PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chaotic dynamics in the Volterra predator-prey model via linked twist maps

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove the existence of infinitely many periodic solutions and complicated dynamics, due to the presence of a topological horseshoe, for the classical Volterra predator-prey model with a periodic harvesting. The proof relies on some recent results about chaotic planar maps combined with the study of geometric features which are typical of linked twist maps.
Rocznik
Strony
567--592
Opis fizyczny
Bibliogr. 51poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] Z. Amine, R. Ortega, A periodic prey-predator system, J. Math. Anal. Appl. 185 (1994) 2, 477-489.
  • [2] M. Bardi, Predator-prey models in periodically fluctuating environments, J. Math. Biol. 12 (1981) 1, 127-140.
  • [3] A. Battauz, Coexistence states for periodic planar Kolmogorov systems, Nonlinear Anal. 37 (1999) 6, Ser. A: Theory Methods, 735-749.
  • [4] M. Braun, Differential equations and their applications, fourth ed., Texts in Applied Mathematics, vol. 11, Springer-Verlag, New York, 1993, An introduction to Applied Mathematics.
  • [5] R. Burton, R.W. Easton, Ergodicity of linked twist maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) (Berlin), Lecture Notes in Math., vol. 819, Springer, Berlin, 1980, pp. 35-49.
  • [6] T.A. Burton, V. Hutson, Permanence for nonautonomous predator-prey systems, Differential Integral Equations 4 (1991) 6, 1269-1280.
  • [7] G.J. Butler, H.I. Freedman, Periodic solutions of a predator-prey system with periodic coefficients, Math. Biosci. 55 (1981) 1-2, 27-38.
  • [8] A. Capietto, W. Dambrosio, D. Papini, Superlinear indefinite equations on the real line and chaotic dynamics, J. Differential Equations 181 (2002) 2, 419-438.
  • [9] J.M. Cushing, Periodic time-dependent predator-prey systems, SIAM J. Appl. Math. 32 (1977) 1, 82-95.
  • [10] R.L. Devaney, Subshifts of finite type in linked twist mappings, Proc. Amer. Math. Soc. 71 (1978) 2, 334_338.
  • [11] T.-R. Ding, H. Huang, F. Zanolin, A priori bounds and periodic solutions for a class of planar systems with applications to Lotka-Volterra equations, Discrete Contin. Dynam. Systems 1 (1995) 1, 103-117.
  • [12] T.-R. Ding, F. Zanolin, Harmonic solutions and subharmonic solutions for periodic Lotka-Volterra systems, Dynamical systems (Tianjin, 1990/1991), Nankai Ser. Pure Appl. Math. Theoret. Phys., vol. 4, World Sci. Publ., River Edge, NJ, 1993, pp. 55-65.
  • [13] T.-R. Ding, F. Zanolin, Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type, World Congress of Nonlinear Analysts '92, Vol. I-IV (Tampa, FL, 1992) (Berlin), de Gruyter, Berlin, 1996, pp. 395-406.
  • [14] Z. Galias, P. Zgliczyński, Computer assisted proof of chaos in the Lorenz equations, Phys. D 115 (1998) 3-4, 165-188.
  • [15] A.R. Hausrath, Periodic integral manifolds for periodically forced Volterra-Lotka equations, J. Math. Anal. Appl. 87 (1982) 2, 474-488.
  • [16] A.R. Hausrath, R.F. Manásevich, Periodic solutions of periodically harvested Lotka-Volterra systems, Rev. Colombiana Mat. 21 (1987), no. 2-4, 337-345.
  • [17] A.R. Hausrath, R.F. Manásevich, Periodic solutions of a periodically perturbed Lotka-Volterra equation using the Poincaré-Birkhoff theorem, J. Math. Anal. Appl. 157 (1991) 1, 1-9.
  • [18] J. Kennedy, S. Koçak, J.A. Yorke, A chaos lemma, Amer. Math. Monthly 108 (2001) 5, 411-423.
  • [19] J. Kennedy, J.A. Yorke, Topological horseshoes, Trans. Amer. Math. Soc. 353 (2001) 6, 2513-2530.
  • [20] U. Kirchgraber, D. Stoffer, On the definition of chaos, Z. Angew. Math. Mech. 69 (1989) 7, 175-185.
  • [21] A.N. Kolmogorov, Sulla teoria di Volterra della lotta per l'esistenza, Giorn. Ist. Ital. Attuari 7 (1936), 74-80.
  • [22] B. Lani-Wayda, R. Srzednicki, A generalized Lefschetz fixed point theorem and symbolic dynamics in delay equations, Ergodic Theory Dynam. Systems 22 (2002) 4, 1215-1232.
  • [23] B. Liu, The stability of harmonic solutions of Lotka-Volterra systems, J. Math. Anal. Appl. 194 (1995) 3, 727-740.
  • [24] J. López-Gómez, R. Ortega, A. Tineo, The periodic predator-prey Lotka-Volterra model, Adv. Differential Equations 1 (1996) 3, 403-423.
  • [25] J. Mawhin, Les héritiers de Pierre-François Verhulst: une population dynamique, Acad. Roy. Belg. Bull. Cl. Sci. (6) 13 (2002) 7-12, 349-378 (2003).
  • [26] J. Mawhin, The legacy of Pierre-François Verhulst and Vito Volterra in population dynamics, The first 60 years of nonlinear analysis of Jean Mawhin, World Sci. Publ., River Edge, NJ, 2004, 147-160.
  • [27] J. Moser, Stable and random motions in dynamical systems, Princeton University Press, Princeton, N. J., 1973, With special emphasis on celestial mechanics, Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J., Annals of Mathematics Studies, No. 77.
  • [28] T. Namba, Bifurcation phenomena appearing in the Lotka-Volterra competition equations: a numerical study, Math. Biosci. 81 (1986) 2, 191-212.
  • [29] R. Ortega, The number of stable periodic solutions of time-dependent Hamiltonian systems with one degree of freedom, Ergodic Theory Dynam. Systems 18 (1998) 4, 1007-1018.
  • [30] D. Papini, F. Zanolin, Fixed points, periodic points, and coin-tossing sequences for mappings defined on two-dimensional cells, Fixed Point Theory Appl. (2004) 2, 113-134.
  • [31] D. Papini, F. Zanolin, On the periodic boundary value problem and chaotic-like dynamics for nonlinear Hill's equations, Adv. Nonlinear Stud. 4 (2004) 1, 71-91.
  • [32] A. Pascoletti, M. Pireddu, F. Zanolin, Multiple periodic solutions and complex dynamics for second order ODEs via linked twist maps, Proceedings of the 8th Colloquium on the Qualitative Theory of Differential Equations (Szeged, 2007), Electron. J. Qual. Theory Differ. Equ., Szeged, 14 (2008), 1-32.
  • [33] A. Pascoletti, F. Zanolin, Example of a suspension bridge ODE model exhibiting chaotic dynamics: a topological approach, J. Math. Anal. Appl. 339 (2008) 2, 1179-1198.
  • [34] M. Pireddu, F. Zanolin, Some remarks on fixed points for maps which are expansive along one direction, Rend. Istit. Mat. Univ. Trieste, 39 (2007), 245-274.
  • [35] M. Pireddu, F. Zanolin, Cutting surfaces and applications to periodic points and chaotic-like dynamics, Topol. Methods Nonlinear Anal. 30 (2007) 2, 279-319.
  • [36] F. Przytycki, Ergodicity of toral linked twist mappings, Ann. Sci. École Norm. Sup. (4) 16 (1983) 3, 345-354 (1984).
  • [37] F. Przytycki, Periodic points of linked twist mappings, Studia Math. 83 (1986) 1, 1-18.
  • [38] S. Rinaldi, S. Muratori, Conditioned chaos in seasonally perturbed predator-prey models, Ecological Modelling 69 (1993) 1-2, 79-97.
  • [39] F. Rothe, The periods of the Volterra-Lotka system, J. Reine Angew. Math. 355 (1985), 129-138.
  • [40] R. Srzednicki, A generalization of the Lefschetz fixed point theorem and detection of chaos, Proc. Amer. Math. Soc. 128 (2000) 4, 1231-1239.
  • [41] R. Srzednicki, K. Wójcik, A geometric method for detecting chaotic dynamics, J. Differential Equations 135 (1997) 1, 66-82.
  • [42] R. Sturman, J.M. Ottino, S. Wiggins, The mathematical foundations of mixing, Cambridge Monographs on Applied and Computational Mathematics, vol. 22, Cambridge University Press, Cambridge, 2006, The linked twist map as a paradigm in applications: micro to macro, fluids to solids.
  • [43] P. Táboas, Periodic solutions of a forced Lotka-Volterra equation, J. Math. Anal. Appl. 124 (1987) 1, 82-97.
  • [44] V. Volterra, Ricerche matematiche sulle associazioni biologiche, G. Ist. Ital. Attuari 2 (1931), 295-355.
  • [45] V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Éditions Jacques Gabay, Sceaux, 1990, Les Grands Classiques Gauthier-Villars [Gauthier-Villars Great Classics], Reprint of the 1931 original.
  • [46] J. Waldvogel, The period in the Lotka-Volterra system is monotonic, J. Math. Anal. Appl. 114 (1986) 1, 178-184.
  • [47] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York, 1982.
  • [48] S. Wiggins, Chaos in the dynamics generated by sequences of maps, with applications to chaotic advection in flows with aperiodic time dependence, Z. Angew. Math. Phys. 50 (1999) 4, 585-616.
  • [49] S. Wiggins, J.M. Ottino, Foundations of chaotic mixing, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362 (2004) 1818, 937-970.
  • [50] K. Wójcik, P. Zgliczyński, Isolating segments, fixed point index, and symbolic dynamics, J. Di_erential Equations 161 (2000) 2, 245-288.
  • [51] P. Zgliczyński, Fixed point index for iterations of maps, topological horseshoe and chaos, Topol. Methods Nonlinear Anal. 8 (1996) 1, 169-177.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH9-0005-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.