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VERTICES BELONGING TO ALL OR TO NO MINIMUM

LOCATING DOMINATING SETS OF TREES

Abstract. A set D of vertices in a graph G is a locating-dominating set if for every two
vertices u, v of G \ D the sets N(u) ∩ D and N(v) ∩ D are non-empty and different. In this
paper, we characterize vertices that are in all or in no minimum locating dominating sets
in trees. The characterization guarantees that the γL-excellent tree can be recognized in
a polynomial time.
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1. INTRODUCTION AND PRELIMINARY RESULTS

For a simple graph G = (V,E), the open neighborhood of a vertex v ∈ V is N(v) =
{u ∈ V | uv ∈ E} and the closed neighborhood is N [v] = N(v) ∪ {v}. A set D ⊆ V
is a dominating set if for each vertex v ∈ V − D, N(v) ∩ D 6= ∅. The domination
number γ(G) is the minimum cardinality of a dominating set in G, see [2].

We are interested in a variation of domination in graphs. A set D ⊆ V is a
locating-dominating set (LDS) if it is dominating and every two vertices x, y of V \D
satisfy N(x)∩D 6= N(y)∩D. The locating-domination number γL(G) is the minimum
cardinality of a locating-dominating set. Locating-domination was introduced by
Slater [9,10]. Moreover, since every locating-dominating set is a dominating set, then
every graph G satisfies the inequality

γ(G) ≤ γL(G).

For any parameter µ(G) associated with a graph property P, we refer to a set of
vertices with Property P and cardinality µ(G) as a µ(G)-set. A graph G is called a
µ(G)-excellent graph if every vertex of G is contained in a µ(G)-set.

For more details on domination in graphs, see the monographs by Haynes, Hedet-
niemi and Slater [5, 6] and also [7].
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Many researchers have been interested in characterizing the vertices of G that are
in all or in no set with the cardinality µ(G). Indeed, Hammer et al. [4] have char-
acterized those vertices in a graph for independent sets with maximum cardinalities,
Mynhardt [8] has characterized the vertices in all or in no minimum dominating sets
of trees, Cockayne et al. [3] have characterized the set of vertices contained in all or
in no total dominating sets of trees and Blidia et al. [1] have characterized the set of
vertices contained in all or in no minimum double dominating sets of trees.

In this paper, we investigate vertices belonging to all or to no minimum locat-
ing dominating sets of a tree and we deduce a polynomial algorithm to recognize
a γL-excellent tree.

For this purpose, we introduce the following notation.
For a tree T we define the sets AL(T ) and NL(T ) by

AL(T ) = {v ∈ V (T ) | v is in every γL(T )-set} and

NL(T ) = {v ∈ V (T ) | v is in no γL(T )-set}.

The degree of a vertex v, denoted by degG(v), is the number of vertices adjacent
to v and the diameter of G is diam(G) = max{d(x, y) | x, y ∈ V (G)} where d(x, y)
is the length of the shortest path between x and y. Specifically, for a vertex v in
a rooted tree T , we let C(v) and D(v) denote the set of children and descendants,
respectively, of v, and we define D[v] = D(v) ∪ {v}. The maximal subtree at v is the
subtree of T induced by D[v]; it is denoted by Tv. A leaf (or pendent vertex) of T is
a vertex of degree one, while a support vertex of T is a vertex adjacent to a leaf. We
denote the set of leaves and support vertices set of T by L(T ) and S(T ), respectively.
Let T be a rooted tree. We denote by L(v) the set of leaves of Tv distinct from v, that
is, L(v) = D(v) ∩ L(T ). A vertex of degree at least three is called a branch vertex.
We denote by B(T ) the set of all branch vertices of T . We also define the sets

Lj(v) = {u ∈ L(v) | d(u, v) ≡ j (mod 5)}, where j = 0, 1, 2, 3, 4.

A path on n vertices is denoted by Pn.
Below we give some straightforward observations.

Observation 1. If T is a tree of diameter at least 2 and y a vertex of L(T ), then
there is a γL(T )-set that does not contain y.

Observation 2. In a nontrivial path Pn, L(Pn) ⊆ NL(Pn) if and only if
n ≡ 0 (mod 5).

The following lemma will be used in the next section.

Lemma 1. Let T ′ be a tree and v a vertex of V (T ′). Let u be a vertex of T ′ such
that u 6= v. Let T be the tree obtained from T ′ by adding a path P5 = x1x2x3x4x5 and
the edge ux1. Then:

(1) γL(T ) = γL(T ′) + 2,
(2) v ∈ AL(T ′) if and only if v ∈ AL(T ),
(3) v ∈ NL(T ′) if and only if v ∈ NL(T ).
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Proof. Let T be the tree obtained from T ′ by adding a path P5 = x1x2x3x4x5 and
the edge ux1 where u 6= v.

(1) Every γL(T ′)-set can be extended to an LDS of T by adding the vertices x2

and x4, so γL(T ) ≤ γL(T ′)+2. On the other hand, let S be a γL(T )-set. If u ∈ S, then
clearly |S ∩ P5| = 2 and S′ = S−S∩P5 is an LDS of T ′ with |S′| = γL(T )−2 ≥ γL(T ′).
Otherwise (u /∈ S), if x1 /∈ S, then clearly |S ∩ P5| = 2 and S′ = S − S ∩ P5 is an
LDS of T ′ with |S′| = γL(T ) − 2 ≥ γL(T ′). If x1 ∈ S, in this case |S ∩ P5| = 3, let
S′ = (S − (S ∩ P5))∪{u} then S′ is an LDS of T ′ with |S′| = γL(T )−3+1 = γL(T )−2.
So in each case we have γL(T ) ≥ γL(T ′) + 2. Therefore, γL(T ) = γL(T ′) + 2.

(2) Assume that v /∈ AL(T ′) and let S′ be a γL(T ′)-set which does not contain
v. Then S = S′ ∪ {x1, x2} is a γL(T )-set that does not contain v, and so v /∈ AL(T ).
Conversely, assume that v ∈ AL(T ′) and let S be any γL(T )-set with S′ = S ∩V (T ′).
If u ∈ S, then S′ is an LDS of T ′ with |S′| = |S| − 2. Hence, S′ is a γL(T ′)-set with
v ∈ S′ ⊂ S. If u /∈ S, then, as discussed in (1), S ′ is an LDS of T ′ with |S′| = |S|− 2.
Hence, S′ is a γL(T ′)-set with v ∈ S′, and v ∈ S since v 6= u. Therefore, v ∈ AL(T ).

(3) Suppose that v /∈ NL(T ′). Let S′ be a γL(T ′)-set that contains v. Clearly,
S′ ∪ {x2, x4} is a γL(T )-set containing v so v /∈ NL(T ). Conversely, suppose that
v ∈ NL(T ′) and let S be any γL(T )-set with S′ = S ∩ V (T ′). Then, as discussed in
(1), S′ is an LDS of T ′ with |S′| = |S| − 2. Hence, S′ is a γL(T ′)-set with v /∈ S′, and
v /∈ S since v 6= u. We deduce that v ∈ NL(T ).

2. PRUNING OF A TREE

In order to characterize the sets AL(T ) and NL(T ) for any nontrivial tree T , we will
use a technique called tree pruning, introduced by Mynhart [8] and later used by
Cockayne, Henning and Mynhardt [3].

Let v be a vertex of a nontrivial tree T . Using the process described below,
with respect to the root v, on every branch vertex (vertex of B(T )), the tree Tv is
transformed into another tree Tv, called the pruning of Tv, in which every vertex
different from v has degree at most two. As a consequence, if a vertex v is in AL(T )
or NL(T ), then it has the same properties with respect to Tv.

Let T = Tv be a nontrivial tree rooted at a vertex v. If every vertex u 6= v has
degree at most two, then Tv = Tv. Otherwise, let w be a branch vertex (vertex of
B(T ) with degree at least 3) at maximum distance from v. Then apply the following
process:

(a) If
∣

∣L1(w)
∣

∣ ≥ 1, delete D(w) and attach a P1 to w.

(b) If
∣

∣L1(w)
∣

∣ = 0 and
∣

∣L3(w)
∣

∣ ≥ 1, delete D(w) and attach a P3 to w.

(c) If
∣

∣L1(w) ∪ L3(w)
∣

∣ = 0 and
∣

∣L4(w)
∣

∣ ≥ 1, delete D(w) and attach a P4 to w.

(d) If
∣

∣L1(w) ∪ L3(w) ∪ L4(w)
∣

∣ = 0 and
∣

∣L2(w)
∣

∣ ≥ 2, delete D(w) and attach a P4

to w.
(e) If

∣

∣L1(w) ∪ L3(w) ∪ L4(w)
∣

∣ = 0 and
∣

∣L2(w)
∣

∣ = 1, delete D(w) and attach a P2

to w.
(f) If

∣

∣L1(w) ∪ L2(w) ∪ L3(w) ∪ L4(w)
∣

∣ = 0,
∣

∣L0(w)
∣

∣ ≥ 2, delete D(w) and attach
a P5 to w.
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To illustrate this technique, we consider the tree of Figure 1(a) where x, u, s, w, y
and z are the branch vertices of T . At this step, z is the branch vertex at maximum
distance from v, since

∣

∣L1 (z)
∣

∣ = 2, so we delete D(w) and attach a path P1 at z (see
Figure 1(b)).

Now there remain five branch vertices: x, u, s, w, y. The vertex y is at distance
two from v. Since

∣

∣L3 (y)
∣

∣ = 1 and
∣

∣L1(y)
∣

∣ = 0, we delete D(y) and attach a path P3

at y (see Figure 1(c)). All the remaining branch vertices s, u, w, x are at distance one
from v. Since (

∣

∣L1 (x)
∣

∣ = 0,
∣

∣L3 (x)
∣

∣ = 0 and
∣

∣L4 (x)
∣

∣ = 1), (
∣

∣L1 (u)
∣

∣ = 0,
∣

∣L3 (u)
∣

∣ = 0

and
∣

∣L4 (u)
∣

∣ = 1), (
∣

∣L1 (u)
∣

∣ = 0 and
∣

∣L3 (u)
∣

∣ = 1) and (
∣

∣L1 (w)
∣

∣ = 1). So, we delete
D (x) and attach a path P4 at x, delete D (u) and attach a path P4 at u, delete D (s)
and attach a path P3 at s, and finally delete D (w) and attach a path P1 at w. Now
the vertex v is the unique branch vertex, so we have obtained the pruning Tv of Tv,
where degTv

(u) ≤ 2 for every u ∈ V
(

Tv

)

− {v} (see Figure 1(d)).
By Lemma 1, we may delete the two P5 attached at v (with x and u) and finally

we obtain the pruning Tv
∗

of Tv where degTv

∗(u) ≤ 2 for every u ∈ V
(

Tv
∗
)

− {v}

and d(u, v) ≤ 4 (see Figure 1(e)).
Since

∣

∣L1 (v) ∪ L3 (v)
∣

∣ = 0 and
∣

∣L2 (v) ∪ L4 (v)
∣

∣ = 3, then by Lemma 3,
v ∈ NL (Tv), and by Corollary 1, T is not a γL-excellent tree.

v

wsu

y

x

(d)

v

z

wsu

y

x

(a)

v

z

wsu

y

x

(b)

v

wsu

y

x

(c)

v

ws

(e)

Fig. 1
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Lemma 2. Let T be a tree rooted at a vertex v and w a branch vertex at maximum
distance from v (w 6= v). Set k1 =

∣

∣L1(w)
∣

∣, k2 =
∣

∣L2(w)
∣

∣, k3 =
∣

∣L3(w)
∣

∣, k4 =
∣

∣L4(w)
∣

∣, and k5 =
∣

∣L0(w)
∣

∣. If:

(a) k1 ≥ 1, let T ′ be the tree obtained from T by deleting D(w) and attaching a P1

to w.
(b) k1 = 0 and k3 ≥ 1, let T ′ be the tree obtained from T by deleting D(w) and

attaching a P3 to w.
(c) k1 + k3 = 0 and k4 ≥ 1, let T ′ be the tree obtained from T by deleting D(w) and

attaching a P4 to w.
(d) k1 + k3 + k4 = 0 and k2 ≥ 2, let T ′ be the tree obtained from T by deleting D(w)

and attaching a P4 to w.
(e) k1 + k3 + k4 = 0 and k2 = 1, let T ′ be the tree obtained from T by deleting D(w)

and attaching a P2 to w.
(f) k1 + k2 + k3 + k4 = 0 and k5 ≥ 2, let T ′ be the tree obtained from T by deleting

D(w) and attaching a P5 to w.

Then in each case:

(a) v ∈ AL(T ′) if and only if v ∈ AL(T ).
(b) v ∈ NL(T ′) if and only if v ∈ NL(T ).

Proof. For the sake of simplicity with use of Lemma 1, the tree Tv will be simplified by
replacing any w-x path with a w-x path of length j, where j = 1, 2, 3, 4, 5 if x ∈ Li(w)
for i = 1, 2, 3, 4, 0 respectively.

Let ai, bjcj , dkekfk, glhlplql and rmsmtmumxm be paths of order 1, 2, 3, 4, 5 re-
spectively, attached to w, where ai, cj , fk, ql, xm ∈ D(w) ∩ L(T ), for 0 ≤ i ≤ k1,
0 ≤ j ≤ k2, 0 ≤ k ≤ k3, 0 ≤ l ≤ k4 and 0 ≤ m ≤ k5.
Case (a). k1 ≥ 1.

Let T ′ = T − (D(w) − {a1}).
Every γL(T ′)-set can be extended to an LDS of T by adding

X = {ai; i ∈ {2, . . . , k1}} ∪ {bj , j ∈ {1, . . . , k2}} ∪ {ek; k ∈ {1, . . . , k3}}∪

∪ {gl, pl; l ∈ {1, . . . , k4}} ∪ {sm, um; m ∈ {1, . . . , k5}} .

Let D′ be an arbitrary γL(T ′)-set. We may assume that w ∈ D′; otherwise, we replace
a1 with w, then D = D′∪X is an LDS of T , so there is γL(T ) ≤ |D′|+ |X| = γL(T ′)+
(k1−1)+k2+k3+2k4+2k5. On the other hand; let D be an arbitrary γL(T )-set, then
D′ = D∩T ′ is an LDS of T ′. There follows |D ∩ D(w)| ≥ (k1−1)+k2+k3+2k4+2k5 =
|X| when a1 /∈ D or |D ∩ D(w)| > (k1 − 1) + k2 + k3 + 2k4 + 2k5 = |X| when a1 ∈ D
(i.e., all ai ∈ D), so when a1 /∈ D, D′ = D −D ∩D(w) and when a1 ∈ D,D′ = (D −
D∩D(w))∪{a1}. In each case, γL(T ′) ≤ |D′| ≤ γL(T )−(k1−1)−k2−k3−2k4−2k5.
Thus γL(T ) = γL(T ′) + (k1 − 1) + k2 + k3 + 2k4 + 2k5.

(1) Suppose that v ∈ AL(T ′) and let D be an arbitrary γL(T )-set. We have
above seen that either D′ = D − (D ∩ D(w)) if w ∈ D and a1 /∈ D or D′ = (D −
(D ∩ D(w)))∪ {a1} if w /∈ D and a1 ∈ D (that is D′ = D ∩ T ′) is a γL(T ′)-set. Since
v ∈ D′ ⊂ D, then v ∈ AL(T ).
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Conversely, suppose that v ∈ AL(T ) and let S′ be a γL(T ′)-set. We know that S′

can be extended to a γL(T )-set S by adding the set X. So, S = S ′∪X is a γL(T )-set.
Since v ∈ S and v /∈ D [w] , v ∈ AL(T ′).

(2) Suppose now that v ∈ NL(T ′) and let D be an arbitrary γL(T )-set. As seen
above, D′ = D ∩T ′ is a γL(T ′)-set. Since v /∈ D′ and v /∈ D [w], then v /∈ D and thus
v ∈ NL(T ). Conversely, assume that v ∈ NL(T ) and let S′ be a γL(T ′)-set. Then S′

can be extended to a γL(T )-set S by adding the set X, and since v /∈ S and v /∈ D [w],
then v /∈ S′ and so v ∈ NL(T ′).
Case (b). k1 = 0 and k

3
≥ 1.

Let T ′ = T − (D(w) − {d1, e1, f1}).
Every γL(T ′)-set can be extended to an LDS of T by adding

X = {bj , j ∈ {1, . . . , k2}} ∪ {ek; k ∈ {2, . . . , k3}}∪

∪ {gl, pl; l ∈ {1, . . . , k4}} ∪ {sm, um; m ∈ {1, . . . , k5}} .

Let D′ be an arbitrary γL(T ′)-set. Without loss of generality, we may assume that
D′ contains e1 and w; otherwise, we replace f1 with e1 in the first case and d1 (or
f1) with w in the second case. So γL(T ) ≤ γL(T ′) + k2 + (k3 − 1) + 2k4 + 2k5.
On the other hand, let D be an arbitrary γL(T )-set. We may assume that w ∈ D;
otherwise, we replace d1 or f1 with w and take e1 in D ; then D′ = D ∩ T ′ is an LDS
of T ′ and clearly |D ∩ (D(w) − {d1, e1, f1})| ≥ k2 + (k3 − 1) + 2k4 + 2k5 = |X|, then
γL(T ′) ≤ |D′| = |D|− |D ∩ (D(w) − {d1, e1, f1})| ≤ γL(T )−k2− (k3−1)−2k4−2k5.
Thus γL(T ) = γL(T ′) + k2 + (k3 − 1) + 2k4 + 2k5.

In this case and also in cases (c), (d), (e) and (f), the proofs of part (1) and (2)
are similar to the proof of “case (a) (part (1) and part (2))”. So the similar proofs are
omitted.
Case (c). k1 + k3 = 0 and k4 ≥ 1.

Let T ′ = T − (D(w) − {g1, h1, p1, q1}).
Every γL(T ′)-set can be extended to an LDS of T by adding

X = {bj , j ∈ {1, . . . , k2}} ∪ {gl, pl; l ∈ {2, . . . , k4}} ∪ {sm, um; m ∈ {1, . . . , k5}} .

Let D′ be an arbitrary γL(T ′)-set. Then γL(T ) ≤ γL(T ′) + k2 + 2(k4 − 1) + 2k5.
On the other hand, let D be an arbitrary γL(T )-set. Without loss of generality, we
may assume that D contains g1 and p1; otherwise, we replace h1 with g1 and q1 with
p1, then D′ = D ∩ T ′ is an LDS of T ′ and clearly |D ∩ (D(w) − {g1, h1, p1, q1})| ≥
k2 + 2(k4 − 1) + 2k5 = |X|, so γL(T ′) ≤ |D′| = |D| − |D ∩ (D(w) − {g1, h1, p1, q1})| ≤
γL(T ) − k2 − 2(k4 − 1) − 2k5. Thus γL(T ) = γL(T ′) + k2 + 2(k4 − 1) + 2k5.

Case (d). k1 + k3 + k4 = 0 and k2 ≥ 2.
Let T ′ = T − (D(w) − {b1, c1, b2, c2}) and let T ′′ = T ′ − {b1, c1, b2, c2} + P4, that

is we replace {b1, c1, b2, c2} by attaching P4 to w, where P4 = b1c1b2c2.
Clearly, every γL(T ′)-set of T ′is a γL(T ′′)-set of T ′′ and can be extended to an

LDS of T by adding

X = {bj , j ∈ {3, . . . , k2}} ∪ {sm, um; m ∈ {1, . . . , k5}} .
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Let D′ be an arbitrary γL(T ′)-set. So γL(T ) ≤ γL(T ′) + (k2 − 2) + 2k5. On the other
hand, let D be an arbitrary γL(T )-set. Without loss of generality, we may assume
that D contains s1 and u1; otherwise, we replace r1 with w and take s1 and u1 in
D. Then D′ = D ∩ T ′ is an LDS of T ′ and clearly |D ∩ (D(w) − {b1, c1, b2, c2})| ≥
(k2 − 2) + 2k5 = |X|. So γL(T ′) ≤ |D′| = |D| − |D ∩ (D(w) − {b1, c1, b2, c2})| ≤
γL(T ) − (k2 − 2) − 2k5. Thus γL(T ) = γL(T ′) + (k2 − 2) + 2k5.
Case (e). k1 + k3 + k4 = 0 and k2 = 1.

Let T ′ = T − (D(w) − {b1, c1}).
Every γL(T ′)-set can be extended to an LDS of T by adding

X = {sm, um; m ∈ {1, . . . , k5}} .

Let D′ be an arbitrary γL(T ′)-set. So γL(T ) ≤ γL(T ′) + |X| = γL(T ′) + 2k5. On
the other hand, let D be an arbitrary γL(T )-set. Without loss of generality, we may
replace rj with w and take sj , uj in D if w /∈ D and rj ∈ D, then D′ = D ∩ T ′

is an LDS of T ′ and clearly |D ∩ (D(w) − {b1, c1})| ≥ |X| = 2k5. So γL(T ′) ≤
|D′| = |D| − |D ∩ (D(w) − {b1, c1})| ≤ γL(T ) − |X| = γL(T ) − 2k5. Thus γL(T ) =
γL(T ′) + |X| = γL(T ′) + 2k5.
Case (f). k1 + k2 + k3 + k4 = 0 and k5 ≥ 2.

Let T ′ = T − (D(w) − {r1, s1, t1, u1, x1, }).
Every γL(T ′)-set can be extended to an LDS of T by adding

X = {sm, um; m ∈ {2, . . . , k5}} .

Let D′ be an arbitrary γL(T ′)-set. So we have γL(T )≤γL(T ′)+|X|=γL(T ′)+2(k5−1).
On the other hand, let D be an arbitrary γL(T )-set. Without loss of generality, we
may replace rj with w and take sj , uj in D if w /∈ D and rj ∈ D, then D′ = D∩T ′ is
an LDS of T ′ and clearly |D ∩ (D(w) − {r1, s1, t1, u1, x1, })| ≥ |X| = 2(k5 − 1), then
γL(T ′) ≤ |D′| = |D| − |D ∩ (D(w) − {r1, s1, t1, u1, x1, })| ≤ γL(T ) − 2(k5 − 1). Thus
γL(T ) = γL(T ′) + |X| = γL(T ′) + 2(k5 − 1).

3. CHARACTERIZATIONS

The following lemma gives a necessary and sufficient condition for the special vertex
v of a nontrivial tree Tv to be in AL(T ) (resp. in NL(T )).

Lemma 3. Let T be a nontrivial tree rooted at a vertex v such that degT (u) ≤ 2 for
every vertex u ∈ V (T ) − {v}. Then:

1) v ∈ AL(T ) if and only if either (
∣

∣L3(v)
∣

∣ ≥ 2), or (
∣

∣L3(v)
∣

∣ = 1 and
∣

∣L1(v)
∣

∣ ≥ 1).

2) v ∈ NL(T ) if and only if (
∣

∣L3(v) ∪ L1(v)
∣

∣ = 0 and
∣

∣L2(v) ∪ L4(v)
∣

∣ ≥ 2) or

(
∣

∣L3(v) ∪ L2(v) ∪ L1(v)
∣

∣ = 0 and
∣

∣L4(v)
∣

∣ = 1)).

Proof. Clearly if L(v) = L0(v), that is all the vertices of T are at distance j from

v, then j ≡ 0 (mod 5). In this case we may obtain T from Tv
∗

= P6 by applying

Lemma 1 and then v /∈ AL(Tv
∗

) ∪NL(Tv
∗

), therefore v /∈ AL(T ) ∪NL(T ).
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So now we suppose that L(v) 6= L0(v). According to Lemma 1, it will be sufficient

to prove the lemma by considering the tree Tv
∗

in which every vertex distinct from
v has degree at most 2 and every leaf of Tv

∗

is at distance at most 4 from v (that

is if Tv
∗

contains leaves at distance 5 from v, we just consider the remaining tree
obtained by removing the paths P5 attached to v). So we may assume that no path

P5 is attached to v in Tv
∗

.
Let ki denote the number of leaves in Tv

∗

at distance i from v, where i = 1, 2, 3, 4.
So v ∈ AL(T ) (resp. NL(T )) if and only if v ∈ AL(Tv

∗

) (resp. NL(Tv
∗

)).

If v is a pendent vertex, then Tv
∗

is a path Pn with 5 ≥ n ≥ 2 and
∣

∣L1(v) ∪ L2(v) ∪ L3(v) ∪ L4(v)
∣

∣ = 1. Then, by Observations 1 and 2, v /∈ AL(Tv
∗

) ∪

NL(Tv
∗

) if and only if n = 2, 3, 4, and v ∈ NL(Tv
∗

) if and only if n = 5, which yields
the result. We will from now assume that v is not a pendent vertex. Thus v has
degree at least 2.

Let D be a γL(Tv
∗

)-set. For a leaf ti at distance i from v, we denote the v-ti path
by v, t1, . . . , ti. It remains now to examine the following cases:

Case 1. k3 ≥ 2.
Let x3 and y3 be two leaves at distance 3 from v. Assume that v /∈ D. Then D

must contain two vertices from each of {x1, . . . , x3} and {y1, . . . , y3}. Without loss of
generality, suppose that xi, yi ∈ D for i = 1, 2. In this case, D′ = {v}∪ (D−{x1, y1})

is an LDS of Tv
∗

of size γL(Tv
∗

) − 1, a contradiction. Then v ∈ D and v ∈ AL(T ).

Case 2. k3 = 1 and k1 ≥ 1.
Let x3 and y1 be two leaves at distances 3 and 1 from v, respectively, and assume

that v /∈ D. Then D must contain y1 and two vertices from the x1-x3 path. Without
loss of generality, we assume that xi ∈ D for 1 ≤ i ≤ 2. Then D′ = {v}∪D−{y1, x1}

is an LDS of Tv
∗

of size less than D, a contradiction. Then v ∈ D and v ∈ AL(Tv
∗

).

Case 3. k1 + k3 = 0 and k2 + k4 ≥ 2.
Subcase 3.1. k2 ≥ 2 and k1 + k3 = 0.

Let x2, y2 be two leaves at distance 2 from v and suppose that v ∈ D. Then D
must contain one vertex from each of {x1, x2} and {y1, y2}. Without loss of generality,
we assume that x2, y2 ∈ D. In this case, D′ = (D − {v, x2, y2}) ∪ {x1, y1} is an LDS

of Tv
∗

of size γL(Tv
∗

) − 1, because k1 + k3 = 0; a contradiction. Hence v /∈ D and

v ∈ NL(Tv
∗

).
Subcase 3.2. k4 ≥ 2 and k1 + k3 = 0.

Let x4, y4 be two leaves at distance 4 from v and suppose that v ∈ D. Then
D must contain two vertices from each of {x1, . . . , x4} and {y1, . . . , y4}. Without
loss of generality, we assume that xi, yi ∈ D for i = 2, 3. In this case, D′ = (D −

{v, x2, x3, y2, y3}) ∪ {x1, x3, y1, y3} is an LDS of Tv
∗

of size γL(Tv
∗

) − 1, because

k1 + k3 = 0; a contradiction. Hence v /∈ D and v ∈ NL(Tv
∗

).
Subcase 3.3. k4 = 1, k2 = 1 and k1 + k3 = 0.

Let x4, y2 be two leaves at distances 4 and 2 from v and suppose that v ∈ D.
Then D must contain two vertices from {x1, . . . , x4} and one vertex from {y1, y2}.
Without loss of generality, we assume that x2, x3, y2 ∈ D. In this case, D′ = (D −
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{v, x2, x3, y2})∪{x1, x3, y1} is an LDS of Tv
∗

of size γL(Tv
∗

)−1, because k1 +k3 = 0;

a contradiction. Hence v /∈ D and v ∈ NL(Tv
∗

).
Case 4. k1 + k2 + k3 = 0 and k4 = 1.

Let x4 be a leaf at distance 4 from v and suppose that v ∈ D. Then D must
contain two vertices from {x1, . . . , x4}. Without loss of generality, we assume that

x2, x3 ∈ D. In this case, D′ = (D − {v, x2, x3}) ∪ {x1, x3} is an LDS of Tv
∗

of size

γL(Tv
∗

)−1, because k1 +k2 +k3 = 0; a contradiction. Hence v /∈ D and v ∈ NL(Tv
∗

).

Conversely, according to cases 1, 2, 3 above and the fact that AL(Tv
∗

)∩NL(Tv
∗

) =
∅, it remains to examine the following cases to complete the proof:
Case 5. k3 = 0 and k1 ≥ 1.

All the leaves are at distances 1, 2 or 4 from v. Since k1 ≥ 1, let x1 be a leaf
adjacent to v; by Observation 1, there exists D such that v ∈ D. Clearly we may
deduce a γL(Tv

∗

)-set D′ which contains x1 and not v, implying that v /∈ AL(Tv
∗

) ∩

NL(Tv
∗

).
Case 6. k3 = 1 and k1 = 0.

Let x3 be a leaf at distance 3 from v. If v ∈ D, then D must contain x2 or x3.
In this case, we can deduce a γL(Tv

∗

)-set D′ which contains x1 and not v. If v /∈ D,
then D must contain two vertices from {x1, x2, x3}. Without loss of generality, we

assume that x2, x3 ∈ D. In this case, D′ = (D − {x3}) ∪ {v} is a γL(Tv
∗

)-set which

contains v, implying in all cases that v /∈ AL(Tv
∗

) ∩NL(Tv
∗

).
Case 7. k3 + k1 = 0 and k2 + k4 = 1.
Subcase 7.1. k4 + k3 + k1 = 0 and k2 = 1.Thus Tv

∗

is P3. Therefore, this case has
been considered at the beginning, implying that v /∈ AL(Tv

∗

) ∩NL(Tv
∗

).

Subcase 7.2. k3 + k2 + k1 = 0 and k4 = 1.Thus Tv
∗

is P5. This case too has already
been considered at the beginning, implying that v ∈ NL(Tv

∗

).
Case 8. k4 + k3 + k2 + k1 = 0.

Finally, this case has also been considered at the beginning, implying that v /∈
AL(Tv

∗

) ∩NL(Tv
∗

).

From Lemmas 2 and 3, our main result follows:

Theorem 3. Let v be a vertex of the tree T , then:

— v ∈ AL(T ) if and only if v ∈ AL(Tv
∗

).

— v ∈ NL(T ) if and only if v ∈ NL(Tv
∗

).

Therefore, the following corollary holds true.

Corollary 1. T is a γL-excellent tree if and only if NL(Tv
∗

) = ∅ for every ver-

tex v of T . (That is in a pruning tree Tv
∗

there is: (
∣

∣L3(v) ∪ L1(v)
∣

∣ 6= 0 or
∣

∣L2(v) ∪ L4(v)
∣

∣ ≤ 1) and (
∣

∣L3(v) ∪ L2(v) ∪ L1(v)
∣

∣ 6= 0 or
∣

∣L4(v)
∣

∣ 6= 1)).

It is easy to verify that a pruning tree can be found in a polynomial time with
the process defined above. So, if NL(Tv

∗

) = ∅ for every vertex v of T , then the
γL-excellence property of a tree can be verified in a polynomial time.

Corollary 2. γL-excellent trees can be recognized in a polynomial time.
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