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ON A MULTIVALUED SECOND ORDER
DIFFERENTIAL PROBLEM

WITH HUKUHARA DERIVATIVE

Abstract. Let K be a closed convex cone with the nonempty interior in a real Banach space
and let cc(K) denote the family of all nonempty convex compact subsets of K. Assume that
continuous linear multifunctions H, Ψ: K → cc(K) are given. We consider the following
problem

D2Φ(t, x) = Φ(t, H(x)),

DΦ(t, x)|t=0 = {0},

Φ(0, x) = Ψ(x)

for t ≥ 0 and x ∈ K, where DΦ(t, x) denotes the Hukuhara derivative of Φ(t, x) with respect
to t.

Keywords: Hukuhara’s derivative, multivalued cosine families, Riemann integral for mul-
tifunctions, Cauchy problem for a set-valued differential equation.

Mathematics Subject Classification: 26E25, 39B52, 47D09.

Let X be a real vector space. Throughout this paper, all vector spaces are supposed
to be real. We introduce addition and multiplication by scalar as follows:

A + B := {a + b : a ∈ A, b ∈ B} and λA := {λa : a ∈ A}

for A,B ⊂ X and λ ∈ R.
A subset K of X is called a cone if tK ⊂ K for all t ∈ (0,+∞). A cone is said to

be convex if it is a convex set.
Let X and Y be two vector spaces and let K ⊂ X be a convex cone. A set-valued

function F : K → n(Y ), where n(Y ) denotes the family of all nonempty subsets of Y ,
is called linear if

F (x + y) = F (x) + F (y) and F (λx) = λF (x)

for all x, y ∈ K and λ ≥ 0.
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From now on, we assume that X is a normed vector space, c(X) denotes the family
of all compact members of n(X) and cc(X) stands for the family of all convex sets of
c(X).

Let A, B, C be in cc(X). The set C is the Hukuhara difference of A and B,
if B + C = A. From Rådström’s Cancellation Lemma [18], it follows that if this
difference exists, then it is unique.

For a multifunction F : [a, b] → cc(X) such that there exist the Hukuhara differ-
ences F (t) − F (s) as a ≤ s ≤ t ≤ b, the Hukuhara derivative at t ∈ (a, b) is defined
by the formula

DF (t) = lim
k→0+

F (t + k)− F (t)
k

= lim
k→0+

F (t)− F (t− k)
k

,

whenever both these limits exist with respect to the Hausdorff distance h (see [13]).
Moreover,

DF (a) = lim
s→a+

F (s)− F (a)
s− a

, DF (b) = lim
s→b−

F (b)− F (s)
b− s

.

The Hukuhara derivative is not the only derivative defined for multifunctions
(see for example [5, 12] or [15]). The study of set-valued differentiation started with
papers [7,8] and [9] of G. Bouligand and papers [14] of H. Marchaund and [23] of S. C.
Zaremba, where Bouligand’s definitions have been applied to differential inequalities.
To get other information including the rich bibliography, the reader is reffered to
[1–4,19].

Let (K, +) be a semigroup. A one-parameter family {Ft : t ≥ 0} of set-velued
functions Ft : K → n(K) is said to be a cosine family if

F0(x) = {x} for x ∈ K

and
Ft+s(x) + Ft−s(x) = 2Ft(Fs(x)) := 2

⋃
{Ft(y) : y ∈ Fs(x)} (1)

for x ∈ K and 0 ≤ s ≤ t.
Let X be a normed space. A cosine family {Ft : t ≥ 0} is said to be regular if

lim
t→0+

h(Ft(x), {x}) = 0.

It was shown in [17] that if K is a closed convex cone with the nonempty interior
in a Banach space and {Ft : t ≥ 0} is a regular cosine family of continuous linear
set-valued functions Ft : K → cc(K) such that x ∈ Ft(x) for all x ∈ K, t ≥ 0 and
Ft ◦ Fs = Fs ◦ Ft for all s, t ≥ 0, then

DFt(x)|t=0 = {0} and D2Ft(x) = Ft(H(x))

for x ∈ K, t ≥ 0, where DFt(x) denotes the Hukuhara derivative of Ft(x) with respect
to t and H(x) is the second Hukuhara derivative of this multifunction at t = 0. It is
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a reason for studying the existence and uniqueness of a solution Φ: [0,+∞) ×K →
cc(K) of the following differential problem

D2Φ(t, x) = Φ(t, H(x)),

DΦ(t, x)|t=0 = {0},

Φ(0, x) = Ψ(x),

(2)

where H,Ψ: K → cc(K) are given continuous linear set-valued functions and DΦ(t, x)
denotes the Hukuhara derivative of Φ(t, x) with respect to t, with the condition that
this solution is linear with respect to the second variable. The goal of this paper is to
study this problem.

A similar first order differential problem was investigated in [20]. The uniqueness
and existence theorems for other types of first order differential problem can be found
in [10].

Let X be a Banach space and let [a, b] ⊂ R. If a multifunction F : [a, b] → cc(X)
is continuous, then there exists the Riemann integral

b∫
a

F (t)dt

(see [13]). We need the following properties of the Riemann integral.

Lemma 1 ([13, p. 211]). If F,G : [a, b] → cc(X) are continuous, then

h

( b∫
a

F (t)dt,

b∫
a

G(t)dt

)
≤

b∫
a

h(F (t), G(t))dt.

Lemma 2 ([13, p. 211]). If F : [a, b] → cc(X) is continuous and a < c < b, then

b∫
a

F (t)dt =

c∫
a

F (t)dt +

b∫
c

F (t)dt.

Lemma 3 ([16, Lemma 10]). If F : [a, b] → cc(X) is continuous, then

H(t) =

t∫
a

F (u)du for a ≤ t ≤ b

is continuous.

Lemma 4 ([20, Lemma 4]). If F : [a, b] → cc(X) is continuous and H(t) =
t∫

a

F (u)du,

then DH(t) = F (t) for a ≤ t ≤ b.
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Lemma 5 ([20, Lemma 5]). If F,G : [a, b] → cc(X) are two differentiable multifunc-
tions such that DF (t) = DG(t) for t ∈ [a, b] and F (a) = G(a), then

F (t) = G(t) for t ∈ [a, b].

Definition 1. Let K be a convex cone in a Banach space and let H,Ψ: K → cc(K)
be two continuous linear multifunctions. A map Φ: [0,+∞) ×K → cc(K) is said to
be a solution of problem (2) if it is continuous, twice differentiable with respect to t
and Φ satisfies (2) everywhere in [0,+∞)×K and in K, respectively.

With problem (2), we associate the following equation

Φ(t, x) = Ψ(x) +

t∫
0

( s∫
0

Φ(u, H(x))du

)
ds (3)

for x ∈ K, t ∈ [0,+∞), where H,Ψ: K → cc(K) are given continuous linear multi-
functions.

Definition 2. Let K be a convex cone in a Banach space and let H,Ψ: K → cc(K)
be two continuous linear multifunctions. A map Φ: [0,+∞) ×K → cc(K) is said to
be a solution of (3) if it is continuous and satisfies (3) everywhere.

Theorem 1. Let K be a convex cone in a Banach space X and let H,Ψ: K → cc(K)
be continuous linear multifunctions. Let Φ: [0,+∞)×K → cc(K) be a given set-valued
function. This Φ is a solution of problem (2) if and only if it is a solution of (3).

Proof. Suppose that a set-valued function Φ(t, x) is a solution of (3). Then it is
continuous. Fix ε > 0, t > 0 and x ∈ K. Since the set [0, t]×H(x) is compact, there
exists δ > 0 such that

h(Φ(u, a),Φ(v, b)) < ε

for u, v ∈ [0, t], a, b ∈ H(x), where |u− v| < δ, ‖a− b‖ < δ. Therefore,

Φ(u, a) ⊂ Φ(v, a) + εS ⊂ Φ(v,H(x)) + εS

and
Φ(v, a) ⊂ Φ(u, a) + εS ⊂ Φ(u, H(x)) + εS

for a ∈ H(x), u, v ∈ [0, t] such that |u− v| < δ, where S denotes the closed unit ball
in X. This implies that

Φ(u, H(x)) ⊂ Φ(v,H(x)) + εS

and
Φ(v,H(x)) ⊂ Φ(u, H(x)) + εS

for u, v ∈ [0, t] such that |u− v| < δ. Thus for every x ∈ K the multifunction

u 7→ Φ(u, H(x))
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is continuous in [0,+∞). By Lemmas 3, 4, the set-valued function

Φ(t, x) = Ψ(x) +

t∫
0

( s∫
0

Φ(u, H(x))du

)
ds

is twice differentiable with respect to t and

D2Φ(t, x) = D2Ψ(x) + D2

t∫
0

( s∫
0

Φ(u, H(x))du

)
ds = Φ(t,H(x)).

Obviously, Φ(0, x) = Ψ(x) and DΦ(t, x) =
∫ t

0
Φ(u, H(x))du so DΦ(t, x)|t=0 = {0}.

Thus Φ satisfies (2).
Now suppose that Φ(t, x) is a solution of (2) and let

Π(t, x) = Ψ(x) +

t∫
0

( s∫
0

Φ(u, H(x))du

)
ds, (t, x) ∈ [0,+∞)×K.

By Lemma 4, we get

DΠ(t, x) =

t∫
0

Φ(u, H(x))du

and
D2Π(t, x) = Φ(t, H(x)).

Since Π(0, x) = Ψ(x) = Φ(0, x), DΠ(t, x)|t=0 = {0} = DΦ(t, x)|t=0, D2Π(t, x) =
D2Φ(t, x), then using Lemma 5 we obtain

Π(t, x) = Φ(t, x) for (t, x) ∈ [0,+∞)×K.

In the proof of next theorem we use the following two lemmas.

Lemma 6 ([22, Theorem 3]). Let X and Y be two normed spaces and let K be a
convex cone in X. Suppose that {Fi : i ∈ I} is a family of superadditive set-valued
functions Fi : K → n(Y ) lower semicontinuous in K and Q+-homogeneous. If K is
of the second category in K and

⋃
i∈I Fi(x) ∈ b(Y ) for x ∈ K, then there exists a

constant M ∈ (0,+∞) such that

sup
i∈I

‖Fi(x)‖ ≤ M‖x‖ for x ∈ K.

Let K be a closed convex cone in X. Applying Lemma 6 we can define the norm
‖F‖ of a continuous linear multifunction F : K → n(K) to be the smallest element of
the set

{M > 0 : ‖F (x)‖ ≤ M‖x‖, x ∈ K}.
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Lemma 7 ([21, Lemma 5]). Let X and Y be two normed spaces and let h be the
Hausdorff distance derived from the norm in Y . Assume that K is a convex cone in
X such that intK 6= ∅. Then there exists a constant M0 ∈ (0,+∞) such that the
inequality

h(F (x), F (y)) ≤ M0‖F‖‖x− y‖

holds for all continuous additive set-valued functions F :K→c(Y ) and for all x, y∈K.

Theorem 2. Let K be a closed convex cone with the nonempty interior in a Banach
space and let H,Ψ: K → cc(K) be two continuous linear multifunctions. Then there
exists exactly one solution of problem (2). Moreover, this solution is linear with respect
to the second variable.

Proof. Fix T > 0. Let E be the set of all continuous set-valued functions Φ: [0, T ]×
K → cc(K) such that x 7→ Φ(t, x) is linear. We define a functional ρ in E × E by

ρ(Φ,Π) = sup{h(Φ(t, A),Π(t, A)) : 0 ≤ t ≤ T, A ∈ cc(K), ‖A‖ ≤ 1}

for Φ,Π ∈ E. Since sets
Φ([0, T ], x) =

⋃
t∈[0,T ]

Φ(t, x)

are compact for Φ ∈ E and x ∈ K (see Theorem 3, Chap. IV, p. 110 in [6]), they are
bounded. So by Lemma 6, for every Φ ∈ E there exists a positive constant MΦ such
that

‖Φ(t, x)‖ ≤ MΦ‖x‖

for t ∈ [0, T ] and x ∈ K. Therefore,

h(Φ(t, A),Π(t, A)) ≤ h(Φ(t, A), {0}) + h({0},Π(t, A)) ≤ MΦ + MΠ

for t ∈ [0, T ] and A ∈ cc(K) such that ‖A‖ ≤ 1. Thus

ρ(Φ,Π) ≤ MΦ + MΠ < +∞,

hence the functional ρ is finite. It is easy to verify that ρ is a metric in E.
As the space (cc(K), h) is complete (see [11]), (E, ρ) is a complete metric space.
We introduce a map Γ which with every Φ ∈ E associates the set-valued function

ΓΦ defined by

(ΓΦ)(t, x) := Ψ(x) +

t∫
0

( s∫
0

Φ(u, H(x))du

)
ds (4)

for (t, x) ∈ [0, T ] × K. We see that every set (ΓΦ)(t, x) belongs to cc(K) and ΓΦ is
linear with respect the second variable.

Next we show that ΓΦ is continuous. Let Φ ∈ E, x, y ∈ K and 0 ≤ t1 ≤ t2 ≤ T .
Similarly as above, by Lemma 6, there exists a positive constant MΦ such that

‖Φ(u, a)‖ ≤ MΦ‖a‖ (5)
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for u ∈ [0, T ] and a ∈ K. This implies that

‖Φ(u, H(x))‖ ≤ MΦ‖H(x)‖

for u ∈ [0, T ]. Thus∥∥∥∥∥∥
t2∫

t1

( s∫
0

Φ(u, H(x))du

)
ds

∥∥∥∥∥∥ ≤
t2∫

t1

( s∫
0

‖Φ(u, H(x))‖du

)
ds ≤

≤
t2∫

t1

( s∫
0

MΦ‖H(x)‖du

)
ds = (6)

=
t22 − t21

2
MΦ‖H(x)‖.

By Lemma 7 and (5), there exists a positive constant M0 such that

h(Φ(u, a),Φ(u, b)) ≤ M0‖Φ(u, ·)‖‖a− b‖ ≤ M0MΦ‖a− b‖

for u ∈ [0, T ] and a, b ∈ K. Therefore,

Φ(u, a) ⊂ Φ(u, b) + M0MΦ‖a− b‖S

for u ∈ [0, T ] and a, b ∈ K.
Let ε > 0 and a ∈ H(x). There exists b ∈ H(y) for which

‖a− b‖ < d(a,H(y)) +
ε

M0MΦ
.

This shows that for every a ∈ H(x) there exists b ∈ H(y) such that

Φ(u, a) ⊂ Φ(u, b) + M0MΦd(a,H(y))S + εS ⊂
⊂ Φ(u, H(y)) + M0MΦh(H(x),H(y))S + εS,

thus
Φ(u, H(x)) ⊂ Φ(u, H(y)) + M0MΦh(H(x),H(y))S + εS

for u ∈ [0, T ]. Since ε > 0 and x, y ∈ K are arbitrary, we obtain

h(Φ(u, H(x)),Φ(u, H(y))) ≤ M0MΦh(H(x),H(y)).

Hence by Lemma 1,

h

 t∫
0

( s∫
0

Φ(u, H(x))du

)
ds,

t∫
0

( s∫
0

Φ(u, H(y))du

 ds

)
≤

≤
t∫

0

( s∫
0

h(Φ(u, H(x)),Φ(u, H(y)))du

)
ds ≤

≤
t∫

0

( s∫
0

M0MΦh(H(x),H(y))du

)
ds =

=
t2

2
M0MΦh(H(x),H(y)).

(7)
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By (4), (6) and (7), we get

h((ΓΦ)(t1, x), (ΓΦ)(t2, y)) ≤

≤ h(Ψ(x),Ψ(y)) + h

 t1∫
0

( s∫
0

Φ(u, H(x))du

)
ds,

t2∫
0

( s∫
0

Φ(u, H(y))du

)
ds

 ≤

≤ h(Ψ(x),Ψ(y)) + h

 t1∫
0

( s∫
0

Φ(u, H(x))du

)
ds,

t1∫
0

( s∫
0

Φ(u, H(y))du

)
ds

+

+ h

{0}, t2∫
t1

( s∫
0

Φ(u, H(y))du

)
ds

 ≤

≤ h(Ψ(x),Ψ(y)) +
t21
2

M0MΦh(H(x),H(y)) +
t22 − t21

2
MΦ‖H(y)‖.

This shows that ΓΦ is a continuous set-valued function, because Ψ and H are contin-
uous. It is obvious that x 7→ (ΓΦ)(t, x), t ∈ [0, T ], are linear. Therefore,

Γ: E → E.

Now, we prove that Γ has exactly one fixed point.
From Lemma 1 and properties of the Hausdorff metric there follows

h((ΓΦ)(t, x), (ΓΠ)(t, x)) =

= h

Ψ(x) +

t∫
0

( s∫
0

Φ(u, H(x))du

)
ds,

Ψ(x) +

t∫
0

( s∫
0

Π(u, H(x))du

)
ds

 =

= h

 t∫
0

( s∫
0

Φ(u, H(x))du

)
ds,

t∫
0

( s∫
0

Π(u, H(x))du

)
ds

 ≤

≤
t∫

0

( s∫
0

h(Φ(u, H(x)),Π(u, H(x)))du

)
ds

(8)

for t ∈ [0, T ] and x ∈ S ∩K. Thus

h((ΓΦ)(t, x), (ΓΠ)(t, x)) ≤ t2

2
ρ(Φ,Π)‖H(x)‖ (9)

for t ∈ [0, T ] and x ∈ S ∩K. This implies that

ρ(ΓΦ,ΓΠ) ≤ T 2

2
‖H‖ρ(Φ,Π).
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Let
Φ1(t, x) := (ΓΦ)(t, x) and Π1(t, x) := (ΓΠ)(t, x).

By (8), there is

h
((

Γ2Φ
)
(t, x),

(
Γ2Π

)
(t, x)

)
= h ((ΓΦ1) (t, x), (ΓΠ1) (t, x)) ≤

≤
t∫

0

( s∫
0

h (Φ1(u, H(x)) ,Π1 (u, H(x))) du

)
ds.

According to (9), we get

h (Φ1(u, y),Π1(u, y)) ≤ u2

2
ρ(Φ,Π)‖H(y)‖

for y ∈ H(x). Thus

h (Φ1(u, y),Π1(u, y)) ≤ u2

2
ρ(Φ,Π)‖H(H(x))‖

so

Φ1(u, y) ⊂ Π1(u, y) +
u2

2
ρ(Φ,Π)‖H2(x)‖S

and

Π1(u, y) ⊂ Φ1(u, y) +
u2

2
ρ(Φ,Π)‖H2(x)‖S.

Hence

Φ1(u, H(x)) ⊂ Π1(u, H(x)) +
u2

2
ρ(Φ,Π)‖H2(x)‖S

and

Π1(u, H(x)) ⊂ Φ1(u, H(x)) +
u2

2
ρ(Φ,Π)‖H2(x)‖S,

i.e.,

h (Φ1(u, H(x)),Π1(u, H(x))) ≤ u2

2
ρ(Φ,Π)‖H2(x)‖.

Therefore,

h
((

Γ2Φ
)
(t, x),

(
Γ2Π

)
(t, x)

)
≤

t∫
0

( s∫
0

u2

2
ρ(Φ,Π)

∥∥H2(x)
∥∥du

)
ds

=
t4

4!
ρ(Φ,Π)‖H2(x)‖

for t ∈ [0, T ] and x ∈ S ∩K. Thus

ρ
(
Γ2Φ,Γ2Π

)
≤ T 4

4!
ρ(Φ,Π)‖H‖2.
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By induction we obtain

ρ (ΓnΦ,ΓnΠ) ≤ T 2n‖H‖n

(2n)!
ρ(Φ,Π)

for n ∈ N.
We observe that for every T > 0 there exists n ∈ N such that T 2n‖H‖n

(2n)! < 1.
From the Banach fixed point theorem we conclude that Γn has exactly one fixed

point, whence it follows that Γ has exactly one fixed point. This means that there
exists exactly one solution of problem (2) for (t, x) ∈ [0, T ]×K.

Now we describe an application. Let K be a closed convex cone with the nonempty
interior in a Banach space. Suppose that {Ft : t ≥ 0} and {Gt : t ≥ 0} are regular
cosine families of continuous linear multifunctions Ft : K → cc(K), Gt : K → cc(K)
such that x ∈ Ft(x), x ∈ Gt(x), Ft ◦ Fs = Fs ◦ Ft, Gt ◦ Gs = Gs ◦ Gt for x ∈ K,
s, t ≥ 0 and

H(x) := D2Ft(x)|t=0 = D2Gt(x)|t=0.

Then multifunctions (t, x) 7→ Ft(x) and (t, x) 7→ Gt(x) are linear with respect to
x and satisfy (2) with Ψ(x) = {x}. By virtue of Theorem 2, Ft(x) = Gt(x) for
(t, x) ∈ [0,+∞) × K. This means that if two regular cosine families as those above
have the same second order infinitesimal generator, then there are equal.
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