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Abstract. We prove the existence of infinitely many periodic solutions and compli-
cated dynamics, due to the presence of a topological horseshoe, for the classical Volterra
predator-prey model with a periodic harvesting. The proof relies on some recent results
about chaotic planar maps combined with the study of geometric features which are typical
of linked twist maps.
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1. INTRODUCTION AND MAIN RESULTS

The classical Volterra predator-prey model concerns the first order planar differential
system {

x′ = x(a− by),

y′ = y(−c+ dx),
(E0)

where a, b, c, d > 0 are constant coefficients. The study of system (E0) is confined
to the open first quadrant (R+

0 )2 of the plane, since x(t) > 0 and y(t) > 0 represent
the size (number of individuals or density) of the prey and the predator populations,
respectively. Such model was proposed by Vito Volterra in 1926 in an answer to
D’Ancona’s question about the percentage of selachians and food fish caught in the
northern Adriatic Sea during a range of years covering the period of the World War
I (see [4, 26] for a more detailed historical account).

System (E0) is conservative and its phase-portrait is that of a global center at the
point

P0 :=
( c
d
,
a

b

)
, (1.1)
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surrounded by periodic orbits (oriented counterclockwise), which are the level lines of
the first integral

E0(x, y) := dx− c logx+ by − a log y, (1.2)

that we will call “energy” in analogy to mechanical systems. The choice of the sign
in the definition of the first integral implies that E0(x, y) achieves a strict absolute
minimum at the point P0.

According to Volterra’s analysis of (E0), the average of a periodic solution
(x(t), y(t)), evaluated over a time-interval corresponding to its natural period, co-
incides with the coordinates of the point P0.

In order to include the effects of fishing in the model, one can suppose that, during
the harvesting time, both the prey and the predator populations are reduced at a rate
proportional to the size of the population itself. This assumption leads to the new
system {

x′ = x(aµ − by),

y′ = y(−cµ + dx),
(Eµ)

where

aµ := a− µ and cµ := c+ µ

are the modified growth coefficients which take into account the fishing rates −µx(t)
and −µy(t), respectively. The parameter µ is assumed to be positive but small enough
(µ < a) in order to prevent the extinction of the populations. System (Eµ) has the
same form as (E0); therefore, its phase-portrait is that of a global center at

Pµ :=

(
c+ µ

d
,
a− µ

b

)
. (1.3)

The periodic orbits surrounding Pµ are the level lines of the first integral

Eµ(x, y) := dx− cµ log x+ by − aµ log y. (1.4)

The coordinates of Pµ coincide with the average values of the prey and the predator
populations under the effect of fishing (see Figure 1). A comparison between the coor-
dinates of P0 and Pµ motivates the conclusion (Volterra’s principle) that a moderate
harvesting has a favorable effect on the prey population [4].

The Volterra system (also called Lotka-Volterra with reference to the work by
Alfred Lotka, who in 1920 first used the same system as a description for certain
chemical reactions) has been sometimes criticized by ecologists and biologists, who
refused to consider such a model as accurate (see [4] for a discussion of this topic),
and, in the course of years, many variants of it have been proposed. Volterra himself
modified system (E0) in [44,45], by replacing the Malthusian growth rates with logistic
terms of Verhulst type (see also [26]). In order to incorporate the effects of a cyclic
environment, periodic coefficients have been introduced both in the basic model and
in its variants. The past forty years have witnessed a growing interest in such kind
of models and several results have been obtained about the existence, multiplicity
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and stability of periodic solutions for Lotka-Volterra type predator-prey models with
periodic coefficients [1–3,6, 7, 9, 11–13,15–17,23, 24, 29, 43].

Fig. 1. In this picture we show some periodic orbits of the Volterra system (E0) with center at
P = P0 as well as of the perturbed system (Eµ) with center at Q = Pµ (for a certain µ ∈ ]0, a[)

If we take the original Volterra model (E0) and assume a seasonal effect on the
coefficients, we are led to consider a new system of the form

{
x′ = x(a(t) − b(t)y),

y′ = y(−c(t) + d(t)x),
(E)

where a(·), b(·), c(·), d(·) : R → R are periodic functions with a common period T > 0.
In such a framework, it is natural to look for harmonic (i.e., T–periodic) or m-th
order subharmonic solutions (i.e., mT–periodic, for some integer m ≥ 2, with mT
the minimal period in the set {jT : j = 1, 2, . . . }) having range in the open first
quadrant (positive solutions). With this respect, we have the following theorem,
which can be derived as a corollary of some results in [13] dealing with certain classes
of time–periodic Kolmogorov systems. In Theorem 1.1 below, as well as in the other
results of this paper, solutions are meant in the Carathéodory sense, that is, (x(t), y(t))
is absolutely continuous and satisfies system (E) for almost every t ∈ R. Of course,
such solutions are of class C1 if the coefficients are continuous.
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Theorem 1.1. Suppose that b(·) and d(·) are continuous functions such that

b(t) > 0, d(t) > 0, ∀ t ∈ [0, T ]

and let a(·), c(·) ∈ L1([0, T ]) be such that

ā :=
1

T

∫ T

0

a(t) dt > 0, c̄ :=
1

T

∫ T

0

c(t) dt > 0.

Then the following conclusions hold:

(e1) System (E) has at least one positive T -periodic solution ;
(e2) There exists an index m∗ ≥ 2 such that, for every m ≥ m∗, there are at least two

subharmonic solutions (x̃1,m, ỹ1,m) and (x̃2,m, ỹ2,m) of order m to (E) which do
not belong to the same periodicity class and satisfy

limm→∞ (min x̃i,m) = limm→∞ (min ỹi,m) = 0
limm→∞ (max x̃i,m) = limm→∞ (max ỹi,m) = +∞ (i = 1, 2).

For a proof and other details, see [13]. We refer to [12] for detailed information about
the subharmonic solutions of system (E) and to [1,23,29] for results about the stability
and the number of solutions. See also [3, 11, 13] for more general conditions on the
coefficients ensuring a priori bounds and existence of T -periodic positive solutions.

Let us for a moment come back to the original Volterra system with constant
coefficients and suppose that the interaction between the two populations is governed
by system (E0) for a certain period of the season (corresponding to a time-interval of
length r0) and by system (Eµ) for the rest of the time (corresponding to a time-interval
of length rµ). Assume also that such alternation between (E0) and (Eµ) occurs in a
periodic fashion, so that

T := r0 + rµ

is the period of the season. In other terms, we at first consider system (E0) for
t ∈ [0, r0[. Next we switch to system (Eµ) at the time r0 and assume that (Eµ) rules
the dynamics for t ∈ [r0, T [. Finally, we suppose that we switch back to system (E0)
at time t = T and repeat the cycle with T -periodicity.

Such two-state alternating behavior can be equivalently described in terms of
equation (E), by assuming

a(t) = âµ(t) :=

{
a for 0 ≤ t < r0,

a− µ for r0 ≤ t < T,

c(t) = ĉµ(t) :=

{
c for 0 ≤ t < r0,

c+ µ for r0 ≤ t < T,

as well as
b(t) ≡ b, d(t) ≡ d,
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with a, b, c, d positive constants and µ a parameter with 0 < µ < a. Hence we now
can consider the system {

x′ = x(âµ(t) − by),

y′ = y(−ĉµ(t) + dx),
(E∗)

where the piecewise constant functions âµ and ĉµ are supposed to be extended to
the whole real line by T -periodicity. Clearly, Theorem 1.1 holds for equation (E∗),
ensuring the existence of at least one positive T -periodic solution and m-th order
subharmonics of any sufficiently large order.

It is now our aim to prove that system (E∗) generates far richer dynamics. Indeed,
we will show the presence of a topological horseshoe for the Poincaré map

φ : (R+
0 )2 → (R+

0 )2, φ(z) := ζ(T, z),

where ζ(·, z) = (x(·, z), y(·, z)) is the solution of (E∗) starting from z = (x0, y0) ∈
(R+

0 )2 at the time t = 0. As a consequence, all the complexity which is associated
with the horseshoe geometry (like, for instance, a semiconjugation to the Bernoulli
shift, sensitivity to initial conditions, positive topological entropy, a compact set con-
taining a dense subset of periodic points) will be guaranteed. To this goal, we apply
recent developments [32] which connect the analysis of certain planar ODEs with the
theory of linked twist maps. With such a term, one usually designates some geometric
configurations characterized by the alternation of two planar homeomorphisms (or
diffeomorphisms) which twist two overlapping annuli. More precisely, we have two
annular regions A and B which cross in two disjoint topological rectangles R1 and R2.
Each annulus is turned onto itself by a homeomorphism which leaves the boundaries
of the annulus invariant. Both the maps act in their domains so that a twist effect
is produced. This happens, for instance, when the angular speed is monotone with
respect to the radius. Under certain assumptions, it is possible to prove the existence
of a Smale horseshoe inside Ri (i = 1, 2) [10]. Linked twist maps (LTMs) were origi-
nally studied in the 80s by Devaney [10], Burton and Easton [5] and Przytycki [36,37].
As observed in [10], such maps naturally appear in mathematical models for particle
motions in a magnetic field and in differential geometry. Geometrical configurations
related to LTMs can also be found in the restricted three-body problem [27, pp.
90–94]. In more recent years significant applications of LTMs have been found in the
area of fluid mixing (see, for instance, [42, 48, 49]).

With the aid of Figure 2, we now try to explain how to show the presence of a
horseshoe-type geometry for switching system (E∗). As the first step, we take two
closed overlapping annuli made up by level lines of the first integrals associated to
system (E0) and (Eµ), respectively. In particular, the inner and outer boundaries
of each annulus are closed trajectories surrounding the equilibrium point (P = P0

for system (E0) and Q = Pµ for system (Eµ)). Such annuli (that we call from now
on AP and AQ) intersect in two compact disjoint rectangular sets R1 and R2. The
order in which we decide to name the two regions R1 and R2 is completely arbitrary.
Whenever we enter a setting like that described in Figure 2, we say that the annuli
AP and AQ are linked together. Technical conditions on the energy level lines defining
AP and AQ, which ensure the linking condition, are presented in Section 2.
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Fig. 2. The two annular regions AP and AQ (centered at P and Q, respectively) are linked together.
We have drawn with a darker color the two rectangular sets R1 and R2 where they meet

As the second step, we give an “orientation” to Ri (for i = 1, 2) by selecting, in
the boundary, two disjoint compact arcs (i.e. homeomorphic images of the compact
unit interval of the real line) that we denote by R−

i, left and R−
i, right and call the left

and the right sides of ∂Ri. We also set

R−
i := R−

i, left ∪ R−
i, right.

The closure of ∂Ri \ R−
i is denoted by R+

i . It consists of two disjoint components
which are compact arcs that we name the down and up sides of ∂Ri (for a precise
definition of the oriented rectangle, see Section 3). In the specific example of Figure 2,
we orientate R1 and R2 as follows. We take as R−

1 the intersection of R1 with the
inner and outer boundaries of AP and as R−

2 the intersection of R2 with the inner
and outer boundaries of AQ. The way in which we choose to name (as left/right)
the two components of R−

i is inessential for the rest of the discussion. Just to fix
the attention, let us say that we call “left” the component of R−

1 which is closer to P
and the component of R−

2 which is closer to the equilibrium point Q (of course, the
“right” components will be the other ones).
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As the third step, we observe that the Poincaré map associated with (E∗) can be
decomposed as

φ = φµ ◦ φ0,

where φ0 is the Poincaré map of system (E0) on the time-interval [0, r0] and φµ is the
Poincaré map for (Eµ) on the time-interval [0, rµ] = [0, T − r0].
Consider also a path γ : [0, 1] → R1 with γ(0) ∈ R−

1, left and γ(1) ∈ R−
1, right. As

we will see in Section 2, the points of R−
1, left move faster than those belonging to

R−
1, right under the action of system (E0). Hence, if we choose the first switching time

r0 large enough, it is possible to make the path

[0, 1] 3 θ 7→ φ0(γ(θ))

turn in a spiral-like fashion inside the annulus AP and cross at least twice the rect-
angular region R2 from R−

2, left to R−
2, right. Thus we can select two sub-intervals of

[0, 1] such that φ0 ◦ γ restricted to each of these intervals is a path which lies in R2

and connects the two components of R−
2 .

Now, we observe that the points of R−
2, left move faster than those belonging to

R−
2, right under the action of system (Eµ). Therefore, we can repeat the same ar-

gument as above and conclude that for a suitable choice of rµ = T − r0 large enough
we can transform, via φµ, any path in R2 joining the two components of R−

2 onto a
path which crosses at least once R1 from R−

1, left to R−
1, right.

As the final step, we complete our proof of the existence of chaotic-like dynamics
by applying the topological lemma that we recall in Section 3 as Lemma 3.1 for the
reader’s convenience.

In conclusion, our main result can be stated as follows.

Theorem 1.2. For any choice of positive constants a, b, c, d, µ with µ < a and for
every pair (AP ,AQ) of linked together annuli, the following conclusion holds:
For every integer m ≥ 2 there exist two positive constants α and β, such that for each

r0 > α and rµ > β,

the Poincaré map associated with system (E∗) induces chaotic dynamics on m symbols
in R1 and in R2.

In view of our result, one could conclude that complex dynamics were already
hidden in Volterra’s work [44], since linked twist maps (of long periods) appear as a
consequence of the monotonicity of the period map and of Volterra’s two principles:

— “Se si cerca di distruggere uniformemente e proporzionalmente al loro numero gli
individui delle due specie, cresce la media del numero di individui della specie
mangiata e diminuisce quella degli individui della specie mangiante”;
(If one tries to destroy uniformly and proportionally to their numbers the individuals of the two

species, the average of the number of individuals of the eaten species increases and the one of

the eating species decreases);
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— “Se si distruggono contemporaneamente e uniformemente individui delle due
specie, cresce il rapporto dell’ampiezza della fluttuazione della specie mangiata
all’ampiezza della fluttuazione della specie mangiante”.
(If one destroys at the same time and uniformly the individuals of the two species, the ratio be-

tween the amplitude of the fluctuation of the eaten species and the amplitude of the fluctuation

of the eating species increases).

Indeed, the first principle says that the position of the center around which the
annuli can be constructed varies according to the strength of the fishing, while the
second principle implies that the shapes of the annuli are suitable for a linking (see
[44, fig. 6]). The twist conditions on the boundaries for the associated Poincaré maps
come from an analysis of the periods of the orbits (which was carried on by Volterra
in the limit case, i.e., for orbits near the equilibrium points).

In order to clarify the meaning of Theorem 1.2, we introduce the precise concept
of chaotic dynamics that we consider in this work. Our definition is a modification of
the corresponding one in [20] and abstracts the usual interpretation of chaos as the
possibility of realizing any coin-flipping sequence, by giving also a special emphasis
to the presence of periodic orbits. Definitions presenting similar features have been
considered by several authors dealing with nonautonomous ODEs with periodic coeffi-
cients [8,41,50], as well as in abstract theorems about periodic points and chaotic-like
dynamics in metric spaces [40]. We refer to Section 3 for a more detailed discussion
of the kind of complex dynamics involved in Definition 1.1 below.

Definition 1.1. Let Z be a metric space and ψ : Z ⊇ Dψ → Z be a map. Let also
D ⊆ Dψ be a nonempty set and m ≥ 2 be an integer. We say that ψ induces chaotic
dynamics on m symbols in D if there exist m pairwise disjoint (nonempty) compact
sets

K1,K2, . . . ,Km ⊆ D,

such that, for each two-sided sequence of symbols

(si)i∈Z ∈ Σm := {1, . . . ,m}Z,

there exists a two-sided sequence of points

(wi)i∈Z ∈ DZ,

with

wi ∈ Ksi
and wi+1 = ψ(wi), ∀ i ∈ Z. (1.5)

Moreover, if (si)i∈Z is a k-periodic sequence (that is, si+k = si, ∀ i ∈ Z) for some
k ≥ 1, then there exists a k-periodic sequence (wi)i∈Z satisfying (1.5). When we wish
to emphasise the role of the sets Kj ’s, we also say that ψ induces chaotic dynamics
on m symbols in the set D relatively to (K1, . . . ,Km).
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From this definition it follows that if ψ is continuous and injective 1) on the set

K :=

m⋃

j=1

Kj ⊆ D,

then there exists a nonempty compact set

I ⊆ K

for which the following properties are fulfilled:

— I is invariant for ψ (i.e., ψ(I) = I);

— ψ|I is semiconjugate to the Bernoulli shift on m symbols, that is, there exists a
continuous map g of I onto Σm such that the diagram

I I

Σm Σm

-
ψ

?

g

?

g

-
σ

(1.6)

commutes, where σ is the Bernoulli shift on m symbols (i.e. σ : Σm → Σm is the
homeomorphism defined by σ((si)i) := (si+1)i, ∀i ∈ Z);

— The counterimage g−1(s) ⊆ I of every k-periodic sequence s = (si)i∈Z ∈ Σm
contains at least one k-periodic point.

For a proof, see Lemma 3.2 in Section 3. From the above properties it also follows
that

htop(ψ|I) ≥ htop(σ) = log(m),

where htop is topological entropy [47]. Moreover, according to [18, Lemma 4], there
exists a (nonempty) compact invariant set I ′ ⊆ I such that ψ|I ′ reveals sensitive
dependence on initial conditions, i.e., ∃ δ > 0 : ∀w ∈ I ′ there is a sequence wi of
points in I ′ such that wi → w and for each i ∈ N there exists m = m(i) with
dist(ψm(wi), ψ

m(w)) ≥ δ.

As remarked in [32], if we look at Definition 1.1 and its consequences in the context
of concrete examples of ODEs (for instance when ψ turns out to be the Poincaré map),
condition (1.5) may be sometimes interpreted in terms of the oscillatory behavior of
the solutions. Such situation occurred in [31,33] and takes place also for system (E∗).
Indeed, from the proof of Theorem 1.2, one sees that it is possible to provide more
precise conclusions in the statement of our main result.

1) Such assumptions are fulfilled in our application: indeed, in Theorem 1.2, ψ = φ is a homeomor-
phism, being the Poincaré map associated with (E∗).
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Namely, the following additional properties can be proved:
For every decomposition of the integer m ≥ 2 as

m = m1m2, with m1,m2 ∈ N,

there exist nonnegative integers κ1, κ2, with κ1 = κ1(r0,m1) and κ2 = κ2(rµ,m2),
such that, for each two-sided sequence of symbols

s = (si)i∈Z = (pi, qi)i∈Z ∈ {1, . . . ,m1}Z × {1, . . . ,m2}Z,

there exists a solution

ζs(·) =
(
xs(·), ys(·)

)

of (E∗) with ζs(0) ∈ R1 such that ζs(t) crosses R2 exactly κ1 + pi times for t ∈
]iT, r0 + iT [ and crosses R1 exactly κ2 + qi times for t ∈ ]r0 + iT, (i+1)T [. Moreover,
if (si)i∈Z = (pi, qi)i∈Z is a periodic sequence, i.e., si+k = si for some k ≥ 1, then
ζs(t+ kT ) = ζs(t), ∀ t ∈ R.

Note that also the factoring m = m1m2 with m1 = m and m2 = 1 (or m1 = 1
and m2 = m) is allowed. For the precise connection between the role of the compact
sets Ki’s in Definition 1.1 and the oscillatory behavior of the solutions, we refer to
the proof of Theorem 1.2 in the next section.
The constants α and β which represent the lower bounds for r0 and rµ can be esti-
mated in terms of m1 and m2 and other geometric parameters, like the fundamental
periods of the orbits bounding the linked annuli (see (2.1) and (2.5)).

We end this introductory section with a few observations about our main result.

First of all, we note that, according to Theorem 1.2, there is an abundance of
chaotic regimes for system (E∗), provided that the time-interval lengths r0 and rµ
(and, consequently, the period T ) are sufficiently large. Indeed, we are able to prove
the existence of chaotic invariant sets inside each intersection of two annular regions
linked together. One could conjecture the presence of Smale horseshoes contained in
such intersections, like in the classical case of the linked twist maps with circular annuli
as domains [10]. On the other hand, in our approach, which is purely topological (like
similar ones proposed in [14, 19, 51]), we just have to check a twist hypothesis on
the boundary, without the need of verifying any hyperbolicity condition. Hence, our
technique allows to detect the presence of chaotic features by means of elementary
tools. This, of course, does not prevent the possibility of a further deeper analysis
using more complex computations. We also observe that our result is stable with
respect to small perturbations of the coefficients. Indeed, as it will be clear from the
proof, whenever r0 > α and rµ > β are chosen in order to achieve the conclusion
of Theorem 1.2, it follows that there exists a constant ε > 0 such that Theorem 1.2
applies to equation (E), too, provided that

∫ T

0

|a(t) − âµ(t)| dt < ε,

∫ T

0

|c(t) − ĉµ(t)| dt < ε,
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∫ T

0

|b(t) − b| dt < ε,

∫ T

0

|d(t) − d| dt < ε.

Here, the T -periodic coefficients may be in L1([0, T ]) or even continuous or smooth
functions (possibly of class C∞).

A further remark concerns the fact that, in our model, we have assumed that the
harvesting period starts and ends for both the species at the same moment. With
this respect, one could face a more general situation where some phase–shift between
the two harvesting intervals occurs. Such cases have been already explored in some
biological models, mostly from the numerical point of view. See [28] for an example
dealing with competing species and [38] for a predator-prey system. If we assume a
phase-shift in the periodic coefficients, that is, if we consider

a(t) := âµ(t− θ1) and c(t) := ĉµ(t− θ2),

for some 0 < θ1, θ2 < T , and we also suppose that the length r0 of the time-intervals
without harvesting may be different for the two species (say r0 = ra ∈ ]0, T [ in the
definition of âµ and r0 = rc ∈ ]0, T [ in the definition of ĉµ), then the geometry of our
problem turns out to be a combination of linked twist maps on two, three or four annuli
(which are mutually linked together). In this manner, we increase the possibility of
chaotic configurations, provided that the system is subject to the different regimes
for sufficiently long time. For a pictorial comment, see Figure 3 where all the possible
links among four annuli are realized.

Fig. 3. We have depicted four linked annular regions bounded by energy level lines corresponding
to Volterra systems with centers at P = P0, P ′ = (c/d, aµ/b), Q = Pµ and Q′ = (cµ/d, a/b), by
highlighting the regions of mutual intersection, where it is possible to locate the chaotic invariant sets
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As a final observation, we notice that our approach can also be applied (modulo
more technicalities) to those time-periodic planar Kolmogorov systems [21]

x′ = X(t, x, y), y′ = Y (t, x, y)

which possess dynamical features similar to the ones described above for the Volterra
system. Investigations in this direction will be pursued elsewhere.

The paper is organized as follows. In Section 2 we provide the details for the
proof of Theorem 1.2, in the sense that, following the argument described above, we
justify all the steps by means of some technical estimates. In Section 3 we recall the
topological tools, the corresponding notation and the abstract theorems which are
employed along the paper. We conclude the article with a brief discussion on chaotic
dynamics in the sense of Definition 1.1.

2. TECHNICAL ESTIMATES AND PROOF OF THE MAIN RESULT

Let us consider system (E0) and let

` > χ0 := E0(P0) = min{E0(x, y) : x > 0, y > 0}.

The level line

Γ0(`) := {(x, y) ∈ (R+
0 )2 : E0(x, y) = `}

is a closed orbit (surrounding P0) which is run in counterclockwise sense, completing
one turn over the fundamental period that we denote by τ0(`). According to classical
results on the period of the Lotka-Volterra system [39,46], we know that the map

τ0 : ]χ0,+∞[→ R

is strictly increasing with τ0(+∞) = +∞ and satisfies

lim
`→χ

+

0

τ0(`) = T0 :=
2π√
ac
.

Similarly, if we consider system (Eµ) with 0 < µ < a, for

h > χµ := Eµ(Pµ) = min{Eµ(x, y) : x > 0, y > 0},

we denote by τµ(h) the minimal period associated to the orbit

Γµ(h) := {(x, y) ∈ (R+
0 )2 : Eµ(x, y) = h}.

Also in this case, we have that the map h 7→ τµ(h) is strictly increasing with τµ(+∞) =
+∞ and

lim
h→χ

+
µ

τµ(h) = Tµ :=
2π

√
aµcµ

.
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Before giving the details of the proof of our main result, we describe conditions
on the energy level lines of two annuli AP and AQ, centered at P = P0 =

(
c
d
, a
b

)

and Q = Pµ =
(
c+µ
d
, a−µ

b

)
, respectively, sufficient to ensure that they are linked

together. With this respect, we have to consider the intersections among the closed
orbits around the two equilibria and the straight line r passing through the points P
and Q, whose equation is by + dx − a − c = 0. We introduce an orientation on such
line by defining an order “�” between its points. More precisely, we set A � B (resp.
A ≺ B) if and only if xA ≤ xB (resp. xA < xB), where A = (xA, yA), B = (xB , yB).
In this manner, the order on r is that inherited from the oriented x-axis, by projecting
the points of r onto the abscissa. Assume now we have two closed orbits Γ0(`1) and
Γ0(`2) for system (E0), with χ0 < `1 < `2. Let us call the intersection points of r
with such level lines P1,−, P1,+ with reference to `1, and P2,−, P2,+ with reference to
`2, with

P2,− ≺ P1,− ≺ P ≺ P1,+ ≺ P2,+.

Analogously, when we consider two orbits Γµ(h1) and Γµ(h2) for system (Eµ), with
χµ < h1 < h2, we name the intersection points of r and these level lines Q1,−, Q1,+

with reference to h1, and Q2,−, Q2,+ with reference to h2, with

Q2,− ≺ Q1,− ≺ Q ≺ Q1,+ ≺ Q2,+.

Then the two annuli AP and AQ turn out to be linked together if

P2,− ≺ P1,− � Q2,− ≺ Q1,− � P1,+ ≺ P2,+ � Q1,+ ≺ Q2,+.

For notational convenience, in the following proof, we have designated the basic
set of m-symbols as {0, . . . ,m− 1} instead of {1, . . . ,m}.
Proof of Theorem 1.2. In line with the notation introduced above, we denote the level
lines filling AP by Γ0(`), where ` ∈ [`1, `2], for some χ0 < `1 < `2, so that

AP =
⋃

`1≤`≤`2

Γ0(`).

Analogously, we denote the level lines filling AQ by Γµ(h), where h ∈ [h1, h2], for
some χµ < h1 < h2, so that we can write

AQ =
⋃

h1≤h≤h2

Γµ(h).

By construction, such annular regions turn out to be invariant under the dynamical
systems generated by (E0) and (Eµ), respectively. We now consider the two regions
in which each annulus is cut by the line r (passing through P and Q) and we call
such sets At

P , Ab
P , At

Q and Ab
Q, in order to have AP = At

P ∪Ab
P and AQ = At

Q∪Ab
Q,

where the sets with the superscript by t are the “upper” ones and the sets with the
superscript by b are the “lower” ones, with respect to the line r. We will also name Rb

the rectangular region in which Ab
P and Ab

Q meet and analogously we will denote by

Rt the rectangular region being the intersection between At
P and At

Q (see Figure 4).
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Fig. 4. For the two linked annuli in the picture (one around P and the other around Q), we have
drawn in different colors the upper and lower parts (with respect to the dashed line r), as well as
the intersection regions Rt and Rb between them. As a guideline for the proof, we recall that AP

is the annulus around P , having as its inner and outer boundaries the energy level lines Γ0(`1) and
Γ0(`2). Similarly, AQ is the annulus around Q, having as its inner and outer boundaries the energy

level lines Γµ(h1) and Γµ(h2)

Let
m1 ≥ 2 and m2 ≥ 1

be two fixed integers (the case m1 = 1 and m2 ≥ 2 can be treated in a similar manner
and is therefore omitted).

As the first step, we are interested in the solutions of system (E0) starting from
Ab
P and crossing At

P at least m1 times. After having performed the rototranslation
of the plane R

2 that brings the origin to the point P and makes the x-axis coincide
with the line r, with the equations of the rototranslation being:

{
x̃ = (x− c

d
) cosω + (y − a

b
) sinω,

ỹ = ( c
d
− x) sinω + (y − a

b
) cosω,

where ω := arctan( d
b
), it is possible to use the Prüfer transformation and intro-

duce generalized polar coordinates, so that we can express the solution ζ(·, z) =
(x(·, z), y(·, z)) of system (E0) with initial point in z = (x0, y0) ∈ Ab

P through the
radial coordinate ρ(t, z) and the angular coordinate θ(t, z). Therefore, we can assume
that θ(0, z) ∈ [−π, 0]. For any t ∈ [0, r0] and z ∈ Ab

P , let us also introduce the rotation
number, that is, the quantity

rot0(t, z) :=
θ(t, z) − θ(0, z)

2π
,

that indicates the normalized angular displacement along the orbit of system (E0)
starting at z, during the time-interval [0, t]. The continuous dependence of the so-
lutions on the initial data implies that the function (t, z) 7→ θ(t, z) is continuous, as
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well as the map (t, z) 7→ rot0(t, z). From the definition of rotation number and by the
star-shapedness of the level lines of E0 with respect to the point P , we infer that for
every z ∈ Γ0(`) the following properties hold:

∀ j ∈ Z : rot0(t, z) = j ⇐⇒ t = j τ0(`),
∀ j ∈ Z : j < rot0(t, z) < j + 1 ⇐⇒ j τ0(`) < t < (j + 1) τ0(`)

(if the annuli were not star-shaped, the inference “⇐=” would still be true). Although
we have implicitly assumed that `1 ≤ ` ≤ `2, such properties hold for every ` > χ0.

Observe that, thanks to the fact that the time-map τ0 is strictly increasing, we
know that τ0(`1) < τ0(`2). We shall use this condition to show that the twist property
for the rotation number holds for sufficiently large time-intervals. Indeed, we claim
that if we choose the switching time r0 ≥ α, where

α :=
(m1 + 3 + 1

2
) τ0(`1) τ0(`2)

τ0(`2) − τ0(`1)
, (2.1)

then, for any path γ : [0, 1] → AP , with γ(0) ∈ Γ0(`1) and γ(1) ∈ Γ0(`2), the following
interval inclusion holds:

[θ(r0, γ(1)), θ(r0, γ(0))] ⊇ [2πn∗, 2π(n∗ +m1) − π], for some n∗ = n∗(r0) ∈ N. (2.2)

To check our claim, we first note that for a path γ(s) as above, there holds
rot0(t, γ(0)) ≥ bt/τ0(`1)c and rot0(t, γ(1)) ≤ dt/τ0(`2)e, for every t > 0 and so

rot0(t, γ(0)) − rot0(t, γ(1)) > t
τ0(`2) − τ0(`1)

τ0(`1) τ0(`2)
− 2 for t > 0.

Hence, for t ≥ α, with α defined as in (2.1), we obtain

rot0(t, γ(0)) > m1 + 1 + 1
2

+ rot0(t, γ(1)),

which, in turns, implies

θ(t, γ(0)) − θ(t, γ(1)) > 2π(m1 + 1), ∀ t ≥ α.

Therefore, recalling the bound 2π(dt/τ0(`2)e− 3
2
) < θ(t, γ(1)) ≤ 2πdt/τ0(`2)e, interval

inclusion (2.2) is achieved for

n∗ = n∗(r0) :=

⌈
r0

τ0(`2)

⌉
. (2.3)

This proves our claim.
By (2.2), the continuity of [0, 1] 3 s 7→ θ(r0, γ(s)), and the Bolzano theorem, it

now follows that

{θ(r0, γ(s)), s ∈ [0, 1]} ⊇ [2πn∗, 2π(n∗ +m1 − 1) + π].
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As a consequence, by the Bolzano theorem, there exist m1 pairwise disjoint maximal
intervals [ti

′, ti
′′] ⊆ [0, 1], for i = 0, . . . ,m1 − 1, such that

θ(r0, γ(s)) ∈ [2πn∗ + 2πi, 2πn∗ + π + 2πi], ∀s ∈ [ti
′, ti

′′], i = 0, . . . ,m1 − 1,

and θ(r0, γ(ti
′)) = 2πn∗ + 2πi, as well as θ(r0, γ(ti

′′)) = 2πn∗ + π+ 2πi. Setting now

R1 := Rb and R2 := Rt,

we orientate such rectangular regions by choosing

R−
1, left := R1 ∩ Γ0(`1) and R−

1, right := R1 ∩ Γ0(`2),

as well as
R−

2, left := R2 ∩ Γµ(h1) and R−
2, right := R2 ∩ Γµ(h2)

(refer to Figure 4 for the configuration of the corresponding sets).
Finally, introducing the m1 nonempty and pairwise disjoint compact sets

Hi := {z ∈ Ab
P : θ(r0, z) ∈ [2πn∗ + 2πi, 2πn∗ + π + 2πi]}, i = 0, . . . ,m1 − 1,

we are ready to prove that

(Hi, φ0) : R̃1 m−→R̃2, i = 0, . . . ,m1 − 1, (2.4)

where we recall that φ0 is the Poincaré map associated to system (E0). The symbol
“ m−→ ” represents the stretching along the paths condition which is introduced in
Definition 3.1 of Section 3.

Indeed, to prove (2.4), let us take a path γ : [0, 1] → R1, with γ(0) ∈ R−
1, left

and γ(1) ∈ R−
1, right. For r0 ≥ α and fixed i ∈ {0, . . . ,m1 − 1}, we know that there

exists a sub-interval [ti
′, ti

′′] ⊆ [0, 1] such that γ(t) ∈ Hi and φ0(γ(t)) ∈ At
P , for

each t ∈ [ti
′, ti

′′]. Noting now that Γµ(φ0(γ(ti
′))) ≤ h1 and Γµ(φ0(γ(ti

′′))) ≥ h2, it
follows that there exists a sub-interval [t∗i , t

∗∗
i ] ⊆ [ti

′, ti
′′] such that φ0(γ(t)) ∈ R2,

for t ∈ [t∗i , t
∗∗
i ] and φ0(γ(t

∗
i )) ∈ R−

2, left, as well as φ0(γ(t
∗∗
i )) ∈ R−

2, right. Therefore,
condition (2.4) is fulfilled.

Let us turn to system (Eµ). This time we focus our attention on the solutions
of such system starting from At

Q and crossing Ab
Q at least m2 times. Similarly as

before, we assume to have performed a rototranslation of the plane that makes the
x-axis coincide with the line r that brings the origin to the point Q, so that we can
express the solution ζ(·, w) of system (Eµ) with starting point in w ∈ At

Q through

polar coordinates (ρ̃, θ̃). In particular it holds that θ̃(0, w) ∈ [0, π]. For any t ∈
[0, rµ] = [0, T − r0] and w ∈ At

Q, the rotation number is now defined as

rotµ(t, w) :=
θ̃(t, w) − θ̃(0, w)

2π
.

Since the time-map τµ is strictly increasing, it follows that τµ(h1) < τµ(h2). We claim
that if we choose a switching time rµ ≥ β, with

β :=
(m2 + 3 + 1

2
) τµ(h1) τµ(h2)

τµ(h2) − τµ(h1)
, (2.5)
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then, for any path σ : [0, 1] → AQ, with σ(0) ∈ Γµ(h1) and σ(1) ∈ Γµ(h2), the
following interval inclusion is satisfied:

[θ̃(rµ, σ(1)), θ̃(rµ, σ(0))] ⊇ [π(2n∗∗ + 1), 2π(n∗∗ +m2)], (2.6)

for some n∗∗ = n∗∗(rµ) ∈ N.
The claim can be proved with arguments analogous to the previous ones and

therefore its verification is omitted. The nonnegative integer n∗∗ has now to be
chosen as

n∗∗ :=

⌈
rµ

τµ(h2)

⌉
. (2.7)

By (2.6), the continuity of [0, 1] 3 s 7→ θ̃(rµ, σ(s)), and the Bolzano theorem, it
follows that

{θ̃(rµ, σ(s)), s ∈ [0, 1]} ⊇ [2πn∗∗ + π, 2π(n∗∗ +m2)].

As a consequence, the Bolzano theorem ensures the existence of m2 pairwise dis-
joint maximal intervals [si

′, si
′′] ⊆ [0, 1], for i = 0, . . . ,m2 − 1, such that

θ̃(rµ, σ(s)) ∈ [2πn∗∗ + π + 2πi, 2πn∗∗ + 2π + 2πi], for s ∈ [si
′, si

′′], i = 0, . . . ,m2 − 1,

and

θ̃(rµ, σ(si
′)) = 2πn∗∗ + π + 2πi, as well as θ̃(rµ, σ(si

′′)) = 2πn∗∗ + 2π + 2πi.

For R̃1 and R̃2 as above and introducing the m2 nonempty, compact and pairwise
disjoint sets

Ki := {w ∈ At
Q : θ̃(rµ, w) ∈ [2πn∗∗ + π + 2πi, 2πn∗∗ + 2π + 2πi]}, i = 0, . . . ,m2 − 1,

we are in position to check that

(Ki, φµ) : R̃2 m−→R̃1, i = 0, . . . ,m2 − 1, (2.8)

where φµ is the Poincaré map associated to system (Eµ). Indeed, taking a path
σ : [0, 1] → R2, with σ(0) ∈ R−

2, left and σ(1) ∈ R−
2, right, for rµ ≥ β and for

any i ∈ {0, . . . ,m2 − 1} fixed, there exists a sub-interval [si
′, si

′′] ⊆ [0, 1] such
that σ(t) ∈ Ki and φµ(σ(t)) ∈ Ab

Q, for t ∈ [si
′, si

′′]. Since Γ0(φµ(σ(si
′))) ≤ `1

and Γ0(φµ(σ(si
′′))) ≥ `2, there exists a sub–interval [s∗i , s

∗∗
i ] ⊆ [si

′, si
′′] such that

φµ(σ(t)) ∈ R1, for t ∈ [s∗i , s
∗∗
i ] and φµ(σ(s∗i )) ∈ R−

1, left, as well as φµ(σ(s∗∗i )) ∈
R−

1, right. Thus condition (2.8) is proved.
The stretching properties in (2.4) and (2.8) allow us to apply Lemma 3.1 of

Section 3 and the thesis follows immediately.
We observe that in our proof we have chosen the “lower” set Rb as R1 and the

“upper” set Rt as R2. However, since the orbits of both systems (E0) and (Eµ)
are closed, the same argument also works (by slightly modifying some constants, if
needed) if we choose R1 = Rt and R2 = Rb.
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3. TOPOLOGICAL TOOLS AND REMARKS ON CHAOTIC DYNAMICS

In this last section, we briefly recall the topological tools that we have employed along
the paper. They are taken, with minor variations, from [32] and are based on some
previous works [30, 31, 33, 35]. We start with some terminology.
Given a metric space Z, we define a path in Z as a continuous map γ : R ⊇ [0, 1] → Z
(instead of [0, 1] one could take any compact interval [s0, s1]). A sub-path σ of γ is the
restriction of γ to a compact sub-interval of its domain. An arc is an homeomorphic
image of the compact interval [0, 1]. By a generalized rectangle we mean a set R ⊆ Z
which is homeomorphic to the unit square Q := [0, 1]2 ⊆ R

2.
If R is a generalized rectangle and h : Q → h(Q) = R is a homeomorphism

defining it, we call the contour ϑR of R the set

ϑR := h(∂Q),

where ∂Q is the usual boundary of the unit square. Notice that ϑR is well defined, as
it is independent of the choice of the homeomorphism h. We call an oriented rectangle
the pair

R̃ := (R,R−),

where R ⊆ Z is a generalized rectangle and

R− := R−
left ∪ R−

right

is the union of two disjoint compact arcs R−
left,R−

right ⊆ ϑR that we call the left and

the right sides of R−. Once that R− is fixed, we can also define R+ as the closure of
ϑR \R−. In particular, we set

R+ := R+
down ∪ R+

up,

where R+
down and R+

up are two disjoint arcs. In the usual applications, the ambient
space Z is just the Euclidean plane and the generalized rectangles are bounded by
some orbit-segments, possibly associated with different systems.

The central concept in our approach is that of “stretching along the paths”:

Definition 3.1. Suppose that ψ : Z ⊇ Dψ → Z is a map defined on a set Dψ and

let X̃ := (X,X−) and Ỹ := (Y, Y −) be oriented rectangles in a metric space Z. Let

K ⊆ X ∩Dψ be a compact set. We say that (K, ψ) stretches X̃ to Ỹ along the paths
and write

(K, ψ) : X̃ m−→Ỹ ,

if the following conditions hold:

— ψ is continuous on K ;
— for every path γ : [0, 1] → X such that γ(0) ∈ X−

left and γ(1) ∈ X−
right (or

γ(0) ∈ X−
right and γ(1) ∈ X−

left), there exists a sub-interval [t′, t′′] ⊆ [0, 1] such
that

∀ t ∈ [t′, t′′] γ(t) ∈ K, ψ(γ(t)) ∈ Y

and, moreover, ψ(γ(t′)) and ψ(γ(t′′)) belong to different components of Y −.
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In the special case of K = X, we simply write

ψ : X̃ m−→Ỹ .

We are now in a position to introduce the result on the existence of chaotic dy-
namics for linked twist maps that we apply in the proof of Theorem 1.2.

Lemma 3.1. Let Z be a metric space, let Φ : Z ⊇ DΦ → Z and Ψ : Z ⊇ DΨ → Z be
continuous maps and let R̃1 := (R1,R1

−), R̃2 := (R2,R2
−) be oriented rectangles

in Z. Suppose that the following conditions are satisfied:

(HΦ) there exist m1 ≥ 1 pairwise disjoint compact sets H1, . . . ,Hm1
⊆ R1 ∩ DΦ

such that (Hi,Φ) : R̃1 m−→R̃2, for i = 1, . . . ,m1 ;

(HΨ) there exist m2 ≥ 1 pairwise disjoint compact sets K1, . . . ,Km2
⊆ R2 ∩ DΨ

such that (Ki,Ψ) : R̃2 m−→R̃1, for i = 1, . . . ,m2.

If at least one of m1 and m2 is greater then or equal to 2, then the composite map
ψ := Ψ ◦ Φ induces chaotic dynamics on m1 ×m2 symbols in the set

H∗ :=
⋃

i=1,...,m1

j=1,...,m2

H′
i,j , where H′

i,j := Hi ∩ Φ−1(Kj).

Moreover, for each sequence of m1 ×m2 symbols

s = (sn)n = (pn, qn)n ∈ {1, . . . ,m1}N × {1, . . . ,m2}N,

there exists a compact connected set Cs ⊆ H′
p0,q0

with

Cs ∩ R+
1,down 6= ∅, Cs ∩ R+

1,up 6= ∅

and such that, for every w ∈ Cs, there exists a sequence (yn)n with y0 = w and

yn ∈ H′
pn,qn

, ψ(yn) = yn+1, ∀n ≥ 0.

Note that in Theorem 1.2 we have not used the last part of the previous lemma.
Therefore, it would be possible to improve our main result on Lotka-Volterra systems
by adding information about the existence of continua of points for which we have a
control on the forward itineraries.

We end the paper with an attempt at clarifying the relationship between the
concept of chaos expressed in Definition 1.1 and other ones available in the literature,
with special reference to the semiconjugation with the Bernoulli shift and the density
of the periodic points. Before giving the next lemmas, we just recall some basic
definitions. We denote by Σm = {1, . . . ,m}Z the set of the two-sided sequences of m
symbols. Analogously, by Σ+

m = {1, . . . ,m}N we mean the set of one-sided sequences
of m symbols (where N is the set of nonnegative integers). Introducing the standard
distance

d(s′, s′′) :=
∑

i∈I

|s′i − s′′i |
m|i|+1

, where s′ = (s′i)i∈I, s
′′ = (s′′i )i∈I, (3.1)



586 Marina Pireddu, Fabio Zanolin

for I = Z and for I = N, we make Σm and Σ+
m compact metric spaces.

Our first result is quite classical. Indeed, the same conclusions of Lemma 3.2 have
been obtained by several different authors dealing with similar situations (see, for
instance, [40, Theorem 3]). Nonetheless, we give a detailed proof for the reader’s
convenience. We also thank Duccio Papini for useful discussions about this topic.

Lemma 3.2. Let (Z, dZ) be a metric space, ψ : Z ⊇ Dψ → Z be a map which induces
chaotic dynamics on m ≥ 2 symbols in a set D ⊆ Dψ, relatively to (K1, . . . ,Km)
(according to Definition 1.1). Assume also that ψ is continuous and injective on

K :=

m⋃

j=1

Kj .

Define the nonempty compact set

I :=
+∞⋂

j=−∞

ψ−j(K). (3.2)

Then I is invariant for ψ and ψ|I is semiconjugate to the two-sided m-shift, through
a continuous surjection g : I → Σm as in (1.6). Moreover, the counterimage through
g of any k-periodic sequence in Σm contains at least one k-periodic point of I.

Proof. First of all, we observe that w ∈ I if and only if there exists a full orbit, that
is, a two-sided itinerary, (wi)i∈Z such that w0 = w and ψ(wi−1) = wi ∈ K for every
i ∈ Z. By the assumptions on ψ coming from Definition 1.1 and standard properties
of compact sets, it follows immediately that I is a nonempty compact set such that
ψ(I) = I.
As the next step, we introduce a function g1, associating to any w ∈ I its correspond-
ing full orbit

sw := (wi)i∈Z,

that is, the sequence of points of the set I defined by

wi := ψi(w), ∀ i ∈ Z,

with the usual convention ψ0 = IdK and ψ1 = ψ. The injectivity of ψ implies that
the map

g1 : w 7→ sw

is well defined. Recalling that the Kj ’s are pairwise disjoint, we know that for every
term wi of sw there exists a unique label

si = si(wi), with si ∈ {1, . . . ,m},

such that wi ∈ Ksi
. Hence, also the map

g2 : sw 7→ (si)i∈Z ∈ Σm (3.3)
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is well defined. Thus, if we set

g := g2 ◦ g1 : I → Σm,

by Definition 1.1 we obtain a surjective map that makes diagram (1.6) commute.
Moreover, the inverse image through g of any k-periodic sequence in Σm contains at
least one k-periodic point of I.
Finally, we show that g is continuous. To this end, we put

ε := min
1≤i6=j≤m

dZ(Ki,Kj) > 0

and note that the map ψ|I : I → ψ(I) = I is a homeomorphism. Therefore the
following property holds:

∀n ∈ N, ∃ δ = δn > 0 : for u, v ∈ I, with su := (ui)i∈Z, sv := (vi)i∈Z,

dZ(u, v) < δ =⇒ dZ(ui, vi) < ε, ∀ |i| ≤ n =⇒ si(ui) = si(vi), ∀ |i| ≤ n.

From this fact and the choice of the distance in Σm (see (3.1)), the continuity of g
easily follows.

The next result is just a more precise version of Lemma 3.2 with reference to the
periodic points.

Lemma 3.3. Under the same assumptions of Lemma 3.2, there exists a compact
invariant set Λ ⊆ I such that ψ|Λ is semiconjugate to the two-sided m-shift, through
the continuous surjection g|Λ (where g : I → Σm is like in (1.6)). The set of the
periodic points of ψ|I is dense in Λ and, moreover, the counterimage through g of any
k-periodic sequence in Σm contains at least one k-periodic point of Λ.

Proof. For I defined as in (3.2), we consider the subset P of the periodic points of
ψ|I , that is,

P := {w ∈ I : ∃ k ≥ 1, ψk(w) = w}
and define

Λ := P .
Since ψ(P) = P , it follows that ψ(Λ) = Λ. From the last statement in Lemma 3.2 we
also find that g(P) coincides with the subset of Σm made by the two-sided periodic
sequences of m symbols, which is dense in Σm. This latter fact implies the surjectivity
of g|Λ : Λ → Σm. The remaining properties are a straightforward consequence of the
corresponding ones in Lemma 3.2.

In both the above results, we have required the injectivity of the map ψ. This
is not a heavy restriction in the applications to ODEs (like those in Section 1 and
in [32, 33]), where ψ is the Poincaré map. Anyway, in the abstract setting of metric
spaces and with reference to Definition 1.1, it is still possible to obtain some suitable
versions of Lemma 3.2 and Lemma 3.3 for a map ψ which is continuous on K, but
without the assumption of injectivity. Such task can be accomplished in different
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ways. A first possibility is that of considering a semiconjugation with the Bernoulli
shift on m symbols for one-sided sequences. Indeed, any initial point w uniquely
determines the forward sequence s+w := (ψi(w))i∈N, to which we can associate a well
determined sequence of symbols (si)i∈N ∈ Σ+

m as in the definition of g2 in (3.3).
Another possibility is that of considering, in place of g, only the map g2, that is, to
associate to any full orbit (wi)i∈Z, with ψ(wi) = wi+1, the sequence (si)i∈Z ∈ Σm
such that wi ∈ Ksi

. This second approach is followed by Lani-Wayda and Srzednicki
in [22], where the authors obtain a variant of Lemma 3.3 for a set Λ replaced by the
closure (denoted by T ) of the set of the terms of the periodic sequences in K which
are full orbits of ψ (and project through g2 onto a periodic sequence of Σm). Hence,
in this case, commutative diagram (1.6) becomes

T Z T Z

Σm Σm

-
ψZ

?

g2

?

g2

-
σ

where ψZ
(
(wi)i∈Z

)
:= (wi+1)i∈Z.

4. CONCLUSION

It is a pleasure and an honor to have the possibility to dedicate our work to the
memory of Professor Andrzej Lasota, who gave fundamental contributions in both
the area of chaotic dynamics and the study of mathematical models for biological
systems.
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