PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Cartan-Monge geometric approach to the generalized characteristics method and its application to the heat equation Ut - Uxx = 0

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The generalized Cartan-Monge type approach to the characteristics method is discussed from the geometric point of view. Its application to the classical one-dimensional linear heat equation Ut - uxx = 0 is presented. It is shown that the corresponding exact solution of the Cauchy problem can be represented in a classical functional-analytic Gauss type form.
Słowa kluczowe
Rocznik
Strony
27--39
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
autor
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Cracow, Poland, goljols@tlen.pl
Bibliografia
  • [1] D.L. Blackmore, Y.A. Prykarpatsky, R.V. Samulyak, The integrabillty of Lie-invariant geometric objects generated by ideals in Garssmann algebras, J. of Nonl. Math. Phys. (1998) 5, 54-67.
  • [2] A.K. Prykarpatsky, I.V. Mykytiuk, Algebraic integrablity of nonlinear dynamical systems on manifolds: classical and quantum aspects, Kluwer Acad. Publishers, the Netherlands, 1998, 553.
  • [3] N.K. Prykarpatska, E. Wachnicki, The characteristics method within the Cartan-Monge approach. Preprint ICTP, IC/2007/035, Trieste, Italy, 2007.
  • [4] O.Ye. Hentosh, M.M. Prytula, A.K. Prykarpatsky, Differential-geometric integrability fundamentals of nonlinear dynamical systems on functional manifolds (The second revised edition), Lviv University Publisher, Lviv, Ukraine, 2006, 408.
  • [5] N.K. Prykarpatska, M. Pytel-Kudela, On the structure of characteristics surfaces related with partial differential equations of first and higher orders, Part 1, Opuscula Mathematica 25 (2005) 2, 299-306.
  • [6] D.L. Blackmore, N.K. Prykarpatska, V.Hr. Samoilenko, E. Wachnicki, M. Pytel-Kudela, The Cartan-Monge geometric approach to the characteristics method for nonlinear partial differential equations of the first and higher order, Nonlinear Oscillations 1 (2007) 10, 26-36.
  • [7] N.K. Prykarpatska, On the structure of characteristic surfaces related with nonlinear partial differential equations of first and higher orders, Part 2, Nonlinear Oscillations 4 (2005) 8, 137-145.
  • [8] N.K. Prykarpatska, D.L. Blackmore, A.K. Prykarpatsky, M. Pytel-Kudela, On the inf-type extremality solutions to Hamilton-Jacobi equations, their regularity properties and some generalizations, Miskolc Mathematical Notes (2003) 4, 157-180.
  • [9] R. Abracham, .7. Marsden, Foundations of mechanics, Cummings, NY, USA, 1978, 806.
  • [10] Yu.A. Mitropolski, N.N. Bogoliubov (Jr.), A.K. Prykarpatsky, V.Hr. Samoilenko, Integrable dynamical systems: Differential-geometric and spectral aspects, Naukova Dumka, Kiev, 1987, 296 [in Russian].
  • [11] F. John, Partial differential equations, Springer, Berlin, 1970, 457.
  • [12] V.I. Arnold, Lectures on partial differential equations, Fazis, Moscow, 1999, 175 [in Russian]
  • [13] Z. Kamont, Partial differential equations of first order, Gdansk University Publisher, Poland, 2003, 303.
  • [14] E. Cartan, Systems of differential forms, Herman, 1934, Paris, 260.
  • [15] M.G. Crandall, H. Ishii, P.L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin of AMS 1 (1992), 1-67.
  • [16] B.R. Weinberg, Asymptotical methods in equations of mathematical physics, Moscow State University Publisher, (1982), 294.
  • [17] L.C. Evans, Partial differential equations, AMB, USA, 1998.
  • [18] O.I. Mokhov, Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations, Topics in Topology and Mathematical Physics, (Ed.), S. P. Novikov, Providence, RI, 1995, 121-151.
  • [19] J.E. Marsden, S. Shkoler, Multi-symplectic geometry, covariant Hamiltonians, and water waves, Math. Proceed. Cambr. Philos. Soc. (1997) 124, 1-23.
  • [20] T.J. Bridges, Multi-symplectic structures and wave propagation, Cambr. Philos. Soc. (1997) 121, 147-190.
  • [21] T.J. Bridges, F.E. Laine-Pearson, Nonlinear counter - propagating waves, multi-symplectic geometry, and the instability of standing waves, SIAM J. Appl. Math. 6 (2004) 64, 2096-2120.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHB-0002-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.