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ON A MULTIVALUED SECOND ORDER
DIFFERENTIAL PROBLEM
WITH HUKUHARA DERIVATIVE

Abstract. Let K be a closed convex cone with the nonempty interior in a real Banach space
and let cc(K) denote the family of all nonempty convex compact subsets of K. Assume that
continuous linear multifunctions H,V: K — cc(K) are given. We consider the following

problem
D*®(t,x) = ©(t, H(x)),

D®(t,z)|i=0 = {0},

®(0,z) = ¥(x)
fort > 0 and z € K, where D®(¢, z) denotes the Hukuhara derivative of ® (¢, z) with respect
to t.

Keywords: Hukuhara’s derivative, multivalued cosine families, Riemann integral for mul-
tifunctions, Cauchy problem for a set-valued differential equation.

Mathematics Subject Classification: 26E25, 39B52, 47D09.

Let X be a real vector space. Throughout this paper, all vector spaces are supposed
to be real. We introduce addition and multiplication by scalar as follows:

A+B:={a+b: ac A be B} and M :={la: ac A}

for A, B C X and X € R.

A subset K of X is called a cone if tK C K for all t € (0,400). A cone is said to
be convex if it is a convex set.

Let X and Y be two vector spaces and let K C X be a convex cone. A set-valued
function F': K — n(Y), where n(Y") denotes the family of all nonempty subsets of Y,
is called linear if

Flxz+4y)=F(z)+ F(y) and F(\z)=AF(x)

for all z,y € K and A > 0.
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From now on, we assume that X is a normed vector space, ¢(X) denotes the family
of all compact members of n(X) and cc(X) stands for the family of all convex sets of
c(X).

Let A, B, C be in cc(X). The set C is the Hukuhara difference of A and B,
if B4+ C = A. From Radstrom’s Cancellation Lemma [18], it follows that if this
difference exists, then it is unique.

For a multifunction F': [a,b] — cc(X) such that there exist the Hukuhara differ-
ences F(t) — F(s) as a < s <t < b, the Hukuhara derivative at ¢t € (a,b) is defined
by the formula

DF(t) = lim F(t+k)— F(t) — lim F(t)— F(t —k)
k—0+ k k—0+ k

)

whenever both these limits exist with respect to the Hausdorff distance h (see [13]).
Moreover,
F(s)— F F(b) - F
DF(a) = tim ZEZE@ ey o gy FO ()
s—at s—a s—b— b—s
The Hukuhara derivative is not the only derivative defined for multifunctions
(see for example [5,12] or [15]). The study of set-valued differentiation started with
papers [7,8] and [9] of G. Bouligand and papers [14] of H. Marchaund and [23] of S. C.
Zaremba, where Bouligand’s definitions have been applied to differential inequalities.
To get other information including the rich bibliography, the reader is reffered to
[1-4,19].
Let (K,4) be a semigroup. A one-parameter family {F; : ¢ > 0} of set-velued
functions F; : K — n(K) is said to be a cosine family if

Fo(z) ={z} forxze K

and
Frpo(@) + Fi_g(z) = 2F,(Fu(x)) == 2| {F:(y) : y € Fu(2)} (1)

forr e K and 0 < s <t.
Let X be a normed space. A cosine family {F}; : ¢ > 0} is said to be regular if

tli%l+ h(Fy(z),{z}) =0.

It was shown in [17] that if K is a closed convex cone with the nonempty interior
in a Banach space and {F; : ¢ > 0} is a regular cosine family of continuous linear
set-valued functions Fy: K — cc(K) such that © € Fy(x) for all x € K, t > 0 and
F,oFs=F;o0F; for all s,t >0, then

DFy(z)|t=0 = {0} and D?Fy(x) = F;(H(x))

for x € K, t > 0, where DF;(x) denotes the Hukuhara derivative of Fy(z) with respect
to t and H(z) is the second Hukuhara derivative of this multifunction at ¢ = 0. It is
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a reason for studying the existence and uniqueness of a solution ®: [0, +o0) x K —
cc(K) of the following differential problem

D?*®(t,x) = ®(t, H(z)),
Do(t, x)l=0 = {0}, (2)
®(0,z) = ¥(z),
where H, ¥: K — cc(K) are given continuous linear set-valued functions and D®(¢, x)
denotes the Hukuhara derivative of ®(t,x) with respect to ¢, with the condition that
this solution is linear with respect to the second variable. The goal of this paper is to
study this problem.

A similar first order differential problem was investigated in [20]. The uniqueness
and existence theorems for other types of first order differential problem can be found
in [10].

Let X be a Banach space and let [a,b] C R. If a multifunction F': [a,b] — cc(X)
is continuous, then there exists the Riemann integral

b

/F(t)dt

a
(see [13]). We need the following properties of the Riemann integral.
Lemma 1 ([13, p. 211]). If F,G: [a,b] — cc(X) are continuous, then

b b b
h(/F(t)dt,/G(t)dt) < /h(F(t),G(t))dt.

Lemma 2 ([13, p. 211]). If F': [a,b] — cc(X) is continuous and a < ¢ < b, then

/b F(t)dt = / Ft)dt + /b F(t)dt.

Lemma 3 (|16, Lemma 10]). If F': [a,b] — cc(X) is continuous, then

t
H(t):/F(u)du fora<t<b

a

18 continuous.

¢
Lemma 4 (|20, Lemma 4]). If F: [a,b] — cc(X) is continuous and H(t) = [ F(u)du,

then DH(t) = F(t) fora <t <b.
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Lemma 5 ([20, Lemma 5|). If F, G: [a,b] — cc(X) are two differentiable multifunc-
tions such that DF(t) = DG(t) for t € [a,b] and F(a) = G(a), then

F(t)=G(t) forté€|a,b].

Definition 1. Let K be a convex cone in a Banach space and let H,¥: K — cc(K)
be two continuous linear multifunctions. A map ®: [0,+00) x K — cc(K) is said to
be a solution of problem (2) if it is continuous, twice differentiable with respect to t
and ® satisfies (2) everywhere in [0,+00) x K and in K, respectively.

With problem (2), we associate the following equation

B(t,z) = xp(x)+/ (/@(u,H(x))du> ds 3)

0 0

for x € K, t € [0,400), where H,¥: K — cc(K) are given continuous linear multi-
functions.

Definition 2. Let K be a convex cone in a Banach space and let H,¥: K — cc(K)
be two continuous linear multifunctions. A map ®: [0, +00) x K — cc(K) is said to
be a solution of (3) if it is continuous and satisfies (3) everywhere.

Theorem 1. Let K be a convex cone in a Banach space X and let H,V: K — cc(K)
be continuous linear multifunctions. Let ®: [0,400)x K — cc(K) be a given set-valued
function. This ® is a solution of problem (2) if and only if it is a solution of (3).

Proof. Suppose that a set-valued function ®(t,z) is a solution of (3). Then it is
continuous. Fix € > 0, ¢t > 0 and # € K. Since the set [0,¢] x H(x) is compact, there
exists 6 > 0 such that

h(®(u,a),®(v,b)) <e

for u,v € [0,t], a,b € H(z), where |u —v| <, ||a — b|]| < §. Therefore,
®(u,a) C ®(v,a) +eS C (v,H(x)) +&S

and
®(v,a) C P(u,a) +eS C (u, H(x)) +eS

for a € H(x), u,v € [0,t] such that |u —v| < §, where S denotes the closed unit ball
in X. This implies that

®(u, H(z)) C ®(v, H(z)) + 5

and
O(v,H(x)) C O(u, H(x)) + &S

for u,v € [0,¢] such that |u — v| < §. Thus for every 2 € K the multifunction

u— ®(u, H(x))
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is continuous in [0, +00). By Lemmas 3, 4, the set-valued function

@@@wm+j<jﬂmﬂmm0@

0 0

is twice differentiable with respect to ¢t and

D2®(t,z) = D*W(z) +D2/ (/@(u,H(I))du) ds = ®(t, H(x)).

0 0

Obviously, ®(0,z) = ¥(z) and D®(t,z) = fg D(u, H(x))du so DO(t,z)|=0 = {0}.
Thus @ satisfies (2).
Now suppose that ®(¢,x) is a solution of (2) and let

S

n@@:ﬂ@+/</qwmmm0@ (t,2) € [0, +00) x K.

By Lemma 4, we get
t

DI1I(t, x) z/q)(u,H(x))du
and
D*1(t,z) = ®(t, H(z)).

Since 11(0,7) = ¥(x) = ®(0,2), DI(t,z)|=0 = {0} = D®(t,z)|;=0, D*1L(t,z) =
D?®(t, x), then using Lemma 5 we obtain

(¢, x) = ®(t, ) for (¢t,x) € [0,400) x K. O

In the proof of next theorem we use the following two lemmas.

Lemma 6 ([22, Theorem 3|). Let X and Y be two normed spaces and let K be a
convex cone in X. Suppose that {F; : i € I} is a family of superadditive set-valued
functions F;: K — n(Y) lower semicontinuous in K and Q. -homogeneous. If K is
of the second category in K and J;c; Fi(v) € b(Y) for x € K, then there exists a
constant M € (0,+00) such that

sup [|[Fy(2)|| < M|[zl|  forz € K.
iel

Let K be a closed convex cone in X. Applying Lemma 6 we can define the norm
|IF'|| of a continuous linear multifunction F': K — n(K) to be the smallest element of
the set

{M>0: [[F(z)| < Mlz], = € K}.
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Lemma 7 (|21, Lemma 5]). Let X and Y be two normed spaces and let h be the
Hausdorff distance derived from the norm in'Y. Assume that K is a convex cone in
X such that int K # (. Then there exists a constant My € (0,400) such that the
inequality

h(F(2), F(y)) < Mol|Fllllz — ]

holds for all continuous additive set-valued functions F': K —c(Y) and for allz,y€ K.
Theorem 2. Let K be a closed convex cone with the nonempty interior in a Banach
space and let H,U: K — cc(K) be two continuous linear multifunctions. Then there

exists exactly one solution of problem (2). Moreover, this solution is linear with respect
to the second variable.

Proof. Fix T > 0. Let E be the set of all continuous set-valued functions ®: [0, 7] x
K — cc(K) such that o — ®(t, ) is linear. We define a functional p in E x E by

p(®,11) = sup{h(®(t, A),II(t, A)) : 0 <t <T, A€ ce(K), [|A]| <1}

for ®,I1 € E. Since sets
o0, z)= |J @)

t€[0,T)

are compact for ® € F and « € K (see Theorem 3, Chap. IV, p. 110 in [6]), they are
bounded. So by Lemma 6, for every ® € F there exists a positive constant Mg such
that

[@(t, 2)|| < Mo ||z|

for ¢ € [0,7] and = € K. Therefore,
B®(t, A),TI(t, A)) < h(®(t, A), {0}) + h({0}, TI(t, A)) < Mg + My
for t € [0,7] and A € cc(K) such that ||A]| < 1. Thus
p(®,II) < Mg + My < +o0,

hence the functional p is finite. It is easy to verify that p is a metric in E.
As the space (cc(K), h) is complete (see [11]), (F, p) is a complete metric space.
We introduce a map I' which with every ® € E associates the set-valued function
I'® defined by

t s
(TO)(t, ) == U(z) + / ( / @(u,H(x))du) ds (4)
0 No
for (t,z) € [0,T] x K. We see that every set (I'®)(t,x) belongs to cc(K) and T'® is
linear with respect the second variable.
Next we show that I'® is continuous. Let ® € I, z,y € K and 0 < t; <ty < T.
Similarly as above, by Lemma 6, there exists a positive constant Mg such that

[®(u, a)|| < Ma|a] (5)
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for u € [0,7T] and a € K. This implies that
1 (u, H(2))|| < Mol H ()]
for u € [0,T]. Thus

7<j@(u,H(x))du>ds < f( S ||<I>(u,H(x))||du>ds <
0

ty 0 ty

to s

< / ( / M¢||H<x>||du>ds =

t1

t27t2
= 2B H @),

By Lemma 7 and (5), there exists a positive constant My such that
W@ (u, a), D(u, b)) < Mo||®(u, -)[l[la — bl < MoMas||a —b]|
for w € [0,7T] and a,b € K. Therefore,
D (u,a) C ®(u,b) + MoMglla —b||S
for w € [0,7] and a,b € K.
Let e > 0 and a € H(x). There exists b € H(y) for which
€
MoMg'
This shows that for every a € H(x) there exists b € H(y) such that
D(u,a) C ®(u,b) + MoMsd(a, H(y))S +eS C
C (u, H(y)) + MoMoh(H (x), H(y))S + €5,

la =0l < d(a, H(y)) +

thus
O(u, H(x)) C ®(u, H(y)) + MoMah(H(z), H(y))S + S

for u € [0,T]. Since € > 0 and z,y € K are arbitrary, we obtain
h(®(u, H(x)), (u, H(y))) < MoMoh(H (z), H(y)).

Hence by Lemma 1,

h (O/t (j@(u,H(x))du)ds,/ (j@(u,H(y))du) ds> <

0 0 0

</ ( / h(@(u,H(z))@(u,H(y»)du)ds <

0 0
t

_/< M0M¢h(H(x),H(y))du>ds:
0 0

2
= L MoMah(H(x), H(y).

A
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By (4), (6) and (7), we get

h((T®)(t1,x) )(te,y)) <
< s (/ O/MH du)ds,o/</¢
e ( / (d>d/</

h({O}!(O/ " du)d)

< h(¥(z), ¥(y)) + glMoMM(H(ﬂ?),H(y)) +

t2

)
)

5t
——— Mo||H(y)]|

This shows that I'® is a continuous set-valued function, because ¥ and H are contin-
uous. It is obvious that z — (I'®)(¢,x), t € [0,T], are linear. Therefore,

I' F — FE.

Now, we prove that I' has exactly one fixed point.

From Lemma 1 and properties of the Hausdorff metric there follows

h(T®)(t, z), (TT)(2, 2)) =

= h (qf(x)+/t (j@(u,H(a:))du)ds,
0

0

0
=h (/ </<I>(u,H(w))du>ds,/ (/H(U,H(z))du
0 MO 0

I A

< h(® x)), H(u,H(m)))du) ds

for t € [0,T] and x € SN K. Thus

2

h(T®)(t, z), (TT)(#, x)) < %p((I%H)HH(x)II

for t € [0,7] and € SN K. This implies that

T2
p(D®,TTT) < | ] p(@, ).
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Let
Oy (t,x) := (T'D)(t,x) and TIIi(t, x) := (TI)(¢, x).

By (8), there is

h((C*@) (¢, @), (P°I0) (t,2)) = h((0®1) (t, 2), (TIL) (£, ) <

/(/ ), Iy (u, H(x )))du)ds.
0

According to (9), we get

u2

h(@1(u,y), i (u,y)) < —p(2, D[ H(y)]

for y € H(z). Thus
ut
2

h (@1 (u, y), i (u, y)) < - p(@,ID|H(H (2))|

S0
2
u

®1(u,y) C T (u,y) + 5-p(®, T H?(2)||S

and
I (1.9) € B4 (u.9) + (@, 1) | H2(2)] .

Hence )

@1 (u, H(x)) © I (u, H(x)) + 5p(@, 1D|| H>()]|S
and )

M (u, H(2)) © $1(u, H(2)) + 5 p(@, | H(@)]S,

B (@, H (@) T o, H (@) < (@, )| H2(0)]
Therefore,

h((T°) (t,2), (T°T0) (t, ) g/(/I;p(é,H)HHQ(x)Hdu>ds
0 0
t4

= /(@ | B (@)

for t € [0,7] and z € SN K. Thus

T4
p (2@, T°I0) < —p(@, )| H||*.
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By induction we obtain

| H|"
I"e il < ————p(®,11
for n € N. o
We observe that for every T > 0 there exists n € N such that LIHI" g

(2n)!

From the Banach fixed point theorem we conclude that I'"* has exactly one fixed
point, whence it follows that I'" has exactly one fixed point. This means that there
exists exactly one solution of problem (2) for (¢,z) € [0,T] x K. O

Now we describe an application. Let K be a closed convex cone with the nonempty
interior in a Banach space. Suppose that {F; : ¢ > 0} and {G; : t > 0} are regular
cosine families of continuous linear multifunctions Fy: K — cc(K), Gy K — cc(K)
such that z € Fy(x), x € G¢(z), FyroFs = Fs0F;, Gt oGy = Gy 0 Gy for x € K,
s,t > 0 and

H(ﬂ?) = DQFt(.’E)|t:0 = DQGt(.’L')lt:().

Then multifunctions (¢,2) — Fi(x) and (t,z) — Gi(z) are linear with respect to
x and satisfy (2) with ¥(z) = {z}. By virtue of Theorem 2, Fi(x) = Gi(z) for
(t,x) € [0,+00) x K. This means that if two regular cosine families as those above
have the same second order infinitesimal generator, then there are equal.
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