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MULTIVARIATE KERNEL DENSITY ESTIMATION

WITH A PARAMETRIC SUPPORT

Abstract. We consider kernel density estimation in the multivariate case, focusing on the
use of some elements of parametric estimation. We present a two-step method, based on a
modification of the EM algorithm and the generalized kernel density estimator, and compare
this method with a couple of well known multivariate kernel density estimation methods.
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1. INTRODUCTION

Most of mathematical tools and techniques have been introduced and improved in
view of possible applications. Thanks to technical development, numerous processes
may be better understood, and numerous phenomena may be explained. In some si-
tuations the probability distribution of a random variable or its estimator is a helpful
tool.

In this paper we consider distributions of absolutely continuous d-dimensional
random variables (d ≥ 1) and methods of estimation of their density functions. We
focus on the case of independent random variables.

Let (Ω, F, P ) be a probability space, X i : Ω −→ R
d, i = 1, 2, . . . , n, d ≥ 1

– a sequence of independent and identically distributed random variables with an
unknown density function f . Assume also that {xi}n

i=1 is a sequence of observations
on Xi.

To estimate the unknown density function f , one can use parametric or nonpara-
metric methods. The parametric ones, e.g., the maximum likelihood method, require
assumptions on the form of the unknown density. Then, the only problem is to
estimate the parameters. But sometimes, having no additional information about the
distribution, we should use nonparametric methods, like the histogram or the kernel
estimator.
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The kernel density estimator, introduced in [12] (in the univariate case), is char-
acterized by two components: the bandwidth h(n) and the kernel K. We consider its
multivariate version, d ≥ 1 (see e.g., [14]).

Definition 1.1. Let {h(n)}∞n=1 ⊂ (0, +∞) with h(n) −→ 0. Let K : R
d −→ R

be a measurable, nonnegative function. The kernel density estimator is given by the

formula

f̂h(x) =
1

nhd(n)

n∑

i=1

K
(x − xi

h(n)

)
, x ∈ R

d. (1.1)

We call h the bandwidth (window width or smoothing parameter). We call K the

kernel.

The kernel K determines the regularity, the symmetry about zero, and the shape
of the estimator, while the bandwidth h – the amount of smoothing. In particular,
f̂h is a density, provided that K ≥ 0 and

∫
Rd K(t)dt = 1.

Considerable research has been carried out on the question of how one should
select K in order to optimize the properties of f̂h (see e.g., [5, 8, 10, 16], and [4]). In
the case of d ≥ 1, the most often choice is a density function, symmetric about zero,
and such that

∫

Rd

tiK(t)dt = 0 and

∫

Rd

titjK(t)dt =

{
µ2, i = j,

0, i 6= j,
µ2 < ∞,

i, j = 1, . . . , d, (1.2)

like, e.g., the Gaussian kernel

K(x) =
1

(2π)−
d
2

exp
(
− 1

2
xT x

)
, x ∈ R

d. (1.3)

In some situations also nonsymmetric kernels are used (see e.g., [8]), giving better
results.

Still the main problem of the kernel density estimation is the choice of the band-
width h(n). The usual criterion for the optimal bandwidth is the asymptotic version
of the mean integrated squared error (see e.g. [4, 5, 9], and [14]), defined by

MISE(f̂h) = E

∫

Rd

(f̂h(x) − f(x))
2
dx,

which can also be written as a sum of the integrated squared bias and the integrated
variance of f̂h:

MISE(f̂h) =

∫

Rd

(E(f̂h(x)) − f(x))2dx +

∫

Rd

V (f̂h(x))dx.

We want to keep both the bias and the variance as small as possible, so the optimal
bandwidth h(n) should be chosen by the minimization of MISE.
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Under additional assumption on the density f ,

R(∆2f) :=

∫

Rd

(∆2f(x))2 dx < ∞, ∆2f(x) =

d∑

i=1

∂2f

∂x2
i

(x), (1.4)

we obtain the formula for the optimal bandwidth in the following form:

hopt =
( d · k2

nR(∆2f)µ2
2

) 1
d+4

, (1.5)

where k2 =
∫

Rd K2(t)dt, and µ2 =
∫

Rd t21K(t)dt (see e.g. [14]). The problem is that,
formula (1.5) depends on the unknown density f . Hence, in practice we get the
optimal bandwidth if we use an estimate for R(∆2f).

Several ways of solving this problem have appeared in the literature. Most of the
known methods are based on the idea of constructing a pilot function (quite often
using some elements of parametric estimation) and then use it for actual estimation
(see e.g., [1, 2, 7, 8, 10, 13, 14], and [6]). But there are also methods using their own
data-based procedures for the bandwidth choice (see e.g., [14, 15]). The problem is
that, none of these methods guarantees good results for a wide class of estimated
density functions.

In this paper, we compare a couple of multivariate kernel density estimation meth-
ods mentioned above with the two-step method (introduced in [7,8]), that generalizes
the method considered in [6].

In Section 2 we recall a couple of multivariate kernel density estimation methods.
Section 3 is dedicated to the two-step method. The idea of the method is presented
in the case of independent d-dimensional random variables and a kernel symmetric
about zero (for results in some cases of weak dependence and in the case of nonsym-
metric kernel see [8]). The last Section contains a comparative study of the methods
considered (with the use of results of a computer simulation).

2. MULTIVARIATE KERNEL DENSITY ESTIMATION METHODS

Let xi, i = 1, . . . , n, be a sequence of independent d-dimensional data points from
absolutely continuous distribution with an unknown density f . Assume that the
kernel K : R

d −→ R is a density satisfying (1.2) and consider the kernel density
estimator (1.1).

The choice of the optimal bandwidth h(n) is crucial also in the case of multivariate
kernel density estimation (see Figs 1–3).
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Fig. 1. Bandwidth choice
h = 0.958, n = 100

Fig. 2. Bandwidth choice
h = 0.656, n = 100

Fig. 3. Bandwidth choice
h = 0.362, n = 100

The estimated density function f is presented below (Fig. 4).

Fig. 4. Density function f of

N2

([
2

−10

]
,

[
1.5 −1.2

−1.2 10.1

])

As mentioned above, most of the known kernel density estimation methods are
based on the use of an estimator for the unknown factor (1.4) in formula (1.5). In
a few methods some modification of the kernel density estimator (1.1) was necessary
(see e.g., [6, 14]). Many of these methods are known only in the univariate case (see
e.g., [10,13]), some were generalized to the multivariate case. Let us recall a couple of
the latter ones. We choose those that, contain some elements of parametric estimation
and are therefore often called semiparametric.

1st method. The choice of the bandwidth under the assumption that f is a density
of the multivariate normal distribution (see [14]). Then

R(∆2f) =

∫

Rd

(∆2f(x))2dx = (2
√

π)−d
(d

2
+

d2

4

)
,

and hence the bandwidth

h1 =

(
d · k2

n(2
√

π)−d

(
d
2 + d2

4

)
µ2

2

) 1
d+4

,

where k2 =
∫

Rd K2(t)dt and µ2 =
∫

Rd t2i K(t)dt, i = 1, . . . , d.

2nd method. The adaptive kernel method (see [1, 14]). In the initial step one has

to find a pilot estimate f̂h0 , usually in the form of (1.1) (with h0 calculated as in the
first method). Then the adaptive estimator has the form

f̂h(x) =
1

n

n∑

i=1

1

hd
i (n)

K
(x − xi

hi(n)

)
, x ∈ R

d,
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where

hi(n) = h0λi, λi =
( f̂h0(x)

G

)−α

, α =
1

d
, G =

n

√
f̂h0(x1) · · · f̂h0(xn).

3rd method. The nonparametric density estimation with a parametric start. The
method was introduced in [6] in the univariate case, but can be generalized to the
multivariate case (see [15]), by taking

f̂(x) =
1

n
f0(x|θ̂)

n∑

i=1

K
(

x−xi

h(n)

)

f0(xi|θ̂)
,

where f0 is for instance, a multivariate density of a normal distribution with param-
eters µ and Σ, estimated by the use of the maximum likelihood method.

For some modifications and other known methods, see e.g., [14, 15].

Note that, the simplest element of the parametric estimation appearing in these
methods is the normality assumption. This assumption is used in the first method and
in the second one – in the initial step. The third method is based on the maximum
likelihood estimation. Hence it most deserves to be called semiparametric.

Let us look at the effectiveness of the above methods. Consider the following
example.

Example 2.1. Suppose we are given n = 250 data points from a bivariate absolutely

continuous distribution with an unknown density f .

As an example, let us consider the distribution

1

3
N2

(
µ1,Σ1

)
+

2

3
N2

(
µ2,Σ2

)
,

where:

µ1 =

[
3
0

]
, µ2 =

[
5
2

− 5
2

]
, Σ1 =

[
9
4

3
100

3
100

1
100

]
, Σ2 =

[
25
100

3
40

3
40

9
4

]
.

The results of the estimation using all three methods are presented below

(Figs 5–7).

Fig. 5. Kernel estimator
first method, n = 250

Fig. 6. Kernel estimator
second method, n = 250

Fig. 7. Kernel estimator
third method, n = 250

The estimators obtained have shapes close to the shape of the estimated density

(Fig. 8), but some irregularities are noticeable. We can obtain better results using the

two-step method (Fig. 9).
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Fig. 8. Estimated density f Fig. 9. The two-step method, n = 250

3. THE TWO-STEP METHOD

Let (Ω, F, P ) be a probability space, X i : Ω −→ R
d, i = 1, 2, . . . , n, d ≥ 1

– a sequence of independent and identically distributed random variables. Assume
that f is an unknown density function of X i and {xi}n

i=1 is a sequence of observations
on Xi.

Consider a family of measurable functions {φj(x)}m
j=1 such that

0 ≤ φj(x) ≤ 1,

m∑

j=1

φj(x) = 1, x ∈ R
d,

and a sequence of corresponding bandwidths {hj(n)}m
j=1 such that

hj(n) > 0, hj(n) −→ 0, and nhd
j (n) −→ ∞, as n −→ ∞, j = 1, . . . , m.

Assume also that, the kernel K : R
d −→ R is a density function satisfying (1.2).

Definition 3.1. The generalized kernel density estimator is defined as follows

f̂φ(x) =
1

n

n∑

i=1

m∑

j=1

φj(xi)

hd
j (n)

K
(x − xi

hj(n)

)
, x ∈ R

d. (3.1)

The idea of the two-step method

The method consists of two steps – a parametric one and a nonparametric one.
First, we have to divide randomly the sample {xi}n

i=1 into {x1,i}n1

i=1 and {x2,i}n2

i=1,
where n1+n2 = n. This technical operation allows us to treat components of estimator
(3.1) as independent random variables (as in the case of (1.1)).
1st step: parametric estimation
For {x1,i}n1

i=1 one estimates the parameters:

m ∈ N, µj ∈ R
d, Σj ∈ M(d, d; R), αj ∈ (0, 1), j = 1, . . . , m,

m∑

j=1

αj = 1,

(3.2)
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of the pilot function f0 using an adaptive algorithm (based on the EM algorithm),
where

f0(x) =

m∑

j=1

αjfj(x|µj ,Σj), (3.3)

fj(x|µj ,Σj) =
1√

(2π)d|Σj |
e−

1
2 (x−µj)

T
Σ

−1
j (x−µj), j = 1, . . . , m. (3.4)

2nd step: nonparametric estimation
For {x2,i}n2

i=1 one considers the generalized kernel density estimator (3.1), with a se-
quence of bandwidths hj(n2), j = 1, . . . , m, and functions φj of the form:

φj(x) =
α̂jfj(x|µ̂j , Σ̂j)

f0(x)
=

α̂jfj(x|µ̂j , Σ̂j)
∑m

k=1 α̂kfk(x|µ̂j , Σ̂j)
, j = 1, . . . , m, (3.5)

where fj and f0 are calculated in the first step.
We choose the bandwidths hj(n2), j = 1, . . . , m, minimizing the asymptotic ver-

sion of the mean integrated squared error, given by

Theorem 3.2 ([7, 8]).

AMISE(f̂φ) =
1

4

m∑

j,k=1

h2
j (n2)h

2
k(n)µ2

2

∫

Rd

∆2(φjf)(x)∆2(φkf)(x)dx

+
1

n2

m∑

j,k=1

1

hd
j (n2)hd

k(n2)

(∫

Rd

K
( t

hj(n2)

)
K
( t

hk(n2)

)
dt
)
×

×
∫

Rd

φj(y)φk(y)f(y)dy, (3.6)

where ∆2(φjf)(x) =
∑d

i=1
∂2(φjf)

∂x2
i

(x), j = 1, . . . , m.

The adaptive algorithm in the first step, based on the EM algorithm (see [3])
and the mutual information (see [17]) can be stated as follows:
We set initial value of m.
(A1) For a given m, we use the EM algorithm:
We set initial values α0

j , µ0
j , and Σ0

j .
For j = 1, 2, . . . , m, we iterate (t = 1, 2, . . .):

E-step: we calculate

qt
ij =

α̂t−1
j fj(x1,i|µ̂t−1

j , Σ̂
t−1

j )
∑m

j=1 α̂t−1
j fj(x1,i|µ̂t−1

j , Σ̂
t−1

j )
, i = 1, . . . , n1, j = 1, . . . , m,
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M-step: we calculate

α̂t
j =

1

n1

n1∑

i=1

qt
ij ,

µ̂
t
j =

∑n1

i=1 qt
ijx1,i∑n1

i=1 qt
ij

,

Σ̂
t

j =

∑n1

i=1(x1,i − µ̂
t
j)(x1,i − µ̂

t
j)

T qt
ij∑n1

i=1 qt
ij

.

(A2) We check whether m is the optimal number of components in (3.3), using the
system mutual information

I(Θ) =
m∑

i=1

piI(i, Θ−i),

where the component mutual information

I(i, Θ−i) =
∑

j 6=i

pij log
pij

pipj

and pj := αj , pij := fj(µi|µj , Σj), i, j = 1, . . . , m.

If I(Θ) ≤ 0 and ∀i I(i, Θ−i) ≤ 0, then m is the optimal number of components in
mixture (3.3) – we have the pilot f0.
If I(Θ) > 0, then there exists an i such that I(i, Θ−i) > 0. So, we take a β, such that
I(β, Θ−β) = maxi{I(i, Θ−i) > 0}. Since I(β, Θ−β) > 0, there exists a j (j 6= β), such
that pβj log

pβj

pβpj
> 0. We take a γ such that pβγ log

pβγ

pβpγ
= max

j
{pβj log

pβj

pβpj
> 0}

and remove γth or βth component. We repeat (A1)–(A2) for m − 1 components.

Example 3.3. Consider the bivariate observations {xi}, i = 1, . . . , 250, from the

example presented in Section 2. We use the two-step method to estimate the density f .

First, we randomly divide the sample into {x1,i}, i = 1, . . . , n1 and {x2,i},
i = 1, . . . , n2, taking n1 = n2 = 125.

For {x1,i}, i = 1, . . . , n1, we estimate parameters (3.2) of the pilot f0, given by

(3.3) – (3.4), using the adaptive algorithm described in Section 3. We start with

m = 4, using 75 iterations of the EM algorithm. We obtain

α̂1 = 0.708, µ̂1 =

[
2.495

−2.464

]
, Σ̂1 =

[
0.286 0.140
0.140 1.803

]
,

α̂2 = 0.019, µ̂2 =

[
−0.033
−0.149

]
, Σ̂2 =

[
0.206 0.004
0.004 0.0006

]
,

α̂3 = 0.190, µ̂3 =

[
1.927

−0.029

]
, Σ̂3 =

[
0.749 −0.03
−0.03 0.004

]
,

α̂4 = 0.083, µ̂4 =

[
3.886
0.113

]
, Σ̂4 =

[
2.198 0.141
0.141 0.020

]
.
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We check the accuracy of this model, calculating

I(1, Θ−1) = 0.12 · 10−1032, I(2, Θ−2) = −0.5 · 10−3,

I(3, Θ−3) = −0.015, I(4, Θ−4) = −0.004,

and I(Θ) = 0.000 32. Since I(Θ) > 0 and I(1, Θ−1) > 0, we take m = 3 and repeat

the procedure, getting

α̂1 = 0.693, α̂2 = 0.047, α̂3 = 0.260,

µ̂1 =

[
2.525
−2.488

]
, µ̂2 =

[
1.901
−0.245

]
, µ̂3 =

[
2.358
−0.019

]
,

Σ̂1 =

[
0.278 0.205
0.205 1.827

]
, Σ̂2 =

[
0.032 0.058
0.058 0.202

]
, Σ̂3 =

[
2.547 0.020
0.020 0.008

]
.

In this case

I(1, Θ−1) = 0.012 · 10−3701 > 0, I(2, Θ−2) = −0.005, I(3, Θ−3) = −1.418,

and I(Θ) = 0.000 25 > 0, so we reduce the number of components to m = 2 and

estimate parameters α̂1, α̂2, µ̂1, µ̂2, Σ̂1, and Σ̂2. As a result we obtain

α̂1 = 0.728, α̂2 = 0.272, (3.7)

µ̂1 =

[
2.495
−2.389

]
, µ̂2 =

[
2.339
−0.018

]
, (3.8)

Σ̂1 =

[
0.284 0.138
0.138 1.954

]
, Σ̂2 =

[
2.429 0.019
0.019 0.008

]
(3.9)

and

I(1, Θ−1) ≈ 0, I(2, Θ−2) = −0.028, and I(Θ) = −0.008 < 0.

Therefore, m = 2 proved to be the optimal number of components in mixture (3.3).
The pilot functions f0 in the cases of m = 4, m = 3, and m = 2 are presented

below (Figs 10–12).

Fig. 10. The two-step method pilot f0,
m = 4, n1 = 125

Fig. 11. The two-step method pilot f0,
m = 3, n1 = 125
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Fig. 12. The two-step method pilot f0,
m = 2, n1 = 125

Fig. 13. The two-step method final
result, n2 = 125

Having obtained f0 in the form

f0(x) = α̂1f1(x|µ̂1, Σ̂1) + α̂2f2(x|µ̂2, Σ̂2),

with f1, f2 given by (3.4), and parameters (3.7)–(3.9), we use the generalized kernel

density estimator

f̂φ(x) =

n2∑

i=1

( φ1(x2,i)

n2h
2
1(n2)

K
(x − x2,i

h1(n2)

)
+

φ2(x2,i)

n2h
2
2(n2)

K
(x − x2,i

h2(n2)

))
, x ∈ R

2,

for {x2,i}, i = 1, . . . , n2 (n2 = 125). We take the Gaussian kernel (1.3) and functions

φ1, φ2 in form (3.5).
Two bandwidths h1 = 0.825 and h2 = 3.920 are calculated by numerical minimiza-

tion of (3.6). The final result of the estimation is presented in Figure 13.

4. COMPARATIVE STUDY – SIMULATION RESULTS, d = 2

Consider bivariate normal distributions, with the densities of the form:

f(x1, x2) =
1

2πσ1σ2

√
1 − ρ2

e
− 1

2(1−ρ2)

(
(x1−µ1)2

σ2
1

−2ρ
(x1−µ1)(x2−µ2)

σ1σ2
+

(x2−µ2)2

σ2
2

)

,

with parameters

µ1, µ2 ∈
(
− 3

2
,
3

2

)
, σ1, σ2 ∈ (0, 2), and ρ ∈ (0, 1).

Consider also mixtures of two and three distributions of the above form, with param-
eters

µ1j , µ2j ∈
(
− 3

2
,
3

2

)
, σ1j , σ2j ∈ (0, 2), ρj ∈ (0, 1), j = 1, . . . , m, (4.1)

αj ∈ (0, 1),

m∑

j=1

αj = 1. (4.2)
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We use the above distributions for simulation and the integrated squared error

ISE(f̂) =

∫

R2

(f̂(x1, x2) − f(x1, x2))
2dx1dx2,

as a criterion of comparing the methods. A method is better than another one if it
gives a smaller value of ISE (for the same sample).

The following simulation is conducted:

We randomly choose:

— the number of components in the mixture (3.3) (m from 1 to 3),

— the parameters (4.1) and (4.2) (from uniform distribution on the given interval),

— the samples of n = 100, n = 200, and n = 500 elements from the chosen distribu-
tion.

For each sample, we apply three density estimation methods from Section 2 and
the two-step method as well. Each time we take the Gaussian kernel (1.3). In each
case we compute ISE.

The whole procedure is repeated 250 times.

The results of the simulation – the values of ISE – are presented as tables and as
box plots. Each box plot contains a box with the central line showing the median,
the lower line showing the first quartile Q1, the upper line showing the third quartile
Q3, two lines extending from the central box bounding 90% of the data, and outliers.
The tables contain mean values of ISE for n = 100, n = 200, and n = 500 (Tab. 1)
and sample quartiles (Q1, me, and Q3) calculated for the obtained values of ISE
(Tabs 2–4).

Table 1

Mean values of ISE, (n = 100, n = 200, n = 500)

n Two-step method 1st method 2nd method 3rd method
100 0.0219 0.0510 0.0342 0.0331
200 0.0091 0.0180 0.0161 0.0146
500 0.0026 0.0042 0.0046 0.0037

Comparison of mean values of ISE shows that the two-step method gives the best
results, having the smallest mean value. We get the greatest mean in the case of the
first method, taking the last place.

Let us look at further analysis, (Fig. 14) starting with n = 100.
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Fig. 14. Values of ISE for n = 100

For a convenience, we present the values of Q1, me, and Q3 in Table 2.

Table 2

Values of ISE, n = 100, d = 2

Method Two-step method 1st method 2nd method 3rd method
Q1 0.0062 0.0133 0.0163 0.0110
me 0.0150 0.0253 0.0243 0.0247
Q3 0.0289 0.0564 0.0424 0.0383

Analyzing the box plots obtained and the values of ISE in Table 2, we can observe
that, the two-step method gives the best results. In a half of the cases we got values
of ISE from the interval (0.0062, 0.0289), while in case of the best of the remaining
methods – the third one – this interval has the form (0.0110, 0.0383). The first method
seems to be the worst.

And now for the results in the case n = 200 (Fig. 15).
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Fig. 15. Values of ISE for n = 200

Observe that, the scale of the box plots has changed in comparison to Figure 14.
Additionally, the differences between the results obtained by the use of respective
methods have decreased. It is related to the larger sample size (this will be visible
even better in Figure 16, in the case of n = 500).

Table 3

Values of ISE, n = 200, d = 2

Method Two-step method 1st method 2nd method 3rd method
Q1 0.0027 0.0052 0.0077 0.0051
me 0.0053 0.0097 0.0115 0.0110
Q3 0.0121 0.0220 0.0187 0.0177

It can be seen that the two-step method takes the first place, as previously. We
should admit that the third method – the one with a parametric start – is also good,
giving results just a little bit worse than the two-step method. The second method –
the adaptive one – takes the next place. The worst is once again the first, simplest
method. Although the median is less than the one in the case of the second and third
method, the interquartile range is essentially greater.
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Fig. 16. Values of ISE for n = 500

Table 4

Values of ISE, n = 500, d = 2

Method Two-step method 1st method 2nd method 3rd method
Q1 0.0008 0.0013 0.0021 0.0013
me 0.0015 0.0025 0.0032 0.0029
Q3 0.0034 0.0053 0.0055 0.0045

The results obtained in this case are comparable, thanks to the large sample. Still,
the two-step method gives the best results, although differences between the methods
are slight.

Consequently, the two-step method has proved to be the best one when compared
with other methods mentioned. It can be recommended for applications.
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