Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper a construction of a one-parameter family of quadrature formulas is presented. This family contains the classical quadrature formulas: trapezoidal rule, mid-point rule and two-point Gauss rule. One can prove that for any continuous function there exists a parameter for which the value of quadrature formula is equal to the integral. Some applications of this family to the construction of cubature formulas, numerical solution of ordinary differential equations and integral equations are presented.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
109--121
Opis fizyczny
Bibliogr. 5 poz., rys., wykr., tab.
Twórcy
autor
autor
autor
- AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-065 Cracow, Poland, bozek@uci.agh.edu.pl
Bibliografia
- [1] K. Atkinson, W. Han, Theoretical Numerical Analysis, A Functional Analysis Framework, Springer-Verlag, New York, 2001.
- [2] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I, Nonstiff Problems, Springer, New York, 1993.
- [3] D. Kincaid, W. Cheney, Numerical Analysis, Mathematics of Scientific Computing, 3rd ed., The University of Texas at Austin, Brooks/Cole-Thomson Learning, 2002.
- [4] E. Nyström, Über die praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben, Acta Math., 54 (1930), 185-204.
- [5] A.H. Stroud, Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHB-0001-0001