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THE CARTAN-MONGE GEOMETRIC APPROACH
TO THE GENERALIZED CHARACTERISTICS METHOD

AND ITS APPLICATION TO THE HEAT EQUATION
ut − uxx = 0

Abstract. The generalized Cartan-Monge type approach to the characteristics method is
discussed from the geometric point of view. Its application to the classical one-dimensional
linear heat equation ut − uxx = 0 is presented. It is shown that the corresponding exact
solution of the Cauchy problem can be represented in a classical functional-analytic Gauss
type form.
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1. INTRODUCTION.
BACKGROUNDS OF THE GEOMETRIC CARTAN-MONGE APPROACH
TO THE CHARACTERISTICS METHOD

Basic principles of the characteristics method [12, 13, 16, 17] were proposed in the
19th century by A. Cauchy. Later it was substantially developed by G. Monge, who
introduced the geometric notion of characteristic surface, related to partial differential
equations of the first order. The notion of characteristic surface together with related
characteristic fields appeared to be fundamental [3,6,7,10,11,16] for the characteristics
method, whose main essence consists in bringing the problem of studying solutions of
our partial differential equation to the equivalent one of studying some set of ordinary
differential equations. This way of reasoning later succeeded in the development of
the Hamilton-Jacobi theory, making it possible to describe a wide class of solutions
of partial differential equations of the first order in the form

H(x;u, ux) = 0, (1.1)
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where H ∈ C2(Rn+1 × Rn; R), |Hx| 6= 0, | · | is the standard norm in Rn, called a
Hamiltonian function and u ∈ C2(Rn; R) is an unknown function under analysis. The
Hamilton-Jacobi equation (1.1) is coupled with a boundary value condition

u|Γϕ = u0, (1.2)

with u0 ∈ C1(Γϕ; R), defined on some smooth (almost everywhere) hypersurface

Γϕ := {x ∈ Rn : ϕ(x) = 0, |ϕx| 6= 0}, (1.3)

where ϕ ∈ C1(Rn; R) is some smooth function on Rn.
Following G. Monge’s ideas, let us introduce the characteristic surface SH ⊂ M

on the jet-manifold M := J (1)(Rn; R) ' Rn+1 × Rn as

SH := {(x;u, p) ∈M : H(x;u, p) = 0}, (1.4)

where, by definition, p := ux ∈ Rn for all x ∈ Rn. Characteristic surface (1.4) was
described in detail by G. Monge within his geometric approach based on the so-called
G. Monge cones K ⊂ T (Rn+1) of hypersurfaces satisfying condition (1.4) and their
duals K∗ ⊂ T ∗(Rn+1) [4, 7, 16].

The corresponding differential-geometric analysis of G. Monge’s scenario was later
conducted by E. Cartan, who reformulated [1,4,14,16] the geometric picture drown by
G. Monge by means of the related compatibility conditions for dual G. Monge cones
and the notion of an integral submanifold ΣH ⊂ SH , naturally assigned to special
vector fields on the characteristic surface SH . In particular, E. Cartan introduced the
differential 1-form on SH

α(1) := du− 〈p, dx〉 , (1.5)

where 〈·, ·〉 is the usual scalar product in Rn, and demanded its vanishing along
the dual G. Monge cones K∗ ⊂ T ∗(Rn+1), concerning the corresponding integral
submanifold embedding mapping

π : ΣH → SH . (1.6)

This means that for the 1-form π∗α
(1)
1 :

π∗α
(1)
1 := du− 〈p, dx〉 |ΣH

= 0 (1.7)

for all points (x;u, p) ∈ ΣH ⊂ M of a solution surface ΣH , defined in such a way
that K∗ = T ∗(ΣH). An obvious corollary from condition (1.7) is the second Cartan
condition:

dπ∗α
(1)
1 = π∗dα

(1)
1 = 〈dp,∧dx〉 |ΣH

= 0. (1.8)

These two Cartan’s conditions (1.7) and (1.8) should still be augmented with the char-
acteristic surface SH invariance condition for the differential 1-form α

(1)
2 ∈ Λ1(SH),

as
α

(1)
2 := dH|SH

= 0. (1.9)
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Conditions (1.7), (1.8) and (1.9), when imposed on the characteristic surface SH ⊂M ,
make it possible to construct the proper characteristic vector fields on SH , whose
suitable characteristic strips [7, 16] generate the solution surface ΣH searched for.

The above reasoning can naturally be embedded into the classical Cartan theory
[2, 6, 14] of integrable ideals in the Grassmann algebra on differentiable manifolds.
Within this theory, the solution surface ΣH ⊂ SH is exactly the maximal integral
submanifold of the integrable ideal I(SH) ⊂ Λ(SH), generated by the corresponding
one-forms (1.5), (1.9) and two-forms dα(1)

1 ∈ Λ(SH). By construction, this ideal is
closed, that is dI(SH) ⊂ I(SH), owing to the Cartan-Frobenius integrability [4,9,12,14]
criterion.

Below, based on the results of [3,6,16], we will construct the proper characteristic
vector fields vanishing the ideal I(SH) related to partial differential equations of the
first order (1.1) and generating the solution surface ΣH as suitable characteristic strips
related to boundary conditions (1.2) and (1.3), and next make use of the generalized
Cartan-Monge geometric approach [3,6] for partial differential equations of the second
and higher orders.

2. THE CHARACTERISTIC VECTOR FIELDS METHOD:
DIFFERENTIAL-GEOMETRIC ASPECTS
FOR THE FIRST ORDER DIFFERENTIAL EQUATIONS

Let us first consider first order partial differential equation (1.1) on the surface SH ⊂
Rn+1 × Rn and construct a related characteristic vector field KH : SH → T (SH),
given by general expressions

dx/dτ = aH(x;u, p)
dp/dτ = bH(x;u, p)
du/dτ = cH(x;u, p)

 := KH(x;u, p), (2.1)

where τ ∈ R is a suitable evolution parameter and (x;u, p) ∈ SH . Since, owing to
the Cartan-Monge geometric approach, there hold conditions (1.7), (1.8) and (1.9)
along the solution surface ΣH , we can satisfy them applying the interior differentiation
iKH

: Λ(SH) → Λ(SH) [2, 4, 9] in the Grassmann agebra Λ(SH) to the corresponding
differential forms α(1)

1 and dα(1)
1 :

iKH
α

(1)
1 = 0, iKH

dα
(1)
1 = 0. (2.2)

After simple computation one finds that

cH = 〈p, aH〉 , (2.3)

β(1) := 〈bH , dx〉 − 〈aH , dp〉 |SH
= 0

for all points (x;u, p) ∈ SH . The obtained 1-form β(1) ∈ Λ1(SH) must evidently be
compatible with defining invariance condition (1.9) on SH . This means that there
exists a scalar function µ ∈ C1(SH ; R) such that the condition

µ α
(1)
2 = β(1) (2.4)
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holds on SH . This gives rise to the following final relationships:

aH = µ ∂H/∂p, bH = −µ(∂H/∂x+ p ∂H/∂u), (2.5)

which, together with the first equality in (2.3), completes the search for the structure
of the characteristic vector fields KH : SH → T (SH):

KH = (µ ∂H/∂p; − µ(∂H/∂x+ p ∂H/∂u), 〈p, µ ∂H/∂p〉)ᵀ. (2.6)

Now we can pose a suitable Cauchy problem for the equivalent set of ordinary differ-
ential equations (2.1) on SH ⊂M as follows:

dx/dτ = µ ∂H/∂p, x|τ=0
?= x0(x) ∈ Γϕ, x|τ=t(x) = x ∈ Rn\Γϕ,

du/dτ = 〈p, µ ∂H/∂p〉 , u|τ=0 = u0(x0(x)), u|τ=t(x)
?= u(x), (2.7)

dp/dτ = −µ(∂H/∂x+ p ∂H/∂u), p|τ=0 = ∂u0(x0(x))/∂x0,

where the sign ” ?= ” denotes that the function u : Rn → R as a suitable solution of
(1.1) remains to be found and the value x0(x) ∈ Γϕ is still unknown as the intersection
point of the corresponding vector field orbit, starting at a fixed point x ∈ Rn\Γϕ, with
the boundary hypersurface Γϕ ⊂ Rn at the moment of “time” τ = t(x) ∈ R. Thus,
one can formulate the following proposition.

Proposition 2.1. The characteristic surface SH is generated by orbits of suitable
characteristic fields (2.6). The corresponding solutions of inverse Cauchy prob-
lem (2.7) give rise to the exact solutions of Cauchy problem (1.2) and (1.3) for
Hamilton-Jacobi equation (1.1).

As a result, by means of solving corresponding “inverse” Cauchy problem (2.7), one
finds the following exact functional-analytic expression for a solution u ∈ C2(Rn; R)
to boundary value problem (1.2) and (1.3):

u(x) = u0(x0(x)) +
∫ t(x)

0

L̄(x;u, p)dτ, (2.8)

where, by definition,
L̄(x;u, p) := 〈p, µ ∂H/∂p〉 (2.9)

for all (x;u, p) ∈ SH . If the Hamiltonian function H : M → R is nondegenerate,
that is the Hessian Hess H := det(∂2H/∂p2) 6= 0 for all (x;u, p) ∈ SH , then the first
equation in (2.7) can be solved with respect to the variables

p = ψ(x, ẋ;u) (2.10)

for all (x, ẋ) ∈ T ( Rn), where ẋ := dx/dt, and ψ : T ( Rn)× R → Rn is some smooth
mapping. By means of the following classical Lagrangian function expression

L(x, ẋ;u) := L̄(x;u, p)|p=ψ(x,ẋ;u) (2.11)



The Cartan-Monge geometric approach to the generalized characteristics method. . . 31

solution (2.8) takes the form

u(x) = u0(x0(x)) +
∫ t(x)

0

L(x, ẋ;u)dτ, (2.12)

which can be rewritten [14,15] equivalently as

u(x) = inf
x0∈Γϕ

{
u0(x0) +

∫ t(x)

0

L(x(τ ;x0), ẋ(τ ;x0);u(τ ;x0))dτ

}
. (2.13)

Thereby, the following proposition holds.

Proposition 2.2. The solutions of inverse Cauchy problem (2.7) are exactly the
critical points of corresponding infimum problem (2.13).

The functional-analytic form (2.13) is called the inf-type Hopf-Lax representation
and appears to be very important in finding so-called generalized solutions [11,15,17]
of Hamilton-Jacobi equation (1.1).

3. THE CHARACTERISTIC VECTOR FIELDS METHOD:
THE SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS

Let us now consider a boundary problem for the second order partial differential
equation

H(x;u, ux, uxx) = 0, u|Γϕ = u0. (3.1)

Here the solution u∈C2(Rn; R), a generalized “Hamiltonian” function H∈J (2)(Rn; R)
and a boundary condition u0 ∈ C1(Γϕ; R) is defined on some smooth almost every-
where hypersurface

Γϕ := {x ∈ Rn : ϕ(x) = 0, |ϕx| 6= 0},

where ϕ ∈ C1(Rn; R) is a given smooth function on Rn. Putting p(1) :=ux, p(2) :=uxx,
x ∈ Rn, one can similarly construct the related characteristic surface

SH := {(x;u, p(1), p(2)) ∈M : H(x;u, p(1), p(2)) = 0} (3.2)

on the suitable jet manifold M := J (2)(Rn; R) ' Rn+1 × Rn × (Rn ⊗ Rn) within the
Cartan-Monge generalized geometric approach, and a suitable Cartan set of differen-
tial one- and two-forms:

α
(1)
1 := du−

〈
p(1), dx

〉
|ΣH

= 0,

dα
(1)
1 :=

〈
dx,∧dp(1)

〉
|ΣH

= 0,

α
(1)
2 := dp(1) −

〈
p(2), dx

〉
|ΣH

= 0,

dα
(1)
2 :=

〈
dx,∧dp(2)

〉
|ΣH

= 0,

(3.3)
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vanishing upon the corresponding solution submanifold ΣH ⊂ SH . The set of dif-
ferential forms (3.3) should be augmented with the characteristic surface SH ⊂ M
invariance differential 1-form

α
(1)
3 := dH|SH

= 0, (3.4)

vanishing, respectively, upon the characteristic surface SH . The solution space ΣH ⊂
SH is the maximal integral submanifold of the suitably integrable ideal I(SH) ⊂
Λ(SH), generated by the one-forms α(1)

j ∈ Λ(SH), and two-forms dα(1)
j ∈ Λ(SH),

j = 1, 3 (see, [1,2,4,14]). This ideal is, by construction, closed and, thereby, integrable,
owing to the well known Cartan criterion [1, 4, 7, 14].

Let the characteristic vector field KH : SH → T (SH) on SH be given by the
expressions

dx/dτ = aH(x;u, p(1), p(2))
du/dτ = cH(x;u, p(1), p(2))

dp(1)/dτ = b
(1)
H (x;u, p(1), p(2))

dp(2)/dτ = b
(2)
H (x;u, p(1), p(2))

 := KH(x;u, p(1), p(2)) (3.5)

for all (x;u, p(1), p(2)) ∈ SH . To find vector field (3.5) it is necessary that the Cartan
compatibility conditions in the following geometric form are satisfied

iKH
α

(1)
j |ΣH

= 0, iKH
dα

(1)
j |ΣH

= 0 (3.6)

for j = 1, 3, where, as above, iKH
: Λ(SH) → Λ(SH) is the internal derivative of the

Grassmann algebra of differential forms along the vector field KH : SH → T (SH). As
a result of conditions (3.6), one finds that relationships

cH =
〈
p(1), aH

〉
, b

(1)
H =

〈
p(2), aH

〉
,

〈aH , ∂H/∂x〉+ 〈cH , ∂H/∂u〉+
〈
b
(1)
H , ∂H/∂p(1)

〉
+
〈
b
(2)
H , ∂H/∂p(2)

〉 ∣∣∣∣
SH

= 0,

β
(1)
1 :=

〈
aH , dp

(1)
〉
−
〈
b
(1)
H , dx

〉 ∣∣∣∣
SH

= 0,

β
(1)
2 :=

〈
aH , dp

(2)
〉
−
〈
b
(2)
H , dx

〉 ∣∣∣∣
SH

= 0

(3.7)

should be satisfied upon SH identically. It is necessary to mention here that, in
contrast to the first-order equation case discussed in the previous section, we actually
deal with vector field (3.5) defined on the characteristic surface SH ⊂ M , reduced
to some invariant submanifold Mc ⊂ M . It arises naturally from the fifth condition
in (3.7), which cannot be satisfied identically by any suitably chosen vector field
KH : SH → T (SH) defined on the whole surface SH ⊂ M . In particular, we need to
take into account that expressions

aH = µ(1|2)∂H/∂p(2), cH =
〈
p(1), aH

〉
, b

(1)
H =

〈
p(2), aH

〉
,

b
(2)
H = −µ(1|2),∗(∂H/∂x+ p(1)∂H/∂u+

〈
p(2), ∂H/∂p(1)

〉
)

(3.8)
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identically satisfy for an arbitrary smooth tensor field µ(1|2) : SH → Rn ⊗ Rn(n+1)/2,
the first four conditions in (3.7), while the fifth one can be satisfied on some naturally
defined invariant submanifold Mc ⊂ M only, serving as a description of suitable
boundary data to problem (3.1).

The following proposition characterizes the second order partial differential equa-
tion case and the way of constructing its exact solutions.

Proposition 3.1. The characteristic surface SH defined by (3.3) is generated by
orbits of suitable characteristic fields (3.5). The corresponding exact solutions of
second order equation (3.1) are given by solutions of the suitable inverse Cauchy
problem similar to (2.7) posed for the set of ordinary differential equations (3.5).

A tensor field µ(1|2) : SH → Rn ⊗ Rn(n+1)/2 can be both degenerate or not with
respect to the following definition.

Definition 3.2. It is said that a tensor µ(1|k) ∈ Rn ⊗ (Rm)k, m,n, k ∈ Z+, is
nondegenerate with respect to the problem H(x, t;u, p) = 0 if rank

(
∂

∂p(2)
µ(1|k) ∂H

∂p(2)

)
=

min(km, n). In the other case, we say that it is degenerate.

Having now satisfied relationships (3.7) on the submanifold Mc ⊂ M , we can
determine a suitable vector field KH : S(c)

H → T (S(c)
H ) on the surface S(c)

H := SH ∩
Mc and, thereby, construct functional-analytic solutions of our partial differential
equation (3.1) of the second order via solving the equivalent boundary problem for
the set of ordinary differential equations (3.5) on the characteristic surface S(c)

H ⊂ SH .
This means that to exactly solve the second order partial differential equation (3.1)
we need to solve the suitable Cauchy inverse problem similar to (2.7) for the set of
ordinary differential equations (3.6).

A quite simple but not trivial example of second order problem (3.1) will be
analyzed in detail in the following section.

4. EXAMPLE: THE HEAT EQUATION ut − uxx = 0

Let us now consider a Cauchy problem for the heat equation in R × R+, that is the
equation

ut − uxx = 0, u|t=0 = u0, (4.1)

where (x, t) ∈ R×R+ and u0 is a smooth function in the Sobolev spaceW (2)
2 (R; R). To

apply the generalized characteristics method devised in [5,7,8,17] and described above,
let us rewrite equation (4.1) in the jet-manifold coordinates M := J2(R×R+; R), that
is in the form

p0,1 − p2,0 = 0, (4.2)

where pi,j := ∂i+ju/∂xi∂tj , 1 ≤ i + j ≤ 2. Now we can define the generalized
“Hamiltonian” function:

H(x, t;u, p) := p0,1 − p2,0, p := (p(1), p(2)) := (p0,1, p1,0, p2,0, p1,1, p0,2) ∈ R5, (4.3)
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that generates [5, 7, 18,20,21] the characteristic vector field

(
dx/dτ
dt/dτ

)
= µ(1|2) ∂H

∂p(2)
,

dp(2)/dτ = −µ(1|2),∗

(
∂H
∂x + p1,0

∂H
∂u + p1,1

∂H
∂p0,1

∂H
∂t + p0,1

∂H
∂u + p1,1

∂H
∂p1,0

)
, (4.4)

dp0,1/dτ = p1,1dx/dτ + p0,2dt/dτ,

dp1,0/dτ = p2,0dx/dτ + p1,1dt/dτ,

du/dτ = p1,0dx/dτ + p0,1dt/dτ

on the manifold M for all τ ∈ R+. Here µ(1|2) ∈ C1(M ; R2 ⊗ R3) denotes the
proper smooth tensor field on M which is at our disposal during the construction
of characteristic vector field (4.4). Vector field (4.4) a priori satisfies the invariance
condition for the hypersurface:

SH := {(x, t;u, p(1), p(2)) ∈M : H(x, t;u, p) = 0}, (4.5)

that is, for all τ ∈ R+ the equality

d

dτ
H(x, t;u, p) = 0 (4.6)

holds. The last three equalities in (4.4) are the Cartan ordinary compatibility condi-
tions. Below we apply the generalized characteristics method, developed in [5, 7], to
construct solutions of Cauchy problem (4.1).

Let us rewrite equations (4.4) in a more extensive form:


dx/dτ
dt/dτ
dp0,1/dτ
dp1,0/dτ
du/dτ

 =


µ1|2,0

∂H
∂p2,0

+
µ2|2,0

∂H
∂p2,0

+
µ1|1,1

∂H
∂p1,1

+
µ2|1,1 ∂H

∂p1,1
+

µ1|0,2
∂H
∂p0,2

µ2|0,2
∂H
∂p0,2

p1,1dx/dτ+
p2,0dx/dτ+
p1,0dx/dτ+

p0,2dt/dτ
p1,1dt/dτ
p0,1dt/dτ

 , (4.7)

and the compatibility condition

dp1,1

dτ
dx− dx

dτ
dp1,1 +

dp0,2

dτ
dt− dt

dτ
dp0,2 = 0. (4.8)

The last condition defines, in the unique way, the functional submanifold Mc⊂M of
the Cauchy conditions for (4.1), a priori invariant for vector field (4.7). Now from ex-
pression (4.3) we obtain the following system of ordinary differential equations on Mc:



The Cartan-Monge geometric approach to the generalized characteristics method. . . 35

dx
dτ = −µ1|2,0,

dt
dτ = −µ2|2,0,

dp2,0
dτ = −µ1|2,0p1,1 − µ2|2,0p0,2,
dp1,1
dτ = −µ1|1,1p1,1 − µ2|1,1p0,2,
dp0,2
dτ = −µ1|0,2p1,1 − µ2|0,2p0,2,

dp0,1
dτ = −µ1|2,0p1,1 − µ2|2,0p0,2,
dp1,0
dτ = −µ1|2,0p2,0 − µ2|2,0p1,1,
du
dτ = −µ1|2,0p1,0 − µ2|2,0p0,1.

(4.9)

For convenience and some analytical simplifications, put now µ1|1,1 = 0 = µ2|1,1,
µ2|2,0 = −1, µ1|0,2 = 0 = µ2|0,2, and µ1|2,0 = −c ∈ R. Then we obtain

dx
dτ = c, dt

dτ = 1, dp2,0
dτ = cp1,1 + p0,2,

dp1,1
dτ = 0, dp0,2

dτ = 0, dp0,1
dτ = cp1,1 + p0,2,

dp1,0
dτ = cp2,0 + p1,1,

du
dτ = cp1,0 + p0,1, dp1,1 = 0,

(4.10)

hence the values p1,1 = p̄1,1 ∈ R, p0,2 = p̄0,2 ∈ R are constant for all τ ∈ R,
and the value p1,1 is constant for all (x, t) ∈ R × R+, which is compatible with
others conditions. It means that vector field (4.10) is defined on the submanifold
Mc := {p1,1 = const} ⊂M . Solving now system (4.10) on Mc, we find:

x = y + cτ, x|τ=0 = y(x, t) ∈ R, x|τ=t = x ∈ R, p̄0,1 = p̄2,0,

p0,1 = (cp̄1,1 + p̄0,2)τ + p̄0,1, p2,0 = (cp̄1,1 + p̄0,2)τ + p̄2,0,
(4.11)

and
p1,0 = c(cp̄1,1 + p̄0,2)τ2/2 + (cp̄2,0 + p̄1,1)τ + p̄1,0. (4.12)

So for the solution u : R×R+ → R, from (4.11) and (4.12), we obtain the expression

u(x, t) = u0(y(x, t)) +
∫ t

0

[cp1,0(τ) + p0,1(τ)]dτ =

= u0(y(x, t)) + (c3p̄1,1 + c2p̄0,2)t3/6+

+ (c2p̄2,0 + 2cp̄1,1 + p̄0,2)t2/2 + (cp̄1,0 + p̄2,0)t,

(4.13)

where c = (x − y(x, t))/t for all t ∈ R+. Since solution (4.13) includes the param-
eters p̄0,1, p̄1,0, p̄1,1, p̄2.0 and p̄0,2 ∈ R, we find them from the initial condition and
expressions (4.12) and (4.11) taking τ = 0:

p̄0,1 = p̄2,0 = u
(2)
0 (y), p̄0,2 = u

(4)
0 (y),

p̄1,1 = u
(3)
0 (y), p̄1,0 = u

(1)
0 (y)

(4.14)

in the point y = y(x, t) ∈ R for all t ∈ R+, x ∈ R. Now from (4.14) and (4.13) we
obtain the following expression for the solution u : R× R+ → R:

u(x, t; c) = u0(y) +
[c3t3

3!
u

(3)
0 (y) +

c2t3

6
u

(4)
0 (y)

]
+

+
[c2t2

2
u

(2)
0 (y) + ct2u

(3)
0 (y) +

t2

2
u

(4)
0 (y)

]
+ [ctu(1)

0 (y) + tu
(2)
0 (y)],

(4.15)
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where c ∈ R is an arbitrary parameter. It is the solution of equation (4.1) for all
(x, t) ∈ R×R+. We can now check that expression (4.15) is the solution of equation
(4.1) and satisfies, for all x ∈ R, the initial condition u0(x) = limt→+0 u(x, t) ∈Mc.
Notice that expression (4.15), like the solution of (4.1) on the submanifold Mc, de-
pends, in the general case, on a parameter c ∈ R, which we can verify directly by
differentiation:

du(x, t; c)/dc = O(|c|4), (4.16)

where, for convenience, we put c→ 0. Result (4.16) is an obvious consequence of the

fact that the tensor field µ(1|2) =
0@ c 0 0

1 0 0

1A is strongly degenerate and compability

condition (4.8) does not define a sufficiently large submanifold Mc ⊂M of the initial
conditions for problem (4.1), while the existence of the submanifold is crucial in finding
solutions from the last expression in (4.4).

One can also prove that for every fixed n ∈ Z+ we may in the proper way choose
the nondegenerate tensor µ(1|2) such that if c→ 0 then the equality

du(x, t; c)/dc = O(|c|n), (4.17)

holds. This means that the function u ∈ C(∞)(R×R+; R) found above really does not
depend on the parameter c ∈ R. (It also means that vector field (4.4), constructed
above, fully served the purpose of extending our solution u0 ∈ C(∞)(Γϕ; R) from
the initial points (“boundary”) of the form (x, 0) ∈ R × {0} := Γϕ onto the points
(x, t) ∈ (R× R+)\Γϕ).

Thus, one can easily find the solution of problem (4.1) by calculating the limit of
(4.15) as c→ 0, that is

u(x, t) = lim
c→0

u(x, t; c) = u0(x) +
t

1!
u

(2)
0 (x) +

t2

2!
u

(4)
0 (x) +

t3

3!
u

(6)
0 (x)+

+
t4

3!
u

(8)
0 (x) +

t5

4!
u

(10)
0 (x) + . . . =

=
( ∑
k∈Z+

1
k!

(t
∂2

∂x2
)k
)
u0(x) = exp(t

∂2

∂x2
)u0(x) =

=
1√
2π

exp(t
∂2

∂x2
)
∫

R
û0(y) exp(ixy)dy =

=
1
2π

∫
R
û0(y) exp(ixy − y2t)dy =

=
1
2π

∫
R
u0(z)dz

∫
R

exp(ixy − izy − y2t)dy =

=
1√
2πt

∫
R

exp[
−(x− z)2

4t
]u0(z)dz,

(4.18)

which is the classical, well-known [17] exact solution to heat equation (1.1) in the
standard Gauss form.
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5. CONCLUSIONS

We need to make some remarks on the proposed generalized characteristics method
in the case of our linear heat equation (4.1). One of preconditions of the effective
application of this method to the second order partial differential equation in the
general form H(x, t; p) = 0 is that the tensor µ(1|2) should be nondegenerate, but
the choice of this tensor is often very important for the construction of vector field
(4.4), which leads to the final expression of the solution in an analytical form on the
submanifold Mc ⊂M .

The second important fact featuring the general characteristics method is enabling
the representation of solutions in the exact Hopf-Lax type form, which is a simple
consequence of the suitable representation of solutions to proper Hamiltonian vector
fields in the variational Lagrangian form. For partial differential equations of the
first order (H(x, t;u, p) = 0) this representation is natural and almost obvious, but in
the case of nonlinear partial differential equations of the second (or higher) orders the
representation in the Lagrangian form is possible only when the proper general system
of Hamiltonian type vector fields can be represented in the analogical variational
Lagrange-Ostrogradski type form with higher derivatives. The necessary condition
for the existence of this form is the possibility of representation of the solution to our
equation in the form of some function with dual quantity of independent variables,
but today, the effective criterium is quite complicated.

Thereby, the generalization of the Monge-Cartan characteristics method onto non-
linear partial differential equations of higher orders is a quite natural consequence of
the related inverse Cauchy problem analysis of the associated characteristic Hamilto-
nian type vector fields on the basic invariant submanifold.
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