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1. INTRODUCTION

In 1975 E.S. Polovinkin showed that the continuity almost everywhere of a bounded
multifunction F : [a, b] → cc(Rn) is a necessary and sufficient condition for the Rie-
mann integrability (see [10]). Our main goal is to give a similar characterization of
the Riemann integrability for a more general class of multifunctions. Moreover, we
compare the Riemann integral with the Debreu (see [4]) and Aumann ones (e.g. [1]).

Let (X, ‖ · ‖) be a real Banach space. Denote by cc(X) the set of all nonempty
convex compact subsets of X. For given A,B ∈ cc(X), we set A + B =
{a + b : a ∈ A, b ∈ B} and λA = {λa : a ∈ A} for λ ≥ 0. It is easy to see that
(cc(X),+, ·) satisfies the following properties

λ(A + B) = λA + λB, (λ + µ)A = λA + µA, λ(µA) = (λµ)A, 1 ·A = A

for each A,B ∈ cc(X) and λ ≥ 0, µ ≥ 0. If A,B, C ∈ cc(X), then the equality
A + C = B + C implies A = B (see e.g. [11, Lemma 2]). Thus the cancellation law
holds in cc(X) with the additive operation.

The set cc(X) is a metric space with the Hausdorff metric d defined by the relation

d(A,B) = inf {t > 0 : A ⊂ B + tS, B ⊂ A + tS} ,

where S denotes the closed unit ball in X. The metric space (cc(X), d) is complete
(see e.g. [3, Theorem II-3, p. 40]). Moreover, the Hausdorff metric d is translation
invariant, since

d(A + C,B + C) = d(A,B)
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(cf. [11, Lemma 3]) and positively homogeneous, i.e.,

d(λA, λB) = λd(A,B)

for all λ ≥ 0 and A,B,C ∈ cc(X). In the sequel, the continuity is understood with
respect to the Hausdorff metric.

Let F : [a, b] → cc(X) be any multifunction. A set ∆ = {x0, x1, . . . , xn}, where
a = x0 < x1 < . . . < xn = b, is said to be a partition of [a, b]. For a given partition
∆, we put δ(∆) := maxi∈{1,...,n} |xi − xi−1| and form the approximating sum

S(F,∆, τ) = (x1 − x0)F (τ1) + . . . + (xn − xn−1)F (τn),

where τ is a system (τ1, . . . , τn) of intermediate points corresponding with
∆(τi ∈ [xi−1, xi]).

If for every sequence (∆n, τn), where ∆n are partitions of [a, b] such that

lim
n→∞

δ(∆n) = 0, (1)

and τn, n ∈ N, are systems of intermediate points corresponding with ∆n, the se-
quence of the approximating sums (S(F,∆n, τn)) tends to the limit I ∈ cc(X), then
F is said to be Riemann integrable over [a, b] and

(R)
∫

[a,b]

F (x)dx := I.

Obviously, the limit I is independent of the choice of the sequence of partitions
and the sequence of systems of intermediate points.

The Riemann integral for multifunctions with nonempty compact convex values in
Rn was introduced by Alexander Dinghas (see [5]) in 1956. Nine years later, Robert
Aumann in [2] introduced a different definition of the multivalued integral. This
concept was based on the Lebesgue integral for real functions. Next that definition
was generalized to the case of an infinite dimension. Suppose for a moment that
F : [a, b] → cl(X), where cl(X) means the set of all nonempty closed subsets of a
separable Banach space X and let SF be the set of all Bochner integrable selections
of F , i.e., f(t) ∈ F (t) for almost all t ∈ [a, b]. The Aumann integral (see e.g. [1]) is
defined as

(A)
∫

[a,b]

Fdt =

{
(B)

∫
[a,b]

fdt : f ∈ SF

}
,

where (B) means the Bochner integral. Of course, SF and in consequence the integral

(A)
∫

[a,b]

Fdt may be empty sets.

A ⊂ R will be called a null set if its Lebesgue measure is equal to zero.
Further, we will say that a set K ⊂ X is totally bounded if for each ε > 0 one can

find a finite set {x1, . . . , xm} such that

K ⊂
m⋃

k=1

B̄(xk, ε)
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(see, e.g., [6, Definition I.6.14, p. 22]). Clearly, a subset K of X is totally bounded if
and only if for each sequence (xn), xn ∈ K, there exists a subsequence (xp(n)) which
tends to some x ∈ X (see [6, Theorem I.6.15, p. 22]).

2. MAIN RESULTS

In the sequel, we need the following:

Proposition 1. Let X be a separable real Banach space. Then there exists a countable
set C of continuous linear forms on X such that if K is a non-empty, compact, convex
subset of X and B is a closed ball in X disjoint from K, then there is ξ ∈ C for which

max ξ(K) = max
x∈K

ξ(x) < inf ξ(B) = inf
x∈B

ξ(x).

Moreover, if 0 ∈ B, then one can find ξ ∈ C such that

max ξ(K) < −1 < inf ξ(B). (2)

Proof. The first part is due to G. Debreu (see [4, Theorem 5.9]). To prove the next
one, it is sufficient to take

C̄ := {q · ξ : q ∈ Q, ξ ∈ C} .

Theorem 1. Let X be a separable real Banach space and let F : [a, b] → cc(X)
be a Riemann integrable multifunction. If there is a null set D such that for each
t ∈ (a, b)\D there exist a positive number τ ≤ min {t− a, b− t} and a totally bounded
set K ⊂ X for which ⋃

u∈(t−τ,t+τ)

F (u) ⊂ K, (3)

then F is continuous a.e. on [a, b].

Proof. First we note that the Riemann integrability of F implies the Riemann inte-
grability of real functions F ξ, ξ ∈ X∗, defined as

F ξ(t) = sup ξ(F (t)), t ∈ [a, b].

Indeed, let (∆n) be any sequence of partitions of [a, b] such that (1) holds and suppose
that (τn) is a sequence of systems of intermediate points corresponding with the
respective ∆n. Let us fix ε > 0. If m,n ∈ N are sufficiently large, then we have

|S(F ξ,∆n, τn)− S(F ξ,∆m, τm)| ≤ ‖ξ‖ d(S(F,∆n, τn), S(F,∆m, τm)) < ‖ξ‖ε.

on account of (2)–(3) from [9], the proof of [9, Lemma 2] and the Riemann integra-
bility of F . Hence we conclude that for each function F ξ the set Aξ of points of
noncontinuity is null. Let C be defined as in Proposition 1. Obviously,

A := {a, b} ∪
⋃
ξ∈C

Aξ ∪D

is also a null set.
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Now we will show that F is ε–u.s.c. (e.g. [8, Section II.2.1, p. 28]) at each point
of [a, b] \A. Suppose that it is not true. Hence one can find t0 ∈ [a, b] \A, ε > 0 and
a sequence (tn) such that tn → t0 and F (tn) 6⊂ B(F (t0), ε), n ∈ N, where B(F (t0), ε)
means an ε–neighbourhood of F (t0).

Let us take any en ∈ F (tn) ∩ (X \B(F (t0), ε)), n ∈ N. Of course, according to
hypothesis (3) there is en ∈ K for each sufficiently large n. Since the set K is totally
bounded, there is a subsequence (ep(n)) which tends to some e ∈ X. It is simple to
see that

B̄
(
e,

ε

2

)
∩ F (t0) = ∅.

Let ξ ∈ C be such that

F ξ(t0) = max ξ(F (t0)) < inf ξ
(
B̄

(
e,

ε

2

))
=: L.

Since ep(n) ∈ B̄(e, ε
2 ), note that F ξ(tp(n)) ≥ L for each sufficiently large n. By the

continuity of F ξ at t0, it follows that F ξ(t0) ≥ L, a contradiction.
Next we will show that F is l.s.c. (e.g. [8, Section II.2.2, p. 34]) at each point

of [a, b] \ A. Suppose that t0 ∈ [a, b] \ A and F is not l.s.c. at t0. Hence there are
an open set U ⊂ X such that U ∩ F (t0) 6= ∅ and a sequence (tn) for which tn → t0
and U ∩ F (tn) = ∅ for all n ∈ N. The sequence may be chosen in such a way that
|tn − t0| < τ , where τ is matched to t0 with respect to the hypothesis. Without
loss of generality we may assume that 0 ∈ U ∩ F (t0). Otherwise, let us consider
a multifunction G : [a, b] → cc(X) defined as

G(x) = F (x) + e,

where −e belongs to U ∩F (t0). Obviously, F and G have the same properties. Then
there is a closed ball B̄(0, R) ⊂ U disjoint with each F (tn). By Proposition 1, for any
n ∈ N, there is ξn ∈ C such that

F ξn(tn) = max ξn(F (tn)) < −1 < inf ξn

(
B̄(0, R)

)
. (4)

Let B0 :=
{
ξ ∈ X∗ : ‖ξ‖ ≤ R−1

}
. It is not difficult to see that each ξn ∈ B0.

According to Theorem 2.10.1 in [7, p. 37], it follows that B0 is sequentially
compact in weak∗ topology of X∗, which implies that there is a subsequence (ξp(n))
which tends to some ξ ∈ B0.

Let τ and a totally bounded set K be matched to t0. We will show that F ξp(n)

tends uniformly to F ξ on (t0 − τ, t0 + τ). Let us fix ε > 0 and take δ = Rε
R+2 . One

can choose {xk ∈ K : k ∈ {1, . . . ,m}} such that

K ⊂
m⋃

k=1

B̄(xk, δ). (5)

Moreover, there is N ∈ N such that |ξp(n)(xk) − ξ(xk)| < δ for each n ≥ N and
k ∈ {1, . . . ,m}. Now let us fix x ∈ K. By (5) we find k for which ‖xk − x‖ ≤ δ and

|ξp(n)(x)− ξ(x)| ≤ |ξp(n)(x)− ξp(n)(xk)|+ |ξp(n)(xk)− ξ(xk)|+ |ξ(xk)− ξ(x)| <

<
δ

R
+ δ +

δ

R
= ε
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when n ≥ N . Hence for all t ∈ (t0 − τ, t0 + τ) and x ∈ F (t)

ξp(n)(x) ≤ sup
y∈F (t)

ξ(y) + ε = F ξ(t) + ε

and finally
F ξp(n)(t) ≤ F ξ(t) + ε, n ≥ N.

In the same way we obtain
F ξ(t) ≤ F ξp(n)(t) + ε

for each t ∈ (t0 − τ, t0 + τ) and n ≥ N . Thereby, F ξp(n) tends uniformly to F ξ on
(t0 − τ, t0 + τ).

Using this and the continuity of F ξp(n) at t0, we obtain F ξp(n)(tp(n)) → F ξ(t0).
On account of (4), it follows that F ξ(t0) ≤ −1, contrary to 0 ∈ F (t0).

Since the multifunction F is l.s.c. and ε–u.s.c. for all t ∈ [a, b]\A and the values of
F are compact, F is continuous at each t ∈ [a, b]\A (e.g. [8, Section II.2.2, p. 35]).

The assumption on the existence of a totally bounded set K (3) is an essen-
tial condition for the continuity (see Example). Now we discuss the problem of the
converse theorem. First we consider the embedding of the metric space (cc(X), d)
in a real Banach space, which we will need later. Owing to theorem [11] (see also
[4, Theorem 5.5]), the following holds true.

Proposition 2. The space (cc(X), d) can be embedded as a convex cone in a real
normed space L in such a way that the embedding is isometric and operations of
addition and multiplication by nonnegative numbers in L induce the corresponding
operations in cc(X).

Furthermore, using the Theorem II.5 [6, p. 89], we get

Proposition 3. Every real normed space is isomorphic to and isometric with a dense
linear subspace of a real Banach space.

Therefore, we obtain

Proposition 4. Let X be a real Banach space. Then there exist a real Banach space
(L̄, ‖ · ‖) and a mapping Φ: cc(X) → L̄ such that

Φ(A + B) = Φ(A) + Φ(B), Φ(λA) = λΦ(A), ‖Φ(A)− Φ(B)‖ = d(A,B)

for all A,B ∈ cc(X), λ ≥ 0.

Theorem 2. Let X be a real Banach space and let F : [a, b] → cc(X) be a bounded
multifunction. If F is continuous a.e. on [a, b], then F is Riemann integrable.

Proof. Let (∆n) be a sequence of partitions of [a, b] and let (τn) be a sequence of
systems of intermediate points corresponding to the respective ∆n. Suppose also
that (1) holds. We have to show that the sequence (S(F,∆n, τn)) tends to a limit
I ∈ cc(X).
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For each n ∈ N, we define a multifunction Fn : [a, b] → cc(X) as Fn(t) = F (τn
k )

if t ∈ (tnk−1, t
n
k ], Fn(a) = F (a). By the continuity of F and condition (1), a sequence

(Fn(t)) converges to F (t) for almost each t ∈ [a, b]. According to Proposition 4, there
exist a real Banach space L̄ and an isometric embedding Φ: cc(X) → L̄. The isometry
of the mapping implies that

Φ (Fn(t)) → Φ (F (t))

for almost each t ∈ [a, b].
Obviously, Φ (Fn) : [a, b] → L̄ is a simple vector-valued function, so the Bochner

integral

(B)
∫

[a,b]

Φ (Fn) dt

exists for each n ∈ N. Moreover,

(B)
∫

[a,b]

Φ (Fn) dt = S (Φ(F ),∆n, τn) = Φ (S(F,∆n, τn)) . (6)

By the assumptions, one can find a positive number M > 0 such that
‖Φ (Fn(t)) ‖ ≤ M for each t ∈ [a, b] and n ∈ N. According to the Lebesgue do-
minated convergence theorem (see e.g. [6, Corollary III.6.16, p. 151]), it follows that
the function Φ(F ) is Bochner integrable and

(L)
∫

[a,b]

‖Φ(Fn)− Φ(F )‖dt → 0 if n →∞, (7)

where (L) means the Lebesgue integral. Moreover (see [7, Theorem 3.7.6, p. 82]),
there is∥∥∥∥(B)

∫
[a,b]

Φ(Fn)dt − (B)
∫

[a,b]

Φ(F )dt

∥∥∥∥ ≤ (L)
∫

[a,b]

‖Φ(Fn)− Φ(F )‖dt,

which combined with (6) and (7) yields

Φ (S(F,∆n, τn)) → (B)
∫

[a,b]

Φ(F )dt.

On account of the completeness of (cc(X), d) and Proposition 4, we conclude that
there exists I ∈ cc(X) such that

Φ(I) = (B)
∫

[a,b]

Φ(F )dt

which completes the proof.

Corollary 1. Let X be a real Banach space. If a bounded multifunction
F : [a, b] → cc(X) is continuous a.e. on [a, b], then the set of the Bochner integrable
selections of F is non-empty and

(R)
∫

[a,b]

Fdt = (A)
∫

[a,b]

Fdt.
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Proof. From the construction of the sequence (Fn) in the proof of Theorem 2, it
follows that F is Debreu integrable (see [4, Section 6]) and

(R)
∫

[a,b]

Fdt = (D)
∫

[a,b]

Fdt,

where (D) means the integral defined in [4]. This integral is equal to the Aumann
one (see [4, Theorem 6.5]).

If we assume that F is a bounded multifunction with values in Rn, the condition
from Theorem 1 is obviously satisfied. Hence we get the following Polovinkin theorem
as an immediate consequence of Theorems 1 and 2.

Corollary 2 (see [10, Theorem 1]). Let F : [a, b] → cc(Rn) be a bounded multifunc-
tion. Then F is Riemann integrable on [a, b] if and only if F is continuous a.e. on
[a, b]. Moreover,

(R)
∫

[a,b]

Fdt = (A)
∫

[a,b]

Fdt.

As it has already been mentioned, the existence of a totally bounded set K from
Theorem 1 is an essential condition for the continuity. To illustrate it, we present the
following example.
Example

Let Q = {q1, q2, . . .} be the set of all rational numbers between 0 and 1. We define
a multifunction F : [0, 1] → cc(c0) as

F (t) :=
{
{(uk) : uk = 0, k ∈ N} if t 6∈ Q,
{(uk) : un ∈ [0, 1], uk = 0 for k 6= n} if t = qn.

Obviously, the multifunction F is discontinuous at each point of [0, 1].
On the other hand, it is not difficult to see that F is integrable on [0, 1] and

(R)
∫

[a,b]

Fdt = {0} .

Indeed, let ∆ = {t0, t1, . . . , tn} be any partition of [0, 1] and let τ = (τ1, . . ., τn) be
any system of intermediate points corresponding with ∆. If x ∈ S(F,∆, τ), then for
each k ∈ N there is:

— xk = 0 if qk 6∈ {τ1, . . . , τn};
— xk ∈ [0, ti − ti−1] if there is only one i ∈ {1, . . . , n} such that τi = qk;
— xk ∈ [0, ti+1 − ti−1] if there is i ∈ {1, . . . , n} for which τi = τi+1 = qk.

Thus ‖x‖ ≤ 2δ(∆).
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