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ON THE CHAPLYGHIN METHOD
FOR FIRST ORDER

PARTIAL DIFFERENTIAL EQUATIONS

Abstract. Classical solutions of initial problems for nonlinear first order partial differential
equations are considered. It is shown that under natural assumptions on given functions,
there exist Chaplyghin sequences and they are convergent. Error estimates for approximate
solutions are given. The method of characteristics is used for the construction of approximate
solutions.
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1. INTRODUCTION

We are interested in working out a method of approximation of solutions to nonlinear
first order partial differential equations by solutions of associated linear differential
equations and in estimating the difference between the exact and approximate solu-
tions. This is precisely what the Chaplyghin method accomplishes. This method of
approximating solutions of ordinary differential equations by their linearization was
initiated in [5, 12]. In [13] it has been applied to partial differential equations. In
[8] this method was applied to ordinary functional differential equations. The Chap-
lyghin method for classical or generalized solutions of semilinear functional differential
equations with initial or initial boundary conditions was considered in [6,7,9,14]. The
theory of the Chaplyghin method for parabolic differential or functional differential
equations was developed in [1–4]. Theorems on differential or functional differential
inequalities are used in the investigation into the Chaplyghin sequences.

The aim of the paper is to give a further contribution to the theory of Chaplyghin
method. We give comments on relations between results known in literature and
our theory. For any metric spaces X and Y , by C(X, Y ) we denote the class of all
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continuous functions from X into Y . We will use vectorial inequalities with the un-
derstanding that the same inequalities hold between their corresponding components.
Let H be the Haar pyramid

H =
{
(t, x) ∈ R1+n : t ∈ [0, a], x ∈ [−b + Mt, b−Mt]

}
where a > 0, M = (M1, . . . ,Mn) ∈ Rn

+, R+ = [0,+∞), b = (b1, . . . , bn) ∈ Rn and
b > Ma. Suppose that

Φ: [0, a]× Rn → Rn, Φ = (Φ1, . . . ,Φn),

Ψ: [0, a]× Rn × R → R, ϕ : [−b, b] → R

are given functions. Write

L[z](t, x) = ∂tz(t, x) +
n∑

i=1

Φi(t, x)∂xi
z(t, x) (1)

and consider the almost linear differential equation

L[z](t, x) = Ψ(t, x, z(t, x)) (2)

with the initial condition

z(0, x) = ϕ(x) for x ∈ [−b, b]. (3)

Suppose that the functions Φ and Ψ in the variables (t, x) and (t, x, p) are continuous
and that there exist ∂pΨ on [0, a] × Rn × R and ∂pΨ ∈ C

(
[0, a] × Rn × R, R

)
. We

assume also that for every (t, x) ∈ [0, a]× Rn we have the following estimates

|Φi(t, x)| ≤ Mi for i = 1, . . . , n.

Consider a sequence {z(k)}, z(k) : H → R for k ≥ 0, such that:

1) z(0) ∈ C(H, R);
2) if z(k) ∈ C(H, R) is a known function then z(k+1) is a solution of the linear differ-

ential equation

L[z](t, x) = Ψ(t, x, z(k)(t, x)) + ∂pΨ(t, x, z(k)(t, x))
(
z(t, x)− z(k)(t, x)

)
with initial condition (3).

The above sequence {z(k)} is called a Chaplyghin sequence for (2), (3). Sufficient
conditions for the convergence

lim
k→∞

z(k)(t, x) = ũ(t, x) uniformly on H, (4)

where ũ is a solution of (2), (3), can be found in [13]. The convergence that we get
in (4) is of the Newton type, which means that

|ũ(t, x)− z(k)(t, x)| ≤ 2−k+1(2h)2
k−1η̃, (t, x) ∈ H, k ≥ 0,
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where η̃ ∈ R+ and 0 < h ≤ 1
2 . A method of differential inequalities is used in [13] for

the investigation of Chaplyghin sequences.
The above classical result is extended in [6,7,9] to differential functional equations

with initial or initial boundary conditions.
Results on the Chaplyghin method in these papers concern differential functional

equations, where an unknown function is a functional variable and the coefficients
(Φ1, . . . ,Φn) of the operator L given by (1) depend on (t, x) only.

In our paper we investigate the Chaplyghin method for quasilinear differential
equations. That is, we assume that operator L is given by

L[z](t, x) = ∂tz(t, x) +
n∑

i=1

Φi(t, x, z(t, x))∂xi
z(t, x).

Hence, functions Φi may depend on (t, x, p) for i = 1, . . . , n. Our results are based on
the following idea. The problem of the existence of classical solutions to differential
equations with partial derivatives of the first order is strictly connected with the prob-
lem of solving of characteristic systems of ordinary differential equations. In the paper,
we construct Chaplyghin sequences for characteristic systems corresponding to quasi-
linear differential equations. Furthermore we extend the above idea onto differential
equations which are nonlinear with respect to partial derivatives (∂x1z, . . . , ∂xn

z). We
prove that, under natural assumptions on given functions, sequences of approximate
solutions are convergent and we establish estimates for the difference between exact
and approximate solutions of characteristic systems. It is important that we do not
assume monotonicity conditions for given functions.

The paper is organized as follows. In Section 2 we prove a theorem on Chaplyghin
sequences corresponding to quasilinear differential equations. In Section 3 we study
a general class of nonlinear differential equations with partial derivatives.

In the paper we use general ideas concerning the Chaplyghin method introduced
in [15].

2. CHAPLYGHIN SEQUENCES
FOR QUASILINEAR DIFFERENTIAL EQUATIONS

By Mk×n we denote the space of all matrices with real elements. For x ∈ Rn and
X ∈ Mk×n, where x = (x1, . . . , xn) and X = [xij ]i=1,...,k,j=1,...,n, we define the norms

‖x‖ = |x1|+ · · ·+ |xn|, ‖X‖ = max {
n∑

j=1

|xij | : 1 ≤ i ≤ k}.

If X ∈ Mk×n then XT is its transpose matrix. The inner product in Rn is denoted
by “◦”.

Let Ω = [−a, a]× Rn × R and

f : Ω → Rn f = (f1, . . . , fn)T g : Ω → R ω : Rn → R
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be given functions. Consider the Cauchy problem:

∂tz(t, x) +
n∑

i=1

fi(t, x, z(t, x))∂xiz(t, x) = g(t, x, z(t, x)), t ∈ [−a, a], (5)

z(0, x) = ω(x) for x ∈ Rn. (6)

Classical solution of (5), (6) are generated by characteristics in the following meaning.
Let us consider a system of differential equations:

y′(t) = f(t, y(t), ξ(t)), ξ′(t) = g(t, y(t), ξ(t)) (7)

where y = (y1, . . . , yn)T . Assume that solutions of (7) are defined on [−a, a]. If
u : [−a, a]×Rn → R is a solution of (5) and u is of class C1 and (t∗, x∗) ∈ [−a, a]×Rn,
then there exists a solution (ỹ, ξ̃) : [−a, a] → Rn+1 of (7) such that ỹ(t∗) = x∗ and
u(t, ỹ(t)) = ξ̃(t) for t ∈ [−a, a].

We prove that for each η ∈ Rn there are sequences of functions
{y(k)( · , η), ξ(k)( · , η)}, where y(k)( · , η) : [−a, a] → Rn, ξ(k)( · , η) : [−a, a] → R, η ∈
Rn, satisfying the conditions:

1) for every k ≥ 1 the functions (y(k)( · , η), ξ(k)( · , η)) form the solution of an initial
value problem for a linear system of differential equations;

2) for every η ∈ Rn, the limits

lim
k→∞

y(k)(t, η) = y(t, η), lim
k→∞

ξ(k)(t, η) = ξ(t, η) (8)

exist uniformly on [−a, a], where (y( · , η), ξ( · , η)) is a solution of (7) satisfying
the initial condition:

y(0) = η, ξ(0) = ω(η); (9)

3) the convergence in (8) is of the Newton type, which means that the difference
between the k-th term of any of the approximating sequence and solution of (7),
(9) can be estimated by 2−k+1(2h)2

k−1η where η ∈ R+ and 0 < h ≤ 1
2 .

The sequences {y(k)( · , η), ξ(k)( · , η)} with the above properties are called Chap-
lyghin sequences for (5), (6).

Our considerations are based on the following idea. We transform an initial value
problem for characteristic system (7) into an abstract equation Λ[u] = 0 where
Λ: X → X and X is a Banach space. Then we consider the Newton method for
the above equation and we prove that the Chaplyghin method for (5), (6) generates
a Newton sequence for the above abstract equation.

Suppose that (X, ‖ · ‖X) is a Banach space and

S =
{
u ∈ X : ‖u− u(0)‖X ≤ δ

}
where u(0) ∈ X and δ > 0. Let a map Λ: S → X be given and let there exist the
Fréchet derivative for u ∈ S. We consider the equation

Λ[u] = 0 (10)
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and the Newton method

u(0) ∈ S, u(k+1) = u(k) −
[
Λ′[u(k)]

]−1Λ[u(k)] for k ≥ 0. (11)

Let us denote the norm of Λ′[u] by ‖Λ′[u]‖∗. The following theorem will be needed
in our considerations.

Theorem 2.1. Suppose that Λ: S → X and following assumptions hold:

1) Λ′[u] exists for u ∈ S and there is K ∈ R+ such that

‖Λ′[u]− Λ′[ū]‖∗ ≤ K‖u− ū‖X , for u, ū ∈ S;

2) there exists the bounded inverse operator
[
Λ′[u(0)]

]−1 such that

‖
[
Λ′[u(0)]

]−1‖∗ ≤ B

where B ∈ R+;
3) the following initial inequality

‖
[
Λ′[u(0)]

]−1Λ[u(0)]‖X ≤ η̄

holds;
4) the constants B,K, η̄ satisfy the conditions h = BKη̄ ≤ 1

2 and

1−
√

1− 2h

KB
≤ δ.

Then equation (10) has a solution u∗ ∈ S and:

i) there exists Newton sequence (11) exists such that

lim
k→∞

u(k) = u∗,

ii) the following error estimation hold

‖u∗ − u(k)‖X ≤ 2−k+1(2h)2
k−1η̄ for k ≥ 0.

A proof of the above theorem can be found in [10,11,16].
We need the following assumptions on f and g.

Assumption H0[f, g]. The functions (f, g) : Ω → Rn+1 in the variables (t, x, p) are
continuous and there exist the partial derivatives:

∂xf =
[
∂xj

fi

]
i,j=1,...,n

, ∂pf = (∂pf1, . . . , ∂pfn), ∂xg = (∂x1g, . . . , ∂xn
g), ∂pg

and ∂xf ∈ C(Ω,Mn×n), ∂pf, ∂xg ∈ C(Ω, Rn), ∂pg ∈ C(Ω, R).
Suppose that η ∈ Rn is fixed. We define the Chaplyghin sequence as follows:

(y(0)( · , η), ξ(0)( · , η)) ∈ C([−a, a], Rn+1). If the functions (y(k)( · , η), ξ(k)( · , η)) are
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known, then (y(k+1)( · , η), ξ(k+1)( · , η)) is the solution of the system of differential
equations:

y′(t) = f(Pk(t, η)) + ∂xf(Pk(t, η))(y(t)− y(k)(t, η)) + ∂pf(Pk(t, η))(ξ(t)− ξ(k)(t, η)),

ξ′(t) = g(Pk(t, η)) + ∂xg(Pk(t, η))(y(t)− y(k)(t, η)) + ∂pg(Pk(t, η))(ξ(t)− ξ(k)(t, η))

where Pk(t, η) = (t, y(k)(t, η), ξ(k)(t, η)), and y(0) = η, ξ(0) = ω(η), η ∈ Rn.

Assumption H[f, g]. Assumption H0[f, g] holds and:

1) there exists A ∈ R+ such that for (t, x, p) ∈ Ω there is

‖∂xf(t, x, p)‖+ |∂pf(t, x, p)| 6 A, ‖∂xg(t, x, p)‖+ |∂pg(t, x, p)| 6 A;

2) there exists L ∈ R+ such that the expressions

‖∂xf(t, x, p)− ∂xf(t, x, p)‖+ ‖∂pf(t, x, p)− ∂pf(t, x, p)‖,

‖∂xg(t, x, p)− ∂xg(t, x, p)‖+ ‖∂pg(t, x, p)− ∂pg(t, x, p)‖

are bounded from above by L[‖x− x‖+ |p− p|];
3) a number η ∈ R+ is defined by the relation[∥∥∥y(0)(t, η)− η −

∫ t

0

f(P0(s, η))ds
∥∥∥+

+ |ξ(0)(t, η)− ω(η)−
∫ t

0

g(P0(s, η))ds|
]
≤ ηe−Aa, t ∈ [−a, a];

4) constants K, B, η ≥ 0 satisfy the conditions

B = eAa, K = La, η > 0, h = KBη ≤ 1
2
.

We will use the following notations. The maximum norm in the space
C([−a, a], Rn+1) is given by

‖(h, h0)‖C = max{‖h(t)‖+ |h0(t)| : t ∈ [−a, a]}.

Let CL([−a, a], Rn+1) be the set of linear and continuous maps from C([−a, a], Rn+1)
into the same space. The norm in the space CL([−a, a], Rn+1) generated by the norm
‖ · ‖C in C([−a, a], Rn+1) will be denoted by ‖ · ‖CL.

Theorem 2.2. If assumption H[f, g] holds, then the Chaplyghin sequence
{y(k)( · , η), ξ(k)( · , η)} exists and

‖y(k)(t, η)− y(t, η)‖+ |ξ(k)(t, η)− ξ(t, η)| ≤ 2−k+1(2h)2
k−1η, t ∈ [−a, a]. (12)
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Proof. A proof proceeds in a sequence of steps.
I. Our considerations start with the observation that the integral equations for the
Chaplyghin sequence have the form:

y(t)− η =
∫ t

0

f(Pk(s, η))ds +
∫ t

0

∂xf(Pk(s, η))(y(s)− y(k)(s, η))ds

+
∫ t

0

∂pf(Pk(s, η))(ξ(s)− ξ(k)(s, η))ds,

(13)

ξ(t)− ω(η) =
∫ t

0

g(Pk(s, η)ds +
∫ t

0

∂xg(Pk(s, η))(y(s)− y(k)(s, η))ds

+
∫ t

0

∂pg(Pk(s, η))(ξ(s)− ξ(k)(s, η))ds.

(14)

We consider the operator U:C([−a, a], Rn+1)→C([−a, a], Rn+1), U =(F,G) defined by

F [y, ξ](t) = y(t)− η −
∫ t

0

f(s, y(s), ξ(s))ds,

G[y, ξ](t) = ξ(t)− ω(η)−
∫ t

0

g(s, y(s), ξ(s))ds,

where η ∈ Rn. From Assumption H[f, g], it follows that for each
(y, ξ) ∈ C([−a, a], Rn+1) there exists the derivative U ′[y, ξ] = (F ′[y, ξ], G′[y, ξ]) and

F ′[y, ξ](h, h0)(t) = h(t)−
∫ t

0

∂xf(P (y, ξ; s))h(s)ds−
∫ t

0

∂pf(P (y, ξ; s))h0(s)ds,

G′[y, ξ](h, h0)(t) = h0(t)−
∫ t

0

∂xg(P (y, ξ; s))h(s)ds−
∫ t

0

∂pg(P (y, ξ; s))h0(s)ds,

where (h, h0) ∈ C([−a, a], Rn+1) and P (y, ξ; s) = (s, y(s), ξ(s)).
Now we prove that there exists the operator (U ′[y, ξ])−1=

(
(F ′[y,ξ])−1,(G′[y,ξ])−1

)
,

where (y, ξ) ∈ C([−a, a], Rn+1). Suppose that (u, u0) ∈ C([−a, a], Rn+1). Consider
the system of equations:

(F ′[y, ξ])(h, h0) = u, (G′[y, ξ])(h, h0) = u0,

where (h, h0) are unknown. The above system is equivalent to integral equation

h(t) = u(t) +
∫ t

0

∂xf(P (y, ξ; s))h(s)ds +
∫ t

0

∂pf(P (y, ξ; s))h0(s)ds, (15)

h0(t) = u0(t) +
∫ t

0

∂xg(P (y, ξ; s))h(s)ds +
∫ t

0

∂pg(P (y, ξ; s))h0(s)ds. (16)

From Assumption H[f, g] and the Banach fixed point theorem, there follows that
there exists exactly one solution (h, h0) ∈ C([−a, a], Rn+1) of (15), (16). This shows
that:

(U ′[y, ξ])−1 =
(
(F ′[y, ξ])−1, (G′[y, ξ])−1

)
exists.
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II. It is clear that the equation U [y, ξ] = 0 in the space C([−a, a], Rn+1) is equivalent
to the system

F [y, ξ] = 0, G[y, ξ] = 0. (17)

We consider the Newton sequence {ỹ(k)( · , η), ξ̃(k)( · , η)} for (17) defined as follows:
for k = 0, we assume that

ỹ(0)( · , η) ∈ C([−a, a], Rn) , ξ̃(0)( · , η) ∈ C([−a, a], R), η ∈ Rn.

If (ỹ(k)( · , η), ξ̃(k)( · , η)) is already defined then (ỹ(k+1)( · , η), ξ̃(k+1)( · , η)) solve the
equations(

F ′[ỹ(k)( · , η), ξ̃(k)( · , η)]
)(

y − ỹ(k)( · , η), ξ − ξ̃(k)( · , η)
)

= −F
[
ỹ(k)( · , η), ξ̃(k)( · , η)

]
,(

G′[ỹ(k)( · , η), ξ̃(k)( · , η)]
)(

y − ỹ(k)( · , η), ξ − ξ̃(k)( · , η)
)

= −G
[
ỹ(k)( · , η), ξ̃(k)( · , η)

]
.

Since ((F ′[y, ξ])−1, (G′[y, ξ])−1) exists for (y, ξ) ∈ C([−a, a], Rn+1), it follows that the
functions (ỹ(k+1)( · , η), ξ̃(k+1)( · , η)) exist and are unique.
III. Suppose that ỹ(0)( · , η) = y(0)( · , η) and ξ̃(0)( · , η) = ξ(0)( · , η) for η ∈ Rn. We
prove that the Newton sequence for (17) and the Chaplyghin sequence are the same:

{ỹ(k)( · , η), ξ̃(k)( · , η)} = {y(k)( · , η), ξ(k)( · , η)}, η ∈ Rn. (18)

Assume that

ỹ(k)( · , η) = y(k)( · , η) and ξ̃(k)( · , η) = ξ(k)( · , η) for η ∈ Rn.

Then the functions (ỹ(k+1)( · , η), ξ̃(k+1)( · , η)) satisfy the relations:

ỹ(k+1)(t, η)− η =
∫ t

0

f
(
Pk(s, η)

)
ds +

∫ t

0

∂xf
(
Pk(s, η)

)(
ỹ(k+1)(s, η)− ỹ(k)(s, η)

)
ds+

+
∫ t

0

∂pf
(
Pk(s, η)

)(
ξ̃(k+1)(s, η)− ξ̃(k)(s, η)

)
ds,

ξ̃(k+1)(t, η)−ω(η) =
∫ t

0

g(Pk

(
s, η)

)
ds+

∫ t

0

∂xg
(
Pk(s, η)

)(
ỹ(k+1)(s, η)− ỹ(k)(s, η)

)
ds+

+
∫ t

0

∂pg
(
Pk(s, η)

)(
ξ̃(k+1)(s, η)− ξ̃(k)(s, η)

)
ds.

From the above conditions, (13) and (14), it follows that ỹ(k+1)( · , η) =
y(k+1)( · , η) , ξ̃(k+1)( · , η) = ξ(k+1)( · , η) for η ∈ Rn. Thus, by induction, relations
(18) are true for all k ∈ N.
IV. We prove that

‖
(
U ′[y(0)( · , η), ξ(0)( · , η)]

)−1‖CL ≤ eAa. (19)
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Suppose that (u, u0) ∈ C([−a, a], Rn+1) and
(
U ′[y(0)( · , η), ξ(0)( · , η)]

)−1(u, u0) =
(h, h0), where (h, h0) ∈ C([−a, a], Rn+1). Then

h(t) = u(t) +
∫ t

0

∂xf
(
P0(s, η)

)
h(s)ds +

∫ t

0

∂pf
(
P0(s, η)

)
h0(s)ds,

h0(t) = u0(t) +
∫ t

0

∂xg
(
P0(s, η)

)
h(s)ds +

∫ t

0

∂pg
(
P0(s, η)

)
h0(s)ds.

From Assumption H[f, g], it follows that the integral inequality

‖h(t)‖+ |h0(t)| ≤ ‖(u, u0)‖C + A

∫ |t|

0

[
‖h(s)‖+ |h0(s)|

]
ds

is satisfied on [−a, a]. By virtue of the Gronwall inequality,

‖(h, h0)‖C ≤ eAa‖(u, u0)‖C

and inequality (19) follows. The following estimate holds:

‖U ′[y, ξ]− U ′[ȳ, ξ̄]‖CL ≤ La‖(y, ξ)− (ȳ, ξ̄)‖C

where (y, ξ), (ȳ, ξ̄) ∈ C([−a, a], Rn+1).
V. Now we prove that for η ∈ Rn there is

‖(U ′[y(0)( · , η), ξ(0)( · , η)])−1U [y(0)( · , η), ξ(0)( · , η)](t)‖C ≤ η. (20)

Let η ∈ Rn be fixed and(
F ′[y(0)( · , η), ξ(0)( · , η)]

)−1
F

[
y(0)( · , η), ξ(0)( · , η)

]
(t) = u(t),(

G′[y(0)( · , η), ξ(0)( · , η)]
)−1

G
[
y(0)( · , η), ξ(0)( · , η)

]
(t) = u0(t).

Write (v, v0) =
(
F [y(0)( · , η), ξ(0)( · , η)], G[y(0)( · , η), ξ(0)( · , η)]

)
. It follows that

v(t, η) = u(t)−
∫ t

0

∂xf
(
P0(s, η)

)
u(s)ds−

∫ t

0

∂pf
(
P0(s, η)

)
u0(s)ds,

v0(t, η) = u0(t)−
∫ t

0

∂xg
(
P0(s, η)

)
u(s)ds−

∫ t

0

∂pg
(
P0(s, η)

)
u0(s)ds

and consequently,

‖u(t)‖+ |u0(t)| ≤ ‖(v, v0)‖C + A

∫ |t|

0

[‖u(s)‖+ |u0(s)|]ds, t ∈ [−a, a].

From the Gronwall inequality we conclude that

‖(u, u0)‖C ≤ ‖(v, v0)‖CeAa,

which proves (20).
From the above conditions it follows that all the assumptions of Theorem 2.1 are

satisfied and estimate (12) follows.

Remark 1. Theorem 2.1 can be extended on the local Cauchy problem for (5) and
for initial boundary value problems for (5) and the estimation (12) follows.
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3. APPROXIMATE SOLUTIONS OF NONLINEAR EQUATIONS

Write Ξ = [−a, a] × Rn+1+n where a > 0 and suppose that F : Ξ → R is a given
function in the variables (t, x, p, q) , q = (q1, . . . qn). Given ω : Rn → R, we consider
the Cauchy problem:

∂tz(t, x) = F (t, x, z(t, x), ∂xz(t, x)), (21)

z(0, x) = ω(x) for x ∈ Rn, (22)
where ∂xz = (∂x1z, . . . , ∂xn

z). Suppose that there exist the partial derivatives
∂xω = (∂x1ω, . . . , ∂xn

ω) and ∂xF = (∂x1F, . . . , ∂xn
F ), ∂pF, ∂qF = (∂q1F, . . . , ∂qn

F )
and ∂xω ∈ C(Rn, Rn), ∂xF, ∂qF ∈ C(Ξ, Rn), ∂pF ∈ C(Ξ, R). Differential equations
with partial derivatives of the first order have the following property: the problem
of existence of their classical solutions and properties of solutions of (21)–(22) are
strictly connected with initial problems for characteristic systems of ordinary differ-
ential equations. The following property of solutions of (21)–(22) is important in
these study. Let us denote by (y(·, η), ξ(·, η), λ(·, η)) a solution of the characteristic
system

y′(t) = −∂qF (t, y(t), ξ(t), λ(t)),
ξ′(t) = F (t, y(t), ξ(t), λ(t))− λ(t) ◦ ∂qF (t, y(t), ξ(t), λ(t)),
λ′(t) = ∂xF (t, y(t), ξ(t), λ(t)) + ∂pF (t, y(t), ξ(t), λ(t))λ(t)

(23)

with the initial condition

y(0) = η, ξ(0) = ω(η), λ(0) = ∂xω(η) (24)

where η ∈ Rn and y = (y1, . . . , yn), λ = (λ1, . . . , λn).
Suppose that solutions of (23)–(24) exist on [−a, a]. If u : [−a, a] × Rn → R is a

classical solution of (21)–(22) and the function ∂xu satisfies the Lipschitz condition
with respect to x on [−a, a]× Rn. Then

u(t, y(t, η)) = ξ(t, η), ∂xu(t, y(t, η)) = λ(t, η), t ∈ [−a, a].

We use the above property to construct approximate solutions to (21)–(22).

3.1. CHAPLYGHIN SEQUENCES FOR NONLINEAR EQUATIONS

Suppose that η ∈ Rn is fixed. We prove that there is a sequence of func-
tions {y(k)( · , η), ξ(k)( · , η), λ(k)( · , η)} where y(k)( · , η), λ(k)( · , η) : [−a, a] → Rn,
ξ(k)( · , η) : [−a, a] → R, such that:

1) for every k ≥ 1 the functions (y(k)( · , η), ξ(k)( · , η), λ(k)( · , η)) are solutions of an
initial value problem for linear systems of differential equations;

2) the limits

lim
k→∞

y(k)(t, η)=y(t, η), lim
k→∞

ξ(k)(t, η)=ξ(t, η), lim
k→∞

λ(k)(t, η)=λ(t, η) (25)

exist uniformly on [−a, a];
3) the convergence in (25) is of the Newton type.
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The sequence {y(k)( · , η), ξ(k)( · , η), λ(k)( · , η)} with the above properties is considered
as a Chaplyghin sequence for (21), (22).

We write integral equations corresponding to (23)–(24). Let u = (y, ξ, λ),
F=(Y,Z,Q),
F[u] = (Y[u], Z[u], Q[u]) and

Y[u](t) = y(t)− η +
∫ t

0

∂qF (s, u(s))ds,

Z[u](t) = ξ(t)− ω(η)−
∫ t

0

F (s, u(s))ds +
∫ t

0

λ(s) ◦ ∂qF (s, u(s))ds,

Q[u](t) = λ(t)− ∂xω(η)−
∫ t

0

∂xF (s, u(s))ds−
∫ t

0

λ(t)∂pF (s, u(s))ds.

Then Cauchy problem (23)–(24) is equivalent to the integral equation

F[u](t) = 0. (26)

Suppose that η ∈ Rn is fixed. We consider a sequence of functions {u(k)( · , η)},

u(k)( · , η) = (y(k)( · , η), ξ(k)( · , η), λ(k)( · , η))

defined in the following way. For k = 0 we put u(0)(t, η) = (η, ω(η), ∂xω(η)). If
u(k)( · , η) is a known function then u(k+1)( · , η) is defined by the relation

F′[u(k)( · , η)]
(
u(k+1)( · , η)− u(k)( · , η)

)
+ F[u(k)( · , η)] = 0.

It is clear that {u(k)( · , η)} is a Newton sequence for (26). We consider {u(k)( · , η)}
as a Chaplyghin sequence for initial problem (23)–(24). We prove that the above
Chaplyghin sequence exists and converges to a solution of (23)–(24).

3.2. CONVERGENCE OF CHAPLYGHIN SEQUENCES

Suppose that ω : Rn → R is of class C1. Write

Σ[η] = {(t, x, p, q) ∈ Ξ : ‖x− η‖+ |p− ω(η)|+ ‖q − ∂xω(η)‖ ≤ δ},

S[η] = {u = (y, ξ, λ) ∈ C([−a, a], Rn+1+n) :
‖y(t)− η‖+ |ξ(t)− ω(η)|+ ‖λ(t)− ∂xω(η)‖ ≤ δ, t ∈ [−a, a]}.

We denote by Y ∗ the class of all linear operators defined on Rn+1+n and taking
values in Rn+1+n. For κ = (x, p, q) ∈ Rn+1+n, we write ‖κ‖∗ = ‖x‖+ |p|+ ‖q‖. The
norm of Ψ ∈ Y ∗ generated by the norm ‖ · ‖∗ in Rn+1+n will by denoted by ‖Ψ‖∗.
This space is a Banach space.
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Assumption H0[F ]. The function F : Ξ → R is continuous, there exist the partial
derivatives

∂pF, ∂qF = (∂q1F, . . . , ∂qnF ), ∂xF = (∂x1F, . . . , ∂xnF ),

∂p∂qF = (∂p∂q1F, . . . , ∂p∂qn
F )T , ∂p∂xF = (∂p∂x1F, . . . , ∂p∂xn

F )T,

∂q∂qF =
[
∂qj

∂qi
F

]
i,j=1,...,n

, ∂q∂xF =
[
∂qj

∂xi
F

]
i,j=1,...,n

,

∂x∂qF =
[
∂xj ∂qiF

]
i,j=1,...,n

,

(27)

and the above functions are continuous on Ξ.

Suppose that Assumption H0[F ] is satisfied. For each (t, x, p, q) ∈ Ξ, we consider
the linear operator

W ∗(t, x, p, q) : Rn+1+n → Rn+1+n,

W ∗(t, x, p, q) =
(
U(t, x, p, q),W (t, x, p, q), V (t, x, p, q)

)
defined in the following way. For (x̃, p̃, q̃) ∈ Rn+1+n, x̃ = (x̃1, . . . , x̃n)T , q̃ =
(q̃1, . . . , q̃n)T we write

U(t, x, p, q)(x̃, p̃, q̃) = ∂x∂qF (t, x, p, q)x̃ + ∂p∂qF (t, x, p, q)p̃ + ∂q∂qF (t, x, p, q)q̃,
W (t, x, p, q)(x̃, p̃, q̃) = ∂xF (t, x, p, q) ◦ x̃ + ∂pF (t, x, p, q)p̃−

−q ◦
[
∂x∂qF (t, x, p, q)x̃ + ∂p∂qF (t, x, p, q)p̃+

+ ∂q∂qF (t, x, p, q)q̃
]
,

V (t, x, p, q)(x̃, p̃, q̃) = ∂x∂xF (t, x, p, q)x̃ + ∂p∂xF (t, x, p, q)p̃ + ∂q∂xF (t, x, p, q)q̃+

+q
[
∂x∂pF (t, x, p, q) ◦ x̃ + ∂p∂pF (t, x, p, q)p̃+

+ ∂q∂pF (t, x, p, q) ◦ q̃
]
+ ∂pF (t, x, p, q)q̃.

We formulate next assumptions on F and ω.
Assumption H[F, ω]. Assumption H0[F ] is satisfied and:

1) a constant A ∈ R+ is defined by the relation

‖W ∗(t, x, p, q)‖∗ ≤ A, (t, x, p, q) ∈ Σ[η];

2) there exists L ∈ R+ such that for (t, x, p, q), (x̃, p̃, q̃) ∈ Σ[η] there holds

‖W ∗(t, x, p, q)−W ∗(x̃, p̃, q̃)‖∗ ≤ L
[
‖x− x̃‖+ |p− p̃|+ ‖q − q̃‖

]
; (28)

3) a constant η̄ ∈ R+ is defined by the relation

‖Y[u(0)](t)‖+ |Z[u(0)](t)|+ ‖Q[u(0)](t)‖ ≤ η̄e−Aa

where u(0) = (y(0), ξ(0), λ(0)) ∈ S[η];
4) constants K, B > 0 satisfy the conditions:

B = eAa, K = La, η̄ > 0, h = KBη̄ > 0, h ≤ 1
2
,

1−
√

1− 2h

KB
∈ [0, δ];

5) a function ω : Rn → R is of class C1.
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Remark 2. If function (27) satisfies the Lipschitz condition with respect to (x, p, q),
then there is L ∈ R+ such that relation (28) holds.

We start with the formulation of the following property of the operator

F : C([−a, a], Rn+1+n) → C([−a, a], Rn+1+n).

If Assumption H[F, ω] is satisfied, then there exists F′[u] = (Y′[u], Z′[u], Q′[u]), where
u = (y, ξ, λ) ∈ C([−a, a], Rn+1+n), and for v = (h, µ, γ) ∈ C([−a, a], Rn+1+n) there is

Y′[u](v)(t) = h(t)−
∫ t

0

U
(
s, u(s)

)
v(s)ds,

Z′[u](v)(t) = µ(t)−
∫ t

0

W
(
s, u(s)

)
v(s)ds,

Q′[u](v)(t) = γ(t)−
∫ t

0

V (s, u(s))v(s)ds.

Lemma 1. Let Assumption H[F, ω] hold. Then for every function u = (y, ξ, λ) ∈ S[η]
there exists (F′[u])−1.

Proof. Let v̄ = (h̄, µ̄, γ̄) ∈ S[η]. Then equation F′[u]v = v̄ is equivalent to the system
of equations:

Y′[u] = h̄, Z′[u] = µ̄, Q′[u] = γ̄.

It is a linear system of integral equations of Volterra type. From the Banach fixed
point theorem there follows that this system of equations has exactly one solution
v ∈ C([−a, a], Rn+1+n). That completes the proof.

Lemma 2. If Assumption H[F, ω] holds, then

max{‖(Y′[u(0)])−1‖+ |(Z′[u(0)])−1|+ ‖(Q′[u(0)])−1‖ : t ∈ [−a, a]}

is estimated by eAa

Proof. Let us assume that v̄ = (h̄, µ̄, γ̄) ∈ S[η]. Consider the equation F′[u(0)]v = v̄,
which is equivalent to system of equations:

Y′[u(0)]v = h̄, Z′[u(0)]v = µ̄, Q′[u(0)]v = γ̄.

From Assumption H[F, ω] it follows that the function v satisfies the integral inequality:

‖v(t)‖∗ ≤ ‖v̄(t)‖∗ +
∣∣∣∣ ∫ t

0

A‖v(s)‖∗ds

∣∣∣∣.
From the Gronwall inequality there follows:

‖v(t)‖∗ ≤ ‖v̄(t)‖∗eA|t| ≤ ‖v̄(t)‖∗eAa,

which completes the proof.
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Theorem 3.1. If Assumption H[F, ω] holds, then there exists the Chaplyghin se-
quence for (23) and the sequence

{u(k)( · , η)} = {y(k)( · , η), ξ(k)( · , η), λ(k)( · , η)},

converges to the solution u( · , η) = (y( · , η), ξ( · , η), λ( · , η)) of (23)–(24),

lim
k→+∞

u(k)(t, η) = u(t, η) = (y(t, η), ξ(t, η), λ(t, η))

uniformly on [−a, a] and the following estimate:

‖u(t, η)− u(k)(t, η)‖∗ ≤ 2−k+1(2h)2
k−1η (29)

hold for k ∈ N and t ∈ [−a, a].

Proof. We apply Theorem 2.1 to prove the above properties of the Chaplyghin se-
quence. The proof will be divided into two steps.
I. From Lemma 1 it follows that the operator F′[u] : C([−a, a], Rn+1+n) →
C([−a, a], Rn+1+n) exists and is linear. Let CL([−a, a], Rn+1+n) be a set of linear
and continuous maps from C([−a, a], Rn+1+n) into itself. The norm in this space,
generated by the norm ‖ · ‖∗ in C([−a, a], Rn+1+n), will be denoted by ‖ · ‖CL. Then
it is obvious that:

‖F′[u]− F′[ū]‖CL ≤ La

[
‖u− ū‖∗

]
for t ∈ [−a, a].

From Lemma 2, it follows that ‖(F′[u(0)( · , η)])−1‖CL is bounded by eAa.
II. We will show that ‖(F′[u(0)( · , η)])−1F[u(0)( · , η)]‖CL ≤ η̄. Write

h(t, η) = (Y′[u(0)( · , η)])−1Y[u(0)( · , η)](t),

µ(t, η) = (Z′[u(0)( · , η)])−1Z[u(0)( · , η)](t),

γ(t, η) = (Q′[u(0)( · , η)])−1Q[u(0)( · , η)](t),

and v( · , η) = (h̄( · , η), µ̄( · , η), γ̄( · , η)), ũ( · , η) = (h( · , η), µ( · , η), γ( · , η)) From the
definition of the operator F , we conclude that

‖ũ(t, η)‖∗ ≤ ‖v(t, η)‖∗ +
∫ t

0

A

[
‖ũ(s, η)‖∗

]
ds.

From the Gronwall inequality there follows:

‖ũ(t)‖∗ ≤
[
‖v(t, η)‖∗

]
eAa.

From Assumption H[F, ω] we infer that ‖(F′[u(0)( · , η)])−1F[u(0)( · , η)]‖CL ≤ η̄.
From Theorem 2.1, the conclusion of the Theorem follows.

Remark 3. Theorems on differential or differential-functional inequalities are used
in to prove the convergence of Chaplyghin sequences in [1–4] and [7–9]. Then as-
sumptions on monotonicity of given functions are needed there. It is important in our
considerations that we do not assume monotonicity conditions for the given functions
in (7) and (23).
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