
Opuscula Mathematica • Vol. 28 • No. 4 • 2008

Dedicated to the memory of Andrzej Lasota

Jean Mawhin

REDUCTION AND CONTINUATION THEOREMS
FOR BROUWER DEGREE AND APPLICATIONS

TO NONLINEAR DIFFERENCE EQUATIONS

Abstract. The aim of this note is to describe the continuation theorem of [39,40] directly in
the context of Brouwer degree, providing in this way a simple frame for multiple applications
to nonlinear difference equations, and to show how the corresponding reduction property can
be seen as an extension of the well-known reduction formula of Leray and Schauder [24], which
is fundamental for their construction of Leray-Schauder’s degree in normed vector spaces.
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1. INTRODUCTION

A continuation theorem introduced in [39] and developed in [40] in the frame of a
degree theory for mappings of the type L + N between normed vector spaces, with L
Fredholm of index zero and N satisfying a suitable compactness property, has been
often used, since 2000 in [57], for the study of various boundary value problems or
periodic solutions of nonlinear difference equations (see e.g. [1–6, 9, 10, 12–23, 25–37,
43–56,58]). A fundamental result in proving this continuation theorem is the reduction
of the Leray-Schauder degree of some compact perturbation of identity in a normed
vector space to the Brouwer degree of the associated mapping in a finite-dimensional
vector space (reduction property).

For nonlinear difference equations, numerous problems are reduced to proving the
existence of a zero for a continuous mapping of a finite-dimensional vector space into
a vector space of the same finite dimension, so that Brouwer degree applies directly.
But the applications mentioned above show that the methodology of the continuation
theorem in [39,40] remains fruitful, because it reduces the computation of the Brouwer
degree of a mapping between spaces of finite but possibly large dimension to that of
a related mapping between spaces of a much smaller dimension.
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The aim of this note is to describe the continuation theorem of [39,40] directly in
the context of Brouwer degree, providing in this way a simple frame for many applica-
tions to nonlinear difference equations, and to show how the corresponding reduction
property can be seen as an extension of the well-known reduction formula of Leray
and Schauder [24], which is fundamental for their construction of Leray-Schauder’s
degree in normed vector spaces.

We only assume that the reader is familiar with the notion of Brouwer degree
dB [f,D, z] of a continuous mapping f from the closure D of an open bounded set
D ⊂ Rn into Rn, such that z ∈ Rn\f(∂D), as well as with its fundamental properties.
Among numerous others (see, e.g., [11, 38]), a simple approach can be found in [41].

2. BROUWER DEGREE FOR MAPPINGS BETWEEN FINITE-DIMENSIONAL
TOPOLOGICAL VECTOR SPACES

To formulate our reduction and continuation theorems, it is convenient to recall the
easy extension of Brouwer degree to continuous mappings between two oriented topo-
logical vector spaces of the same finite dimension.

Let A, B : Rn → Rn be linear isomorphisms, D ⊂ Rn an open bounded set,
g : D → Rn continuous and z ∈ Rn \ Ag(∂D). Then the mapping f := A ◦ g ◦ B
is continuous on B−1(D) = B−1(D) and z ∈ Rn \ f(∂B−1(D)) = f(B−1(∂D)),
which is equivalent to A−1z ∈ Rn \ g(∂D). Consequently, both dB [f,B−1(D), z] and
dB [g,D,A−1z] are defined. The following lemma relates those two Brouwer degrees,
and we give a proof of this standard result for the reader’s convenience.

Lemma 2.1. Under the above assumptions,

dB [A ◦ g ◦B,B−1(D), z] = [sign det (AB)] · dB [g,D,A−1z]. (1)

Proof. From the definition of Brouwer degree for continuous mappings, Sard’s lem-
ma and the Weierstrass approximation theorem, without loss of generality, we may
assume, that g is of class C2 on D and that z is a regular value for A ◦ g ◦B. Hence,
dB [A ◦ g ◦B,B−1(D), z] = (sign det AB) · dB [g,D,A−1z].

Let X be an n-dimensional real topological vector space. It is well known that
if (α1, · · · , αn) is a base in X, and (e1, · · · , en) the canonical base in Rn, the linear
mapping

h : X → Rn, x =
n∑

j=1

xjα
j 7→ h(x) =

n∑
j=1

xje
j

is a homeomorphism.
Let now D ⊂ X be open and bounded, f : D → X continuous and z ∈ X \f(∂D).

Then h ◦ f ◦ h−1 is such a continuous mapping from the closure of the open bounded
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set h(D) ⊂ Rn to Rn that h(z) ∈ Rn\h◦f ◦h−1(∂h(D)). Consequently, dB [h◦f ◦h−1,
h(D), h(z)] is well defined. If now (β1, · · · , βn) is another base in X, and if

g : X → Rn, x =
n∑

j=1

xjβ
j 7→ h(x) =

n∑
j=1

xje
j ,

is the corresponding linear homeomorphism, then dB [g ◦ f ◦ g−1, g(D), g(z)] is well
defined. Now

g ◦ f ◦ g−1 = g ◦ h−1 ◦ h ◦ f ◦ h−1 ◦ h ◦ g−1,

so that, if we set m = h ◦ g−1, m : Rn → Rn is a linear homeomorphism and

g ◦ f ◦ g−1 = m−1 ◦ (h ◦ f ◦ h−1) ◦m.

We can therefore apply Lemma 2.1 to obtain

dB [g ◦ f ◦ g−1, g(D), g(z)] = dB [h ◦ f ◦ h−1, h(D), h(z)]. (2)

This independence of the Brouwer degree with respect to the choice of the base justifies
the following definition.

Definition 2.1. Let X be a n-dimensional topological vector space, D ⊂ X open and
bounded, f : D → X continuous and z ∈ X\f(∂D). The Brouwer degree dB [f,D, z]
is defined by the formula

dB [f,D, z] = dB [h ◦ f ◦ h−1, h(D), h(z)]

where

h : X → Rn, x =
n∑

j=1

xjαj 7→
n∑

j=1

xje
j

is the linear homeomorphism associated with a base (α1, · · · , αn) of X and the
canonical base (e1, · · · , en) of Rn.

From this definition, it is easy to show, that the degree in space X has all the
properties of degree in Rn.

Suppose now that X and Z are two n-dimensional topological vector spaces,
D ⊂ X is open and bounded, f : D → Z is continuous and z ∈ Z \ f(∂D). Choos-
ing bases (α1, · · · , αn) and (β1, · · · , βn) in X and Z respectively, and denoting by
h : X → Rn and g : Z → Rn linear homeomorphisms constructed as above, we see
that the Brouwer degree dB [g ◦f ◦h−1, h(D), g(z)] is well defined. If we change bases,
i.e., homemorphisms, then, with h̃ : X → Rn and g̃ : Z → Rn,

g−1 ◦ g ◦ f ◦ h−1 ◦ h = f = g̃−1 ◦ g̃ ◦ f ◦ h̃−1 ◦ h̃,

and hence

g̃ ◦ f ◦ h̃−1 = m ◦ g ◦ f ◦ h−1 ◦ m̃,
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where m := g̃ ◦ g−1 : Rn → Rn and m̃ := h ◦ h̃−1 : Rn → Rn are linear homeomor-
phisms. Then, by Lemma 2.1, as above, we obtain,

dB [g̃ ◦ f ◦ h̃−1, h̃(D), h̃(z)] =
= sign (det m · det m̃) · dB [g ◦ f ◦ h, h(D), h(z)],

and this relation can be interpreted as defining a Brouwer degree for f between the
oriented topological vector spaces X and Z.

The Brouwer index can be extended to this more general situation. Let X, Z be
two n-dimensional topological vector spaces, which we suppose oriented if they are
different. Let D ⊂ X be an open bounded set.

Definition 2.2. Let f : D → Z be continuous, z ∈ Z, and y be an isolated element
of D ∩ f−1(z). The Brouwer index of f at y is defined by

iB [f, y] = dB [f,B(y, r), z] = dB [f,B(y, r), f(y)], (3)

where r > 0 is such that {y} = B(y, r) ∩ f−1(z).

It easily follows from the excision property of degree that the right-hand member
of formula (3) does not depend upon the choice of r.

Example 2.1. If L : X → Z is linear and invertible, then

iB [L, 0] = sign det gLh−1, (4)

where h : X → Rn and g : Z → Rn are linear homeomorphisms of the type introduced
above.

3. REDUCTION FORMULAS

Suppose now that X is an n-dimensional topological vector space, Y ⊂ X a vector
subspace of dimension m < n, D ⊂ X is open and bounded, c : D → Y is continuous
and z ∈ Y \ c(∂D).

Any solution of equation x− c(x) = z is such that x = c(x) + z ∈ Y, and hence a
relation could be expected between dB [I − c,D, z] and dB [(I − c)|Y , D ∩ Y, z]. This is
the conclusion of the first reduction formula due to Leray and Schauder [24]. See
[11] or [38] for a proof.

Lemma 3.1. Let X be an n-dimensional topological vector space, Y ⊂ X a vector
subspace of dimension 1 ≤ m < n, D ⊂ X be open and bounded, c : D → Y continuous
and z ∈ Y \ c(∂D). Then

dB [I − c,D, z] = dB [(I − c)|Y , D ∩ Y, z]. (5)

From Lemma 3.1, we deduce the second reduction formula, proved in a more
general setting in [40].
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Theorem 3.1. Let X and Z be n-dimensional topological vector spaces, L : X → Z
a linear mapping with N(L) 6={0}, Y ⊂Z a vector subspace such that Z = Y ⊕R(L),
D ⊂ X an open bounded set, r : D → Y a continuous mapping such that
0 6∈ (L + r)(∂D). Then, for each isomorphism J : N(L) → Y, and each projector
P : X → X such that R(P ) = N(L), there is

dB [L + r, D, 0] = iB [L + JP, 0] · dB [J−1r|N(L), D ∩N(L), 0]. (6)

Proof. Let Q : Z → Z be the projector such that R(Q) = Y and N(Q) = R(L). We
first notice that if (L+JP )x = 0, then, by applying Q and I −Q to the equation, we
obtain the equivalent system

Lx = 0, JPx = 0

which immediately implies that x = 0. Thus L+JP : X → Z, one-to-one, is onto and
iB [L + JP, 0] is well defined and has the absolute value one. Furthermore, if z ∈ Y,
then, again by projecting on Y and R(L), one gets

(L + JP )(x) = z ⇔ Lx = 0, JPx = z ⇔ x = Px = J−1z,

so that
(L + JP )−1z = J−1z.

Consequently,

L + r = L + JP + r − JP = (L + JP )[I + (L + JP )−1(r − JP )] =

= (L + JP )(I − P + J−1r).

Using Lemmas 2.1 and 3.1, and the definitions above, we get

dB [L + r, D, 0] = dB [g ◦ (L + r) ◦ h−1, h(D), 0] =

= dB [g ◦ (L + JP ) ◦ h−1 ◦ h ◦ (I − P + J−1r) ◦ h−1, h(D), 0] =

= sign det [g ◦ (L + JP ) ◦ h−1] · dB [h ◦ (I − P + J−1r) ◦ h−1, h(D), 0] =

= iB [L + JP, 0] · dB [I − P + J−1r, D, 0] =

= iB [L + JP, 0] · dB [(I − P + J−1r)|N(L), D ∩N(L), 0] =

= iB [L + JP, 0] · dB [J−1r|N(L), D ∩N(L), 0].

Remark 3.1. Formula (6) implies in particular that

|dB [L + r, D, 0]| =
∣∣dB [r|N(L), D ∩N(L), 0]

∣∣ .
Remark 3.2. In the special case of

X = Z = N(L)⊕R(L),

(which is in particular the case when L is symmetrical), one can take Q = P and
J = I, and formula (6) becomes

dB [L + r, D, 0] = sign det(L|R(L)) · dB [r|N(L), D ∩N(L), 0]. (7)
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Remark 3.3. We can also see how the Leray-Schauder reduction formula follows
from the second reduction formula. With the notations of Lemma 3.1, let Q : X → Y
be a projector and write the equation x− c(x) = z as

(I −Q)x + Qx− c(x)− z = 0, (8)

which has the form
Lx + r(x) = 0,

if we set
L = I −Q, r(·) = Q− c(·)− z.

Now, trivially

r : D → Y, Y = N(L), X = Y ⊕R(L) = N(L)⊕R(L),

so that formula (7) gives

dB [I − c,D, z] = dB [I − c− z,D, 0] =

= sign det
[
(I −Q)|R(I−Q)

]
· dB [(Q− c− z)|Y , D ∩ Y, 0] =

= dB [(I − c)|Y , D ∩ Y, z].

4. CONTINUATION THEOREMS

The following finite-dimensional version of Leray-Schauder’s continuation theo-
rem [24] is a consequence of Brouwer degree theory and Whyburn’s lemma.

Let X and Z be topological vector spaces of the same finite dimension n.

Lemma 4.1. Let D ⊂ X× [a, b] be open and bounded, F ∈ C(D, Z) and the following
conditions hold:

(a) z ∈ Z \ F(∂D),
(b) dB [F(·, λ),Dλ, z] 6= 0 for some λ ∈ [a, b], where

(F−1(z))λ = {x ∈ X : (x, λ) ∈ F−1(z)}.

Then there exists a compact connected component C of F−1(z) along which λ takes
all values in [a, b].

Lemma 4.1 implies the following continuation theorem for semilinear equa-
tions.

Theorem 4.1. Let L : X → Z be a linear mapping, Y a direct summand of R(L)
in Z, D ⊂ X × [0, 1] an open bounded set, and N : D → Z a continuous mapping.
Assume that the following conditions hold:

1. N (D0 × {0}) ⊂ Y.
2. Lx +N (x, λ) 6= 0 for each (x, λ) ∈ ∂D.
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3. 0 ∈ D0 or dB [N (·, 0)|N(L),D0 ∩N(L), 0] 6= 0, according to whether N(L) = {0} or
N(L) 6= {0}, respectively.

Then

S := {(x, λ) ∈ D : Lx +N (x, λ) = 0}.

contains a compact connected component C along which λ takes all values in [0, 1]. In
particular, the equation

Lx +N (x, 1) = 0

has at least one solution in D1.

Proof. The mapping F : D → Z defined by F(x, λ) = Lx + N (x, λ) satisfies
Assumption (a) of Lemma 4.1 with z = 0. Now, if N(L) 6= {0}, Assumptions 2
and 3, and Theorem 3.1 imply that

dB [L +N (·, 0),D0, 0] = dB [N (·, 0)|N(L),D0 ∩N(L), 0] 6= 0,

so that Assumption (b) of Lemma 4.1 holds with λ = 0. If N(L) = {0}, Assumption 1
implies that N (·, 0) = 0, and hence

dB [L +N (·, 0),D0, 0] = dB [L,D0, 0] = sign det L,

so that Assumption (b) of Lemma 4.1 holds, again.

5. SEMILINEAR EQUATIONS HOMOTOPIC TO LINEAR ONES

Some special cases of Theorem 4.1, obtained from homotopies to linear mappings, are
of interest.

Corollary 5.1. Let L : X → Z be a linear mapping, D ⊂ X × [0, 1] an open
bounded set, and N : D → Z a continuous mapping. Assume that there exists a
linear A : X → Z such that the following conditions hold:

(i) N(L + A) = {0}.
(ii) Lx + (1− λ)Ax + λN(x) 6= 0 for each (x, λ) ∈ ∂D.
(iii) 0 ∈ D0.

Then

SA = {(x, λ) ∈ D : Lx + (1− λ)Ax + λN(x) = 0}

contains a compact connected component CA along which λ takes all values in [0, 1].
In particular, the equation

Lx + N(x) = 0 (9)

has at least one solution in D1.
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Proof. This follows immediately from Theorem 4.1 with L replaced by L + A and
N (x, λ) = λ[N(x)−Ax].

A useful special case of Corollary 5.1 goes as follows.

Corollary 5.2. Let L : X → Z be a linear mapping, P : X → X, Q : Z → Z
projectors such that

R(P ) = N(L), N(Q) = R(L), (10)

J : N(L) → R(Q) an isomorphism, D ⊂ X×[0, 1] an open bounded set, and N : D→Z
a continuous mapping. Assume that the following conditions hold:

(A) Lx + (1− λ)JPx + λN(x) 6= 0 for each (x, λ) ∈ ∂D.
(B) 0 ∈ D0.

Then

SJP = {(x, λ) ∈ D : Lx + (1− λ)JPx + λN(x) = 0}

contains a compact connected component CJP along which λ takes all values in [0, 1].
In particular, equation (9) has at least one solution in D1.

Proof. There is

(L + JP )x = 0 ⇔ Lx = 0, JPx = 0 ⇔ x ∈ N(L), Px = 0
⇔ x = 0,

and the result follows from Corollary 5.1 with A = JP .

6. AN APPLICATION TO SECOND ORDER
FUNCTIONAL DIFFERENCE EQUATIONS

Following [34], we consider the existence of periodic solutions of the second order
nonlinear functional difference equation

∆2x(n− 1) = f(n, x(n), x(n− τ1(n)), . . . , x(n− τm(n))) (n ∈ Z) (11)

where τj : Z → Z is T-periodic for some integer T ≥ 1 and j = 1, . . . ,m,

f : Z× Rm+1 → R, (n, x0, x1, . . . , xm) 7→ f(n, x0, x1, . . . , xm)

is T-periodic with respect to n for each x0, x1, . . . , xm ∈ Rm+1 and continuous with
respect to (x0, x1, . . . , xm) for each n ∈ Z, and

∆2x(n− 1) = ∆[x(n)− x(n− 1)] = x(n + 1)− 2x(n) + x(n− 1) (n ∈ Z).

The vector space

X := {x : Z → R : x(n + T ) = x(n) for all n ∈ Z}
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has the finite dimension T and will be endowed with the Hölder norm

‖x‖r :=

(
T∑

n=1

|x(n)|r
) 1

r

(12)

for some r ≥ 1. We also use the maximum norm ‖x‖∞ = max1≤n≤T |x(n)|. The
following result improves, in several directions and with a much simpler proof, a
theorem of Yuji Liu [34].

Theorem 6.1. Assume that f = g + h, where g, h : Z × Rm+1 → R have the same
periodicity and regularity properties as f and verify the following conditions:

1. There exists β > 0 and θ ≥ 1 such that

g(n, x0, x1, . . . , xm)x0 ≥ β|x0|θ+1 (13)

for all n ∈ Z and (x0, x1, . . . , xm) ∈ Rm+1.
2. There exist T-periodic mappings pi : Z → R+ (1 ≤ i ≤ m) and r : Z → R+ such

that

|h(n, x0, x1, . . . , xm)| ≤
m∑

i=0

pi(n)|xi|θ + r(n) (14)

for all n ∈ Z and (x0, x1, . . . , xm) ∈ Rm+1.
3.

‖p0‖∞ + T
m∑

i=1

‖pi‖∞ < β. (15)

Then equation (11) has at least one T -periodic solutions.

Proof. Let

L : X → X, (x(n))n∈Z 7→ (∆2x(n− 1))n∈Z,

A : X → X, (x(n))n∈Z 7→ −(x(n))n∈Z ,

N : X → X, (x(n))n∈Z 7→ (f(n, x(n), x(n− τ1(n)), . . . , x(n− τm(n))))n∈Z ,

F : X × [0, 1] → X, (x, λ) 7→ Lx + (1− λ)Ax + λN(x)).

Let λ ∈ [0, 1] and x = (x(n))n∈Z be a possible zero of F(·, λ). Then,

0 =
T∑

n=1

x(n)∆2x(n− 1)− (1− λ)
T∑

n=1

x(n)2 −

− λ
T∑

n=1

x(n)f(n, x(n), x(n− τ1(n)), . . . , x(n− τm(n))). (16)
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Now,

2
T∑

n=1

x(n)∆2x(n− 1) =

= 2
T∑

n=1

x(n)∆x(n)− 2
T∑

n=1

x(n)∆x(n− 1) =

= 2
T∑

n=1

[x(n)x(n + 1)− x(n)2]− 2
T∑

n=1

[x(n)2 − x(n)x(n− 1)] =

=
T∑

n=1

{−[x(n + 1)− x(n)]2 + x(n + 1)2 + x(n)2 − 2x(n)2}+

+
T∑

n=1

{−[x(n)− x(n− 1)]2 + x(n)2 + x(n− 1)2 − 2x(n)2} =

= −
T∑

n=1

[x(n + 1)− x(n)]2 + x(T + 1)2 − x(1)2−

−
T∑

n=1

[x(n)− x(n− 1)]2 + x(0)2 − x(T )2.

Hence, using the T-periodicity of x(n), we obtain
T∑

n=1

x(n)∆2x(n− 1) ≤ 0. (17)

Now, if F(x, 0) = 0, then, using (17), we get

0 =
T∑

n=1

x(n)[∆2x(n− 1)− x(n)] ≤ −
T∑

n=1

x(n)2

and hence x = 0. Thus Assumption (i) of Corollary 5.1 holds. Using (17) in (16), we
obtain

λ
T∑

n=1

x(n)f(n, x(n), x(n− τ1(n)), . . . , x(n− τm(n))) ≤ 0

and hence, using Assumptions 1 and 2, for λ ∈ ]0, 1], we get

β
T∑

n=1

|x(n)|θ+1 ≤ −
T∑

n=1

x(n)h(n, x(n), x(n− τ1(n)), . . . , x(n− τm(n))) ≤

≤
T∑

n=1

|x(n)||h(n, x(n), x(n− τ1(n)), . . . , x(n− τm(n)))| ≤

≤
T∑

n=1

[
p0(n)|x(n)|θ+1 +

m∑
i=1

pi(n)|x(n− τi(n))|θ|x(n)|+ r(n)|x(n)|

]
.

(18)
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Then, using Hölder’s inequality repeatedly, we obtain

β
T∑

n=1

|x(n)|θ+1 ≤ ‖p0‖∞
T∑

n=1

|x(n)|θ+1+

+
m∑

i=1

(
T∑

n=1

[
pi(n)|x(n− τi(n))|θ

] θ+1
θ

) θ
θ+1
(

T∑
n=1

|x(n)|θ+1

) 1
θ+1

+

+

(
T∑

n=1

r(n)
θ+1

θ

) θ
θ+1
(

T∑
n=1

|x(n)|θ+1

) 1
θ+1

≤

≤ ‖p0‖∞
T∑

n=1

|x(n)|θ+1+

+

(
m∑

i=1

‖pi‖∞

)(
T∑

n=1

|x(n− τi(n))|θ+1

) θ
θ+1
(

T∑
n=1

|x(n)|θ+1

) 1
θ+1

+

+

(
T∑

n=1

r(n)
θ+1

θ

) θ
θ+1
(

T∑
n=1

|x(n)|θ+1

) 1
θ+1

≤

≤ ‖p0‖∞
T∑

n=1

|x(n)|θ+1+

+

(
m∑

i=1

‖pi‖∞

)
T

(
T∑

n=1

|x(n)|θ+1

) θ
θ+1
(

T∑
n=1

|x(n)|θ+1

) 1
θ+1

+

+

(
T∑

n=1

r(n)
θ+1

θ

) θ
θ+1
(

T∑
n=1

|x(n)|θ+1

) 1
θ+1

=

= ‖p0‖∞
T∑

n=1

|x(n)|θ+1 + T

(
m∑

i=1

‖pi‖∞

)(
T∑

n=1

|x(n)|θ+1

)
+

+

(
T∑

n=1

r(n)
θ+1

θ

) θ
θ+1
(

T∑
n=1

|x(n)|θ+1

) 1
θ+1

.

Therefore, using (15),

(
T∑

n=1

|x(θ))|θ+1

) 1
θ+1

≤

(∑T
n=1 r(n)

θ+1
θ

) 1
θ+1

(β − ‖p0‖∞ − T
∑m

i=1 ‖pi‖∞)
1
θ

:= R0. (19)

Let us take some R > R0 and D = B(0, R)× [0, 1]. Then assumptions (ii) and (iii) of
Corollary 5.1 hold and F (·, 1) = L + N has at least one zero in B(0, R).
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Remark 6.1. Theorem 6.1 improves the result of [34] in several ways, by suppressing
Assumption (B), allowing θ = 1, correcting the last inequality on p. 69, and substan-
tially simplifying the proof by remaining in the frame of Brouwer degree and using the
simpler Corollary 5.1 instead of Corollary 7.1.

7. SEMILINEAR EQUATIONS HOMOTOPIC TO SOME NONLINEAR ONES
AND A POINCARÉ-BOHL THEOREM

We can now combine Theorem 3.1 with Theorem 4.1 to obtain another useful conti-
nuation theorem.

Corollary 7.1. Let L : X → Z be a linear noninvertible mapping, P : X → X,
Q : Z → Z projectors such that (10) holds, D ⊂ X × [0, 1] an open bounded set, and
N : D → Z a continuous mapping. Assume that the following conditions hold:

(a) Lx + λN(x) 6= 0 for each x ∈ (∂D)λ and each λ ∈ ]0, 1].
(b) QN(x) 6= 0 for each x ∈ (∂D)0 ∩N(L).
(c) dB [QN |N(L), (D)0 ∩N(L), 0] 6= 0.

Then

SQN = {(x, λ) ∈ D : Lx + λN(x) = 0}

contains a compact connected component CQN along which λ takes all values in [0, 1].
In particular, equation (9) has at least one solution in D1.

Proof. Define N : D → Z by

N (x, λ) = (1− λ)QN(x) + λN(x).

For λ = 0, there is

Lx +N (x, 0) = 0 ⇔ Lx + QN(x) = 0 ⇔ Lx = 0, QN(x) = 0
⇔ x ∈ N(L), QN(x) = 0.

Consequently, Assumptions (a) and (b) imply that 0 ∈ Z \F(∂D). On the other hand,
it follows from Theorem 3.1 and Assumption (c) that

dB [L +N (·, 0),D0, 0] = dB [L + QN(·, 0),D0, 0] =
= ±dB [QN(·, 0)|N(L),D0 ∩N(L), 0] 6= 0.

The result follows from Theorem 4.1.

Now recall two classical results. The first one is a version of Poincaré-Bohl’s
theorem [7, 42].



Reduction and continuation theorems for Brouwer degree. . . 553

Lemma 7.1. Let X be a finite-dimensional Hilbert space with the inner product 〈·, ·〉,
ρ > 0 and N : B(ρ) ⊂ X → X be continuous and such that

〈Nx, x〉 ≥ 0 (resp., 〈Nx, x〉 ≤ 0), whenever ‖x‖ = ρ. (20)

Then N has at least one zero in B(ρ).

The second one is Brouwer’s fixed point theorem [8].

Lemma 7.2. Let X be a finite-dimensional normed vector space, R > 0 and N :
B(R) ⊂ X → X be continuous and such that

‖N(x)‖ ≤ R, whenever ‖x‖ ≤ R. (21)

Then N has at least one fixed point in B(R).

We use Theorem 4.1 to obtain a single statement containing and connecting Lem-
mas 7.1 and 7.2.

Theorem 7.1. Let X be a normed vector space and Z a Hilbert space of the same
finite dimension, L : X → Z be linear, P : X → X, Q : Z → Z be projectors such
that

N(L) = R(P ), R(L) = N(Q),

J : N(L) → R(Q) an isomorphism, and let α > 0 be such that

‖L(I − P )x‖Z ≥ α‖(I − P )x‖X for all x ∈ X. (22)

Let ρ > 0, R > 0,

Dρ,R := {x ∈ X : ‖Px‖X < ρ, ‖(I − P )x‖X < R},

and N : Dρ,R → Z be continuous. Assume that the following conditions hold:

(i) ‖(I −Q)N(x)‖Z ≤ αR for all x ∈ Dρ,R.
(ii) 〈QN(x), JPx〉 ≥ 0 whenever ‖Px‖X = ρ and ‖(I − P )x‖X ≤ R.

Then L + N has at least one zero in Dρ,R.

Proof. If L+N has a zero such that ‖Px‖X ≤ ρ and ‖(I −P )x‖X = R, or has a zero
such that ‖Px‖X = ρ and ‖(I − P )x‖X ≤ R, then the theorem is proved. Then we
can assume that

Lx + Nx = 0 ⇒ ‖(I − P )x‖X < R and ‖Px‖X < ρ. (23)

We apply Corollary 5.2 with D = Dρ,R × [0, 1]. Let λ ∈ [0, 1] and x ∈ Dρ,R be a
possible zero of L + (1− λ)JPx + λN. Then

L(I − P )x + λ(I −Q)N(x) = 0, (24)
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and

(1− λ)JPx + λQN(x) = 0. (25)

From (24), (22) and Assumption (i), we deduce that, for λ ∈ [0, 1[

α‖(I − P )x‖X ≤ ‖L(I − P )x‖Z = ‖λN(x)‖Z < αR,

and hence

‖(I − P )x‖X < R. (26)

By (23), we can assume that (26) also holds for λ = 1. From (25), we obtain

(1− λ)‖JPx‖2Z + λ〈QN(x), JPx〉 = 0,

and Assumption (ii) and (23) imply that ‖Px‖X 6= ρ, so that ‖Px‖X < ρ. Conse-
quently, for each λ ∈ [0, 1], each possible zero of L + (1 − λ)JPx + λN belongs to
Dρ,R, and the result follows from Corollary 5.2.

Remark 7.1. If X = Z is a finite-dimensional Hilbert space, L = 0, then P =
Q = I, Dρ,R = B(ρ), condition (22) and Assumption (i) are trivially satisfied, and
Assumption (ii) becomes condition (20) if we choose J = I or J = −I. Hence we
recover Poincaré-Bohl’s theorem.

Remark 7.2. If L is invertible, then P = Q = 0, Dρ,R = B(R), Assumption (ii) is
trivially satisfied, and the remaining assumptions

‖Lx‖ ≥ α‖x‖ ∀ x ∈ X, ‖N(x)‖ ≤ αR ∀ x ∈ B(R)

imply the existence of at least one zero of L + N in B(R). This is a slight extension
of Brouwer fixed point theorem, which refers to X = Z a finite-dimensional normed
space, L = −I and α = 1.

8. AN APPLICATION TO PLANAR SYSTEMS OF FIRST ORDER
DIFFERENCE EQUATIONS OCCURING IN POPULATION DYNAMICS

Let T ≥ 1 be an integer, a, b, c, d : Z → R+ be T-periodic, non identically zero and
let f, g : R → R+

0 be increasing and such that

lim
s→−∞

f(s) = lim
s→−∞

g(s) = 0, lim
s→+∞

f(s) = lim
s→+∞

g(s) = +∞. (27)

We consider the system

∆u(n) = a(n)− b(n)f(v(n)),
∆v(n) = −c(n) + d(n)g(u(n)) (n ∈ Z),

(28)

which comes from population dynamics (the Lotka-Volterra discrete model when
f(s) = g(s) = exp s), and study the existence of its T-periodic solutions.
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The vector space of T-periodic mappings [u, v] : Z → R2 has the finite dimension
2T . We denote by e the average of the T-periodic mapping e : Z → R over a single
period, namely

e :=
1
T

T∑
n=1

e(n).

Our assumptions upon a, b, c, d can be written equivalently as:

a > 0, b > 0, c > 0, d > 0. (29)

Theorem 8.1. If assumption (29) holds, system (28) has at least one T-periodic
solution.

Proof. Define L : X → X and N : X → X, respectively, by

L[u, v] = [∆u(n),∆v(n)]n∈Z,

N [u, v] = [b(n)f(v(n))− a(n),−d(n)g(u(n)) + c(n)]n∈Z,

so that the problem consists in solving equation L[u, v] + N [u, v] = 0 in X, to which
we apply Corollary 7.1. Let λ ∈ ]0, 1] and [u, v] be a possible zero of L + λN. Then,
summing the equations from 1 to T and using the fact that

T∑
n=1

∆u(n) = u(T + 1)− u(1) = 0,

T∑
n=1

∆v(n) = v(T + 1)− v(1) = 0,

we obtain
T∑

n=1

b(n)f(v(n)) = Ta,
T∑

n=1

d(n)g(u(n)) = Tc. (30)

Hence, if

uL := min
1≤n≤T

u(n), vL := min
1≤n≤T

v(n),

uM := max
1≤n≤T

u(n), vM := max
1≤n≤T

v(n),

from (30) and the increasing character of f and g, we deduce that

bf(vL) ≤ a, dg(uL) ≤ c, bf(vM ) ≥ a, dg(uM ) ≥ c

and hence

vL ≤ f−1
(
a/b
)
, uL ≤ g−1

(
c/d
)
, vM ≥ f−1

(
a/b
)
, uM ≥ g−1

(
c/d
)
. (31)

On the other hand, we deduce from the system and (30), we deduce that

T∑
n=1

|∆u(n)| = λ
T∑

n=1

|a(n)− b(n)f(v(n))| ≤
T∑

n=1

b(n)f(v(n)) + Ta = 2Ta,

T∑
n=1

|∆v(n)| = λ
T∑

n=1

|c(n)− d(n)g(u(n))| ≤
T∑

n=1

d(n)g(u(n)) + Tc = 2Tc,
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which, together with the inequalities

uM − uL ≤
T∑

n=1

|∆u(n)|, vM − vL ≤
T∑

n=1

|∆v(n)|,

implies that

uM − uL ≤ 2Ta, vM − vL ≤ 2Tc. (32)

Combining (31) with (32), we obtain the estimates

g−1
(
c/d
)
− 2Ta ≤ uL ≤ uM ≤ g−1

(
c/d
)

+ 2Ta,

f−1
(
a/b
)
− 2Tc ≤ vL ≤ vM ≤ f−1

(
a/b
)

+ 2Tc.

Take

r1 < g−1
(
c/d
)
− 2Ta ≤ g−1

(
c/d
)

+ 2Ta < R1,

r2 < f−1
(
a/b
)
− 2Tc ≤ f−1

(
a/b
)

+ 2Tc < R2,

and consider the open bounded set

Ω := {[u, v] ∈ X : r1 < u(n) < R1, r2 < v(n) < R2 (n ∈ Z)}.

Hence, any possible zero [u, v] of L + λN (λ ∈ ]0, 1]) belongs to Ω. Now N(L) ' R2

and the mapping QN : R2 → R2 is given by

QN(x, y) = [bf(y)− a,−dg(x) + c].

It is easy to see that QN is a one-to-one map of R+
0 × R+

0 onto itself and its unique
zero

[x, y] =
[
g−1

(
c/d
)
, f−1

(
a/b
)]

belongs to Ω ∩ R2. Consequently,

dB [QN, Ω ∩N(L), 0] = ±1

and the result follows from Corollary 7.1.
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