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UNIQUENESS OF SOLUTIONS
OF A GENERALIZED CAUCHY PROBLEM

FOR A SYSTEM OF FIRST ORDER
PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS

Abstract. The paper is concerned with weak solutions of a generalized Cauchy problem
for a nonlinear system of first order differential functional equations. A theorem on the
uniqueness of a solution is proved. Nonlinear estimates of the Perron type are assumed.
A method of integral functional inequalities is used.
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1. INTRODUCTION

Differential inequalities find numerous applications in the theory of first order par-
tial differential equations. Such problems as: estimates of solutions of initial or initial
boundary value problems, estimates of the domain of classical or generalized solutions,
estimates of the difference between two solutions, criterion of uniqueness, are classical
examples, however, not the only ones. The theory of partial differential inequalities
has been described extensively in the monographs [1, 2, 5]. Hyperbolic functional
differential inequalities generated by initial problems or by mixed problems have been
studied in the monograph [3]. In particular, uniqueness results for initial problems
on the Haar pyramid with nonlinear estimates of the Perron type were obtained as
consequences of suitable comparison theorems for differential functional inequalities.
Uniqueness criteria for a classical Cauchy problem and solutions considered on un-
bounded domains can be found in [3, 4] Chapter 4.

The aim of this paper is to give sufficient conditions for the uniqueness of solutions
to a generalized Cauchy problem for a nonlinear system of first order partial differen-
tial functional equations. We formulate our functional differential problem. For any
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metric spaces X and Y , by C(X,Y ) we denote the class of all continuous functions
from X into Y . We will use vectorial inequalities with the understanding that the
same inequality hold between their corresponding components. Let us denote by N
the set of natural numbers. Set

Ei = [ai, c]× Rn for i = 1, . . . , k and B = [−b0, 0]× [−b, b],

where c > ai ≥ 0, b0 ∈ R+, b = (b1, . . . , bn) ∈ Rn+ and R+ = [0,+∞). Let E =
[0, c] × Rn. Suppose that ψ0 : [0, c] → R and ψ′ = (ψ1, . . . , ψn) : E → Rn are given
functions. We assume that there is c0 ∈ R+ such that −c0 ≤ ψ0(t) and ψ0(t) ≤ t
for t ∈ [0, c]. Write ψ(t, x) = (ψ0(t), ψ′(t, x)) and d0 = b0 + c0. For a function
z : [−d0, c] × Rn → Rk and a point (t, x) ∈ [−c0, c] × Rn, we define a function
z(t,x) : B → Rk in the following way

z(t,x)(τ, y) = z(t+ τ, x+ y), (τ, y) ∈ B.

Write

Ωi = Ei × C(B,Rk)× Rn and E0.i = [−d0, ai]× Rn, i = 1, . . . , k,

where 0 ≤ ai < c for 1 ≤ i ≤ k. Suppose that fi : Ωi → Rk and φi : E0.i → R,
1 ≤ i ≤ k, are given functions. Let us denote by z = (z1, . . . , zk) an unknown
function in the variables (t, x), x = (x1, . . . , xn). We consider the system of functional
differential equations

∂tzi(t, x) = fi
(
t, x, zψ(t,x), ∂xzi(t, x)

)
, 1 ≤ i ≤ k, (1)

with the initial condition

zi(t, x) = φi(t, x) on E0.i for 1 ≤ i ≤ k, (2)

where ∂xzi = (∂x1zi, . . . , ∂xnzi). Note that zψ(t,x) is a restriction of z to the set

[ψ0(t)− b0, ψ0(t)]× [ψ′(t, x)− b, ψ′(t, x) + b]

and this restriction is shifted to the setB. A function z̃=(z̃1, . . . , z̃k) :[−d0, c]×Rn→Rk
is a solution of problem (1)–(2) if:

(i) z̃ ∈ C([−d0, c]× Rn,Rk) and ∂xz̃i exist on [ai, c]× Rn for 1 ≤ i ≤ k,
(ii) for each 1 ≤ i ≤ k and x ∈ Rn, the function z̃i(·, x) : [ai, c] → R is absolutely

continuous,
(iii) for each x ∈ Rn and for 1 ≤ i ≤ k, the i-th equation (1) is satisfied for almost

all t ∈ [ai, c] and condition (2) holds.

System (1) with initial condition (2) is called a generalized Cauchy problem. If
ai = 0 for i = 1, . . . , k, then (1)–(2) reduces to the classical Cauchy problem. Then
the results for classical initial problems presented in [3,4] are not applicable to (1)–(2).

We give examples of systems which can be derived from (1) by specializing f
and ψ.
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Example 1.1. Suppose that Fi : Ei×Rk×Rn → Rk, i = 1, . . . , k, are given functions.
Write

fi(t, x, w, q) = Fi(t, x, w(0, θ), q) on Ωi for i = 1, . . . , k,

where θ = (0, . . . , 0) ∈ Rn. Then (1) reduces to the system with deviated variables

∂tzi(t, x) = Fi(t, x, z(ψ(t, x)), ∂xzi(t, x)), i = 1, . . . , k.

Example 1.2. For the above Fi, 1 ≤ i ≤ k, we put

fi(t, x, w, q) = Fi(t, x,
∫
B

w(τ, y)dydτ, q) on Ωi for i = 1, . . . , k

and assume that ψ(t, x) = (t, x) on E. Then (1) reduces to the integral differential
system

∂tzi(t, x) = Fi(t, x,
∫
B

z(t+ τ, x+ y)dydτ, ∂xzi(t, x)), (t, x) ∈ E, i = 1, . . . , k.

It is clear that more complicated differential systems with deviated variables and
differential integral problem can be obtained from (1) by suitable choice of f and ψ.
Sufficient conditions for the existence of classical solutions of a generalized Cauchy
problem can be found in [6].

The paper is organized as follows. In Section 2, we prove that there exists a
maximal solution of the generalized Cauchy problem for ordinary differential sys-
tems. Carathéodory solutions are considered. We also prove a theorem on integral
functional inequalities generated by the above Cauchy problem. Applications of in-
tegral functional inequalities are presented in Section 3. Suppose that there exists a
comparison problem of the Perron type for (1)–(2). Then the solution of (1)–(2) is
unique in the class of bounded and uniformly continuous functions. This is the main
result of the paper.

2. INTEGRAL FUNCTIONAL INEQUALITIES

By L[[t1, t2],R+] for [t1, t2] ⊂ R we denote the class of all functions γ : [t1, t2] → R+

that are integrable over [t1, t2]. Write I = [−b0, 0]. For a function ω : [−d0, c] → Rk
and a point t ∈ [−c0, c] we define a function ωt : I → Rk by ωt(τ) = ω(t + τ) for
τ ∈ I. Given the functions σi : [ai, c] × C(I,Rk+) → R+ and ηi : [−d0, ai] → R for
i = 1, . . . , k, we consider the Cauchy problem

ω′i(t) = σi(t, ωψ0(t)), i = 1, . . . , k, (3)

ωi(t) = ηi(t), t ∈ [−d0, ai], i = 1, . . . , k. (4)

We consider Carathéodory solutions of problem (3)–(4). Note that if ai = 0 for
i = 1, . . . , k and Ψ0(t) = t, then (3)–(4) reduces to the classical Cauchy problem.

The function σ = (σ1, . . . , σk) is said to satisfy the Carathéodory conditions if for
i = 1, . . . , k there is:
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(i) σi(t, ·) : C(I,Rk+) → R+ is continuous for almost all t ∈ [ai, c],
(ii) σi(·, η) : [ai, c] → R+ is measurable for every η ∈ C(I,Rk+) and there exists

mσi ∈ L([ai, c],R+) such that σi(t, η) ≤ mσi(t) for η ∈ C(I,Rk+) and for almost
all t ∈ [ai, c].

We say that σi(t, ·) : C(I,Rk+) → R+ is a nondecreasing function if for η, η̃ ∈
C(I,Rk+) such that η(s) ≤ η̃(s) for s ∈ I, there holds

σi(t, η) ≤ σi(t, η̃).

We prove that there exists a maximal solution of (3)–(4).

Lemma 2.1. Suppose that:

1) ηi ∈ C([−d0, ai],R+) for i = 1, . . . , k,
2) σ = (σ1, . . . , σk) satisfies Carathéodory conditions,
3) for almost all t ∈ [ai, c] the functions σi(t, ·) : C(I,Rk+) → R+, i = 1, . . . , k, are

nondecreasing,
4) ψ0 : [0, a] → R is continuous and −c0 ≤ ψ0(t) ≤ t for t ∈ [ai, c].

Then problem (3)–(4) admits a maximal solution on [−d0, c].

Proof. Let γ = (γ1, . . . , γk) : [−d0, c] → Rk+ be a subsolution of problem (3)–(4), i.e.,

1) γi is continuous on [−d0, ai] and absolutely continuous on [ai, c] for i = 1, . . . , k,
2) γ′i(t) ≤ σi(t, γψ0(t)) for almost all t ∈ [ai, c] and γi(t) ≤ ηi(t) for t ∈ [−d0, ai] and

i = 1, . . . , k.

Function γ can be given by its coordinates as γi(t) = ηi(t) for t ∈
[−d0, ai], γi(t) = ηi(ai) for t ∈ [ai, c], where i = 1, . . . , k.

Let us define the sequence

{ϕ(m)}m∈N, ϕ(m) = (ϕ(m)
1 , . . . , ϕ

(m)
k ) : [−d0, c] → Rk+

as follows

ϕ
(0)
i (t) = ηi(t) + 2 for t ∈ [−d0, ai], i = 1, . . . , k,

ϕ
(0)
i (t) = ηi(ai) + 2 +

∫ t

ai

[
mσi(τ) + 2

]
dτ for t ∈ [ai, c], i = 1, . . . , k,

and

ϕ
(m)
i (t) = ηi(t) +

1
m

for t ∈ [−d0, ai], (5)

ϕ
(m)
i (t) = ηi(ai) +

1
m

+
∫ t

ai

[
σi(τ, (ϕ(m−1))ψ0(τ)) +

1
m

]
dτ for t ∈ [ai, c], (6)

where i = 1, . . . , k and m ∈ N. First we will show that

ϕ(m)(t) < ϕ(m−1)(t) for m ≥ 1 and t ∈ [−d0, c]. (7)
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Let m = 0. Then for t ∈ [−d0, ai] there is ηi(t) + 2 > ηi(t) + 1, i = 1, . . . , k.
If t ∈ [ai, c], then from Carathéodory condition (ii) there follows

ϕ
(1)
i (t) = ηi(ai) + 1 +

∫ t

ai

[
σi(τ, (ϕ(0))ψ0(τ)) + 1

]
dτ <

< ηi(ai) + 2 +
∫ t

ai

[
mσi(τ) + 2

]
dτ = ϕ

(0)
i (t), t ∈ [ai, c], i = 1, . . . , k.

This implies that ϕ(0)(t) > ϕ(1)(t) for t ∈ [−d0, c].
Suppose that the inequality

ϕ(m)(t) < ϕ(m−1)(t), t ∈ [−d0, c],

holds for a fixed m ≥ 0. Then for m+ 1 and i = 1, . . . , k:

ϕ
(m)
i (t) > ϕ

(m+1)
i (t) for t ∈ [−d0, ai].

From the assumption on the monotonicity of the function σ, there follows that

ϕ
(m+1)
i (t) = ηi(ai) +

1
m+ 1

+
∫ t

ai

[
σi(τ, (ϕ(m))ψ0(τ)) +

1
m+ 1

]
dτ <

< ηi(ai) +
1
m

+
∫ t

ai

[
σi(τ, (ϕ(m−1))ψ0(τ)) +

1
m

]
dτ =

= ϕ
(m)
i (t), t ∈ [ai, c], i = 1, . . . , k.

Therefore, ϕ(m+1)(t) < ϕ(m)(t) for t ∈ [−d0, c]. Then the proof of (7) is completed
by induction. Now we will show the inequality

γ(t) < ϕ(m)(t) for t ∈ [−d0, c] and for m ∈ N. (8)

Let m ∈ N be fixed. If assertion (8) is false, then there are t̃ ∈ (−d0, c] and i = 1, . . . , k
such that

γ(t) < ϕ(m)(t) for t ∈ [−d0, t̃)

and
γi(t̃) = ϕ

(m)
i (t̃). (9)

It follows that t̃ > ai. Then

γi(t̃) ≤ γi(ai) +
∫ t̃

ai

σi
(
τ, γψ0(τ)

)
dτ ≤ ηi(ai) +

∫ t̃

ai

σi
(
τ, ϕ

(m)
ψ0(τ)

)
dτ < ϕ

(m)
i (t̃).

which contradicts (9). This completes the proof of (8).
It is easy to see that the functional sequence {ϕ(m)}m∈N is equicontinuous and uni-

formly bounded on [−d0, c]. It follows from Arzela-Ascoli theorem that the sequence
{ϕ(m)}m∈N is uniformly convergent to a continuous function ϕ = (ϕ1, . . . , ϕk) ∈
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C([−d0, c],Rk). Moreover, for i = 1, . . . , k and t ∈ [−d0, ai], there is ϕi(t) = ηi(t) and
ϕi is absolutely continuous on [ai, c]. From (5)–(6) we obtain, in the limit, that ϕ is
the solution of problem (3)–(4). Since γ(t) < ϕ(m)(t) for t ∈ [−d0, c] and m ∈ N, we
obtain γ(t) ≤ ϕ(t) for t ∈ [−d0, c]. Hence the function ϕ is the solution of (3)–(4).
Now we show that ϕ is the maximal solution of (3)–(4). Let ω be solution of (3)–(4).
Then ωi(t) = ηi(t) for t ∈ [−d0, ai] and i = 1, . . . , k. Also

ω′i(t) = σi(t, ωψ0(t)) for t ∈ [ai, c] and i = 1, . . . , k.

Similarly as for function γ, we show that ω(t) < ϕ(m)(t) for t ∈ [−d0, c] and m ∈ N.
Then for t ∈ [−d0, c] we obtain

ω(t) ≤ lim
m→∞

ϕ(m)(t) = ϕ(t).

This implies that ϕ is the maximal solution of (3)–(4).

We prove a theorem on integral functional inequalities generated by (3)–(4).

Theorem 2.1. Suppose that:

1) σ = (σ1, . . . , σk) satisfies Carathéodory conditions,
2) for almost all t ∈ [ai, c] the functions σi(t, ·) : C(I,Rk+) → R+, i = 1, . . . , k are

nondecreasing,
3) ηi ∈ C([−d0, ai],R+) for i = 1, . . . , k,
4) ϕ : [−d0, c] → Rk is the maximal solution of (3)–(4),
5) the function γ ∈ C([−d0, c],Rk+) satisfies an initial estimate γi(t) ≤ ηi(t) for

t ∈ [−d0, ai], and integral inequalities

γi(t) ≤ ηi(ai) +
∫ t

ai

σi(τ, γψ0(τ))dτ t ∈ [ai, c], i = 1, . . . , k

hold,
6) ψ0 : [0, a] → R is continuous and −c0 ≤ ψ0(t) ≤ t for t ∈ [ai, c].

Then γ(t) ≤ ϕ(t) for t ∈ [−d0, c].

Proof. From assumption 4) it follows that γi(t) ≤ ϕi(t) for t ∈ [−d0, ai] and for
i = 1, . . . , k. Let us consider the sequence {ϕ(m)} defined in Lemma 2.1. Then
lim
m→∞

ϕ(m)(t) = ϕ(t) uniformly on [−d0, c].

Let us consider the function u : [−d0, c] → Rk+ defined by its coordinates

ui(t) = ηi(t) for t ∈ [−d0, ai],

ui(t) = ηi(ai) +
∫ t

ai

σi(τ, γψ0(τ))dτ for t ∈ [ai, c],

where i = 1, . . . , k. Then γi(t) ≤ ui(t) for t ∈ [−d0, c] and for i = 1, . . . , k. From the
assumption on the monotonicity of the function σ there follows that

ui(t) ≤ ηi(ai) +
∫ t

ai

σi(τ, uψ0(τ))dτ, t ∈ [ai, c].
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Moreover,

ϕ
(m)
i (t) >

∫ t

ai

σi(τ, ϕ
(m)
ψ0(τ)

)dτ for t ∈ [ai, c] and for i = 1, . . . , k.

Similarly as in Lemma (2.1) we show that u(t) < ϕ(m)(t) for t ∈ [−d0, c] and m ∈ N.
Consequently, u(t) ≤ ϕ(t) for t ∈ [−d0, c]. Then γ(t) ≤ ϕ(t) for t ∈ [−d0, c].

3. GENERALIZED CAUCHY PROBLEM

We will need the following operator V : C(B,R) → C(I,R+) defined as follows:

V [β](t) = max{|β(t, x)| : x ∈ [−b, b]}, t ∈ [−b0, 0],

where β ∈ C(B,R). For a function ω = (ω1, . . . , ωk) ∈ C(B,Rk), we write

V [ω](t) = (V [ω1](t), . . . , V [ωk](t)).

We start with the formulation of assumptions on σ and f .

Assumption H[σ]. The functions σi : [−d0, c] × C(I,Rk+) → R+ for i = 1, . . . , k
satisfy the conditions:

1) the function σ = (σ1, . . . , σk) satisfies Carathéodory conditions,
2) for almost all t ∈ [ai, c], the function σi(t, ·) : C(I,Rk+) → R+ is nondecreasing.

Assumption H[f ]. The functions fi : Ωi → Rk, for each i, 1 ≤ i ≤ k, satisfy the
conditions:

1) the function fi(t, ·) is continuous for almost all t ∈ [ai, c] and function fi(·, x, ω, q)
is measurable for every (x, ω, q) ∈ Rn × C(B,Rk)× Rn,

2) the partial derivatives
∂qfi = [∂qj

fi]j=1,...,n

exist on Rn × C(B,Rk) × Rn for almost all t ∈ [ai, c]; moreover, ∂qfi(t, ·) : Rn ×
×C(B,Rk)× Rn → Rn are continuous for almost all t ∈ [ai, c] and

∂qfi(·, x, ω, q) = (∂q1fi(·, x, ω, q), . . . , ∂qn
fi(·, x, ω, q))

are measurable for every (x, ω, q) ∈ Rn × C(B,Rk)× Rn,
3) there exist mqi

∈ L([ai, c],R+) such that

‖∂qfi(t, x, ω, q)‖ ≤ mqi
(t), i = 1, . . . , k,

on Rn × C(B,Rk)× Rn for almost all t ∈ [ai, c].
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We give a theorem on the estimate of the difference between two solutions of
system (1).

Theorem 3.1. Suppose that Assumptions H[σ], H[f ] are satisfied and:

1) the function u : [−d0, c] × Rn → Rk is a solution of problem (1)–(2), and the
function v : [−d0, c]×Rn → Rk is solution of system (1) with the initial condition

zi(t, x) = χi(t, x), (t, x) ∈ E0.i 1 ≤ i ≤ k, (10)

where χi : E0.i → R for i = 1, . . . , k are given functions,
2) u and v are bounded and uniformly continuous on [−d0, c]× Rn,
3) for every i = 1, . . . , k, the initial inequality

|φi(t, x)− χi(t, x)| ≤ ηi(t), (t, x) ∈ [−d0, ai]

is satisfied, where ηi ∈ C([−d0, ai],R+),
4) for every i = 1, . . . , k, the estimate

|fi(t, x, ω, q)− fi(t, x, ω̃, q)| ≤ σi(t, V [ω − ω̃])

is satisfied on [ai, c]× Rn × C(B,Rk)× Rn,
5) ψ : E → Rn+1 is continuous and −c0 ≤ ψ0(t) ≤ t for t ∈ [ai, c],
6) the function ω = (ω1, . . . , ωk) : [−d0, c] → Rk+ is the maximal solution of problem

(3)–(4).

Under these assumptions,

|(ui − vi)(t, x)| ≤ ωi(t), i = 1, . . . , k, (11)

on [−d0, c]× Rn.

Proof. It follows from assumption 3) that inequality (11) holds for (t, x) ∈ [−do, ai]×
Rn. Let

Φi(t) = sup{|(ui − vi)(t, x)| : x ∈ Rn}, −d0 ≤ t ≤ c, i = 1, . . . , k.

Now assertion (11) is equivalent to the estimates Φi(t) ≤ ωi(t) for t ∈ [−d0, c]. It
follows from (1) that

∂tui(t, x)−∂tvi(t, x)=fi
(
t, x, uψ(t,x), ∂xui(t, x)

)
−fi

(
t, x, vψ(t,x), ∂xvi(t, x)

)
, i=1, . . . , k.

Applying the Hadamard theorem to the difference

fi
(
t, x, vψ(t,x), ∂xui(t, x)

)
− fi

(
t, x, vψ(t,x), ∂xvi(t, x)

)
we obtain

∂t(ui − vi)(t, x)−

−
n∑
j=1

[∫ 1

0

∂qj
fi

(
t, x, vψ(t,x), ∂xvi(t, x) + s[∂xui(t, x)− ∂xvi(t, x)]

)
ds

]
∂xj

(ui−vi)(t, x)=

= fi
(
t, x, uψ(t,x), ∂xui(t, x)

)
− fi

(
t, x, vψ(t,x), ∂xui(t, x)

)
, i = 1, . . . , k.
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Let us denote by gi(·, t, x) the solution of the Cauchy problem

y′(s) = −
∫ 1

0

∂qfi
(
s, y(s), vψ(s,y(s)), ∂xvi(s, y(s)) + ζ[∂xui(s, y(s))− ∂xvi(s, y(s))]

)
dζ,

y(t) = x.

Then

d

ds

(
(ui − vi)(s, gi(s, t, x))

)
= fi

(
s, gi(s, t, x), uψ(s,gi(s,t,x)), ∂xui(s, gi(s, t, x))

)
−

− fi
(
t, x, vψ(s,gi(s,t,x)), ∂xui(s, gi(s, t, x))

)
,

and consequently

(ui − ũi)(t, x)− (ui − ũi)(ai, gi(ai, t, x)) =

=
∫ t

ai

[
fi

(
s, gi(s, t, x), uψ(s,gi(s,t,x)), ∂xui(s, gi(s, t, x))

)
−

− fi
(
t, x, vψ(s,gi(s,t,x)), ∂xui(s, gi(s, t, x))

)]
ds,

where i = 1, . . . , k. It follows from assumption 4) that∣∣(ui − ũi)(t, x)
∣∣ ≤ ∣∣(ui − ũi)(ai, gi(ai, t, x))

∣∣+
+

∫ t

ai

σi(s, V [uψ(s,gi(s,t,x)) − vψ(s,gi(s,t,x))])ds, i = 1, . . . , k.

In virtue of Assumption H[σ] and definition of function Φ, the following integral
functional inequalities hold:

Φi(t) ≤ Φi(ai) +
∫ t

ai

σi(s,Φψ0(s))ds, i = 1, . . . , k.

From Theorem 2.1, there follows Φi(t) ≤ ωi(t) for t ∈ [ai, c] and i = 1, . . . , k. Conse-
quently,

Φ(t) ≤ ω(t) t ∈ [−d0, c].

This completes the proof.

Theorem 3.2. Suppose that Assumptions H[σ], H[f ] are satisfied and:

1) for every i = 1, . . . , k the inequality

|fi(t, x, ω, q)− fi(t, x, ω̃, q)| ≤ σi(t, V [ω − ω̃]) (12)

holds on [ai, c],
2) ψ : E → Rn+1 is continuous and −c0 ≤ ψ0(t) ≤ t for t ∈ [ai, c],
3) the maximal solution of problem (3), with the initial condition (4) and ηi(t) = 0

for t ∈ [−d0, ai], is the null function.
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Then problem (1)–(2) admits exactly one bounded and uniformly continuous solution
on [−d0, c].

Proof. This theorem is a consequence of Theorem 3.1.

It is important that we consider functional differential systems (3)–(4) as compar-
ison problems for (1)–(2). We show that there is the Cauchy problem

ω′(t) = σ(t, ω(tβ)), ω(0) = 0, (13)

where β > 0, such that ω̃(t) = 0 for t ∈ [0, 1] is the maximal solution of (13) and the
Cauchy problem

ω′(t) = σ(t, ω(t)), ω(0) = 0

has a positive solution on (0, 1].

Example 3.1. Suppose that ai = 0 for 1 ≤ i ≤ k and 0 < c ≤ 1. Consider the
Cauchy problem {

ω′i(t) = Ai
α
√
ω1(tβ) + . . .+ ωk(tβ),

ωi(0) = 0, i = 1, . . . , k,
(14)

where 1 < α < β and Ai > 0 for i = 1, . . . , k. Let ω̃ = (ω̃1, . . . , ω̃k) : [0, ã] → Rn+ be
the maximal solution of (14). We prove that ω̃(t) = 0 for t ∈ [0, c]. Write

Ã = α
√
kmax{Ai : 1 ≤ i ≤ k},

A = max{1, Ã}.
By ỹ : [0, c̃] → R+ for 0 < c̃ ≤ c let us denote the maximal solution of the scalar
Cauchy problem

y′(t) = A α

√
y(tβ), y(0) = 0.

It is easy to see that

ω̃i(t) ≤ ỹ(t) for t ∈ [0,min{c̃, ã}] i = 1, . . . , k.

The function ỹ satisfies the condition

ỹ(t) ≤ Aktk, t ∈ [0, c̃], k ∈ N.

Then ỹ(t) = 0 for t ∈ [0, 1
A ) and, consequently, ω̃(t) = 0 for t ∈ [0, 1

A ). It is clear that
ω̃(t) = 0 for t ∈ [0, c].

Example 3.2. Suppose that α > 1 and Ai ∈ R+ for 1 ≤ i ≤ k and

k∑
i=1

Ai > 0.

Then the maximal solution ω̃ = (ω̃1, . . . , ω̃k) : [0, c] → Rk+ of the Cauchy problem{
ω′i(t) = Ai

α
√
ω1(t) + . . .+ ωk(t),

ωi(0) = 0, i = 1, . . . , k.
(15)
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satisfies the condition
k∑
i=1

ω̃i(t) > 0 for t ∈ (0, c]. (16)

Write

y(t) =
k∑
i=1

ω̃i(t), t ∈ [0, c], A =
k∑
i=1

Ai.

It is easily seen that

y(t) ≥
(α− 1

α
At

) α
α−1

, t ∈ [0, c]

and assertion (16) follows.
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