/ / TV [F)EuTYia ) (V] iz <

Ry Ry
8 [2 %0 .
= 7//|JYm[f]|coshx)\/ Ky (2ysinh ) | f(y)|dydaxdX =
ﬂ- ™ 0

Ry Ry

_W//\f VIVl f11 [2/2) + Y25(9) | dyde < oc.

R+ ]R+

[ o usinn ) fyas| < [ an [ Ko Cysinn o)y -

Therefore, JY;.[f] = 0. Consequently, equation (54) yields

/0 " Ko (2ysinh \) £(y)dy = 0 (55)

for all A > 0. Taking p = 2sinh A and the representation (see (4)) of the modified
Bessel function:

( ) > py cosh u > pt dt
Ko(py :/ e du:/ et — |
0 Yy \/ t2 — y2
we substitute it into (55) and inverting the order of integration by Fubini’s theo-

rem, it becomes a composition of Laplace transform (22) and a simple Erdélyi-Kober
fractional integration operator [9]

o t
- fy)
e ptdt/ ———dy =0, p>0.
/o 0 /t2 —y?
It is convergent and equal to 0 at at least a countable set of points. Thus, for all
t > 0:

t
Y
SNACH R -y 56
/0 V2 —y? (56)
Via asymptotic of Bessel functions [2], we observe that the condition
feli(Ry; [J3(y) + Y5 (y)] dy)

means f € Li((0,1); (1 +log®y)dy) N Li((1,00); 4y~ dy). Hence it follows that f is
locally integrable on R . Making elementary change of variables, we write (56) in the
form of Abel’s homogeneous equation

tf(\/fy)ﬁ:
0o V=YY

(57)
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It has a trivial solution, which can easily be checked by taking Laplace’s transform of
the both sides of (57) and treating its left-hand side as a Laplace convolution [9]. So
f =0 a.e. and we conclude the proof of Theorem 5. O

An inversion formula for Nicholson kernel transform (42) can be proved with

Theorem 6. Let f(y) € L1((0,1); (14 log®y)dy) N Ly ((1,00); 4> Vdy), 1/2 < v < 1
and JYi[f] € L1(Ry;xze™dx). Then for almost all y > 0 the following inversion
formula holds for operator (42)

Fo) =~ [ 2 () TVialf) de (58)

4dy Jo
Proof. In fact, it is easily seen that
L1((0,1); (1 + log”y)dy) € L1 ((0,1); y'dy) S <<,
La((1,00);y"dy) € Ly ((1,00); [J3(y) + Y5 (w)] dy), 5 <7 <1,

and JY;;[f] is continuous on Ry via the estimate

Yl f)l < / TR + 2] 1)y < oo

Differentiating (54) with respect to A, taking into account the condition JY;,[f] €
L1 (R4 ; ze™dx) and the formula (see [2]) K{(z) = —K1(z), we obtain

/ JYis[flesinzAdx = §cosh/\/ yK; (2ysinh A) f(y)dy.
0 ™ 0

Hence, the simple change of variable p = sinh A gives

o oy sin (a: log(p + W))

The right-hand side of (59) can be treated as the Mellin convolution transform [9].
Therefore, invoking the generalized Parseval equality for the Mellin transform and
relation (2.16.2.2) in [7, Vol. 2], it can be written in the form

o0 y+ioco s s
§/0 v (2yp) (y)dy = —= - 1“2(1‘2F )W‘JI)(QS )

m 270 Sy oo

dx = % / h yK1 (2yp) f(y)dy. (59)
0

p~°ds, (60)

G g

where we choose v € (1/2,1), I'(z) is the Euler gamma-function [7] and
the Mellin transform of the integration operator

MRE=0 L [ sty = [ [T dgae. o
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On the other hand, via relation (2.5.46.15) in [7, Vol. 1], we find

sin (x log(p + /p? + 1))
Vpr+1 (62)
1 sinh(rz/2) /VHOO F( )r 178+Lx r l—s w p~4ds,
T 2/r omi ymico T(1—%) 2 2 2 2
with the same v = Re s € (1/2,1). Substituting (62) into (59), we change the order of
integration by Fubini’s theorem, which is motivated by the following estimate (see the

asymptotic behavior of the gamma-function on the vertical line in a complex plane
and elementary inequality for the Euler beta-function |B(a,b)| < B(Re a,Re b) [9]):

T e I (12) 1—s iz 1—s dz\ _,

/xsmh( )|JYW[ I / F<17§)F 5 +? r 5~ 3 )P ds|dx <
2

0 y—i00

< @) B((1 =7)/2,(1 =7)/2)
- Ve

y+ioo 1 1—
S ) ()
y—1i00 2 2

Thus equating (59) with (60), taking into account (61) and cancelling the inverse
Mellin transform [9] by the uniqueness property via the summability of the integrands,
we come out with the equality

/oomﬁnhOm#QMJK¢Uﬂdxx
0

< 0.

1 <. r
ﬁ/@ xsinh(mz/2) JYi[f]

:_jémvﬂlmﬂw@du

Now making use of the representation of the gamma-ratio in (63) as a reciprocal
Mellin transform of relation (1.11) in [13]:

+% r H*% 2y -
) ( ) ):_Sinh(\7/r;/2)/ Iszm/Q()y dy,

we substitute it in the left-hand side of (63) and it becomes

[ vl / 12 o(y) 5~ dy do =

4 oo o 1
= — = dyd —.1].
7r/0 v /v f(y)yv,Res€<2,>

(64)
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It is known [2] that [ImJ?

x

/2(y)] is bounded for all z,y > 0 and satisfies the inequality
9 eﬂ'x

ImJ3, 5(y)| < C T

where C' > 0 is an absolute constant. Consequently, under conditions of the theorem,

1
x J}Qz[f}Imem/Q(y) y* € Li(Ry x Ry;e™y Vdydx), v € <27 1)

and the change of the order of integration is indeed possible in the left-hand side (64)
by Fubini’s theorem. Furthermore,

r

o f o

dv < / / F ) ldydo =
0 v
1 o0

= fW)|y' ™ dy < oo.
=

Therefore, changing the order of integration in the left-hand side of (64) and then
omitting the Mellin transform on the both sides via the uniqueness theorem for func-
tions integrable with respect to the measure y~7dy, we find

/0 x ImeI/Q(y) JYir[f] dz = i/y f(v) dv.

Differentiating this equality with respect to y, we get for almost all y > 0 inversion
formula (58). Theorem 6 is proved. O

Finally, we prove an analog of Beurling’s theorem for index transform (43). We
note that the corresponding Plancherel theory and adjoint operator have been con-
sidered in [14].

Theorem 7. Let
flz,y) € Ly (R+ x Ry K (\/3&2 +y2 - y) x_ldacdy> N Ly (Ry x Ry;2~ dady)

and

[ [ [ 1512 (V7 ) dyr <

Ry Ry Ry
Then f(z,y) =0.

Proof. Suppose that f(z,y) # 0 on a set of the positive measure in Ry x Ry. We
have

o0 > ///If(x,y)KKiT[f]l K (\/O[Ty2 - y) e~ dadydT >

Ry R Ry

\f (2, 0)| K2 (Va2 + 42 —y) o dady | |KK[f]|dr.
>// Yy o( Yy y) yR[

Ry Ry
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Therefore, KK;-[f] € Li(R4;dr). On the other hand, KK, [f] is a continuous
function on Ry via the absolute and uniform convergence of integral (43), which is
guaranteed by the estimate

rlil < [ [ Ko (VT ) Ko (VT ) ) S <
< [T 8 (VIR ) e P < .

x

Therefore, using relation (2.16.51.6) in [7, Vol. 2]), we calculate the composition of
this operator and the cosine Fourier transform (1) to obtain

(F KEulf)()) = ﬂ | [ (2 Ju? + a2 cosh? ;) Pl 2

Further, Beurling condition (2) yields

[ [ IR KK e drar <

<\/27T// | KK [f]| coshTA // K, <2y/y2 + 22 cosh? ;) |f (z,y)|x " dydzd\dT =
RyRy 00

ZVQW/// | f (2, y) KK [f]| K~ (\/3:2 +y? — y) K. (\/a:Q +y? + y) a dydadr <
RyRy R

<\/27r/// \f(z,y) K K [f]| K2 (\/x2 +y? — y) " dydrdr < oc.
RyRyR,

So KKi;[f] = 0. But f(z,y) € Ly (R4 x Ry;a~'dady). Hence, recalling the
Plancherel theorem for transformation (43) (see [14]), it satisfies the following Parseval
identity:

dydr 1
//\f(x,y)|2 yar _ ;i 7 sinh 277| K Ky [ f]|2dr.

x

R, Ry R,
Thus f(z,y) = 0 a.e. Theorem 7 is proved. O
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