Janusz Matkowski

ITERATION GROUPS, COMMUTING FUNCTIONS AND SIMULTANEOUS SYSTEMS OF LINEAR FUNCTIONAL EQUATIONS

Abstract. Let $(f^t)_{t\in\mathbb{R}}$ be a measurable iteration group on an open interval I. Under some conditions, we prove that the inequalies $g \circ f^a \leq f^a \circ g$ and $g \circ f^b \leq f^b \circ g$ for some $a, b \in \mathbb{R}$ imply that g must belong to the iteration group. Some weak conditions under which two iteration groups have to consist of the same elements are given. An extension theorem of a local solution of a simultaneous system of iterative linear functional equations is presented and applied to prove that, under some conditions, if a function g commutes in a neighbourhood of f with two suitably chosen elements f^a and f^b of an iteration group of fthen, in this neighbourhood, g coincides with an element of the iteration group. Some weak conditions ensuring equality of iteration groups are considered.

Keywords: iteration group, commuting functions, functional equation, functional inequalities.

Mathematics Subject Classification: Primary 39B12, 39B72, 26A18

1. INTRODUCTION

Let $I \subset \mathbb{R}$ be an open interval. A family of continuous functions $(f^t)_{t \in \mathbb{R}}$ is said to be an iteration group of a function $f: I \to I$ if $f^1 = f$ and for all $s, t \in \mathbb{R}$, $f^t: I \to I$, and $f^s \circ f^t = f^{s+t}$.

An iteration group is called continuous (measurable) if, for every $x \in I$, the function $R \ni t \to f^t(x)$ is continuous (measurable). The number t in f^t is called the iterative index of f.

According to Zdun's theorem [5], every measurable iteration group $(f^t)_{t\in\mathbb{R}}$ is continuous and there exists a homeomorphic bijection $\varphi: I \to R$, referred to in the sequel as a generator of the iteration group, such that the following representation formula holds true

$$f^{t}(x) = \varphi^{-1}\left(\varphi(x) + t\right), \qquad x \in I, t \in \mathbb{R}.$$
(1.1)

It is proved in [3] that if a function $g: I \to I$ is continuous at at least one point and commutes with two elements f^a and f^b of the iteration group $(f^t)_{t\in\mathbb{R}}$ and $\frac{b}{a}$ is irrational, then g must be an element of the iteration group $(f^t)_{t\in\mathbb{R}}$ (cf. Theorem 2). In section 3, applying a recent result on a simultaneous system of linear functional inequalities [1] (cf. Lemma 1 in Section 2), we prove that if, additionally, a < 0 < b, then the commutativity of g with f^a and f^b can be replaced by the inequalities $g \circ f^a \leq f^a \circ g$ and $g \circ f^b \leq f^b \circ g$ (Theorem 3). In this section we also give some weak conditions under which two iteration groups have to consist of the same elements (Theorem 4).

In Section 4, applying Theorem 1 (a new result on an extension of a local solution of a simultaneous system of iterative an linear functional equations) we prove Theorem 5, which is a local version of Theorem 2. Here the commutativity is required in a neighbourhood of a fixed point of f.

The last section begins with a remark that every measurable iteration group $(f^t)_{t\in\mathbb{R}}$ is uniquely determined by any of its orbit $\{f^t(x_0) : t \in \mathbb{R}\}$. Let $(f^t)_{t\in\mathbb{R}}$ and $(g^t)_{t\in\mathbb{R}}$ be iteration groups. Theorem 6 gives simple conditions on the fixed numbers a, b, α, β under which the inequalities

$$f^{\alpha} \le g^{\alpha}, \qquad f^b \le g^{\beta}$$

imply the existence of a $p \in \mathbb{R}$ such that $g^t = f^{pt}$ for all $t \in \mathbb{R}$.

2. AUXILIARY RESULTS ON A SYSTEM OF SIMULTANEOUS FUNCTIONAL EQUATIONS AND INEQUALITIES

In the sequel we shall need the following result on an extension of solutions of a simultaneous system of iterative functional equations.

Theorem 1. Let $I \subseteq \mathbb{R}$ be an open interval, let $\xi \in \mathbb{R} \cup \{-\infty, +\infty\}$ be one of the endpoints of I, and let $I_{\xi} \subset I$ be a nonempty open interval with the endpoint ξ . Let the functions $f_1, f_2 : I \to \mathbb{R}$ be continuous, increasing and such that one of the following conditions is fulfilled:

1. if ξ is finite then

$$0 < \frac{f_i(x) - \xi}{x - \xi} < 1, \qquad x \in I, i = 1, 2;$$

- 2. if $\xi = -\infty$ then
- $f_i(x) < x, \qquad x \in I, i = 1, 2;$
- 3. if $\xi = +\infty$ then

$$f_i(x) > x, \qquad x \in I, i = 1, 2.$$

Let the functions $g_1, g_2, h_1, h_2 : I \to \mathbb{R}$ be such that $g_1(x)g_2(x) \neq 0$ for all $x \in I$.

Suppose that a function $\gamma: I_{\xi} \to \mathbb{R}$ satisfies the simultaneous system of functional equations

$$\gamma[f_i(x)] = g_i(x)\gamma(x) + h_i(x), \qquad x \in I_{\xi}, \ i = 1, 2.$$
(2.1)

If the functions f_1, f_2 commute, i.e.

$$f_1 \circ f_2 = f_2 \circ f_1, \tag{2.2}$$

and

$$g_1(x)g_2[f_1(x)] = g_2(x)g_1[f_2(x)], \qquad x \in I,$$
(2.3)

$$g_1[f_2(x)]h_2(x) + h_1[f_2(x)] = g_2[f_1(x)]h_1(x) + h_2[f_1(x)], \qquad x \in I,$$
(2.4)

then there exists exactly one function $\Phi: I \to \mathbb{R}$ such that

 $\Phi | I_{\xi} = \gamma$

and

$$\Phi[f_i(x)] = g_i(x)\Phi(x) + h_i(x), \qquad x \in I, i = 1, 2.$$

Proof. Assume that the functions f_1 and f_2 satisfy condition 1, that is ξ is finite. Without any loss of generality, we can assume that $I = (0, \infty)$, $\xi = 0$ and $I_{\xi} = (0, \delta)$ for some $\delta > 0$. Let $\gamma : I_{\xi} \to \mathbb{R}$ be a solution of system (2.1). For each $i \in \{1, 2\}$ there exists a unique function $\Phi_i : (0, \infty) \to \mathbb{R}$ such that

$$\Phi_i[f_i(x)] = g_i(x)\Phi_i(x) + h_i(x), \qquad x \in (0,\infty), \ i = 1, 2,$$
(2.5)

and

$$\Phi_i |_{(0,a)} = \gamma$$

(cf. M. Kuczma [2], p. 246–247). Let

$$c := \sup \{b > 0 : \Phi_1(x) = \Phi_2(x) \text{ for all } x \in (0, b) \}$$

Obviously $c \ge \delta$. To prove the theorem it is enough to show that $c = +\infty$. Assume for the contrary that $c < +\infty$. Then

$$\Phi_1(x) = \Phi_2(x), \qquad x \in (0, c). \tag{2.6}$$

The assumptions on f_1 and f_2 imply that there exists a d > c such that

$$f_i(x) < c, \qquad x \in (0, d), i = 1, 2.$$

Hence, as $f_i \circ f_j(x) \in (0, c)$ for i, j = 1, 2 and $x \in (0, d)$, applying in turn: (2.5) for i = 1; (2.6); (2.5) for i = 2; (2.2) and (2.6); (2.5) for i = 1; (2.6); (2.5) for i = 2; and finally (2.3) and (2.4), we get

$$\Phi_{1}(x) = \frac{1}{g_{1}(x)} \left\{ \Phi_{1}[f_{1}(x)] - h_{1}(x) \right\} = \frac{1}{g_{1}(x)} \left\{ \Phi_{2}[f_{1}(x)] - h_{1}(x) \right\} =$$
$$= \frac{1}{g_{1}(x)} \left\{ \frac{1}{g_{2}[f_{1}(x)]} \left\{ \Phi_{2}[f_{2}(f_{1}(x))] - h_{2}[f_{1}(x)] \right\} - h_{1}(x) \right\} =$$
$$= \frac{1}{g_{1}(x)} \left\{ \frac{1}{g_{2}[f_{1}(x)]} \left\{ \Phi_{1}[f_{1}(f_{2}(x))] - h_{2}[f_{1}(x)] \right\} - h_{1}(x) \right\} =$$

$$\begin{split} &= \frac{g_1[f_2(x)]\Phi_1[f_2(x)] + h_1[f_2(x)] - h_2[f_1(x)] - h_1(x)g_2[f_1(x)]}{g_1(x)g_2[f_1(x)]} = \\ &= \frac{g_1[f_2(x)]\left\{g_2(x)\Phi_2(x) + h_2(x)\right\} + h_1[f_2(x)] - h_2[f_1(x)] - h_1(x)g_2[f_1(x)]}{g_1(x)g_2[f_1(x)]} = \\ &= \frac{g_1[f_2(x)]g_2(x)}{g_1(x)g_2[f_1(x)]}\Phi_2(x) + \\ &+ \frac{g_1[f_2(x)]h_2(x) + h_1[f_2(x)] - h_2[f_1(x)] - h_1(x)g_2[f_1(x)]}{g_1(x)g_2[f_1(x)]} = \Phi_2(x) \end{split}$$

which contradicts the definition of d. It completes the proof.

A more general result for system of functional equations of higher orders will be presented in [4]. By \mathbb{Q} we denote the set of all rational numbers. Let us quote the following

Lemma 1 ([1], Theorem 1). Let $a, b, \alpha, \beta \in \mathbb{R}$ be such that

$$a < 0 < b, \qquad \frac{b}{a} \notin \mathbb{Q}, \qquad \frac{\alpha}{a} \ge \frac{\beta}{b}$$

If a function $\gamma : \mathbb{R} \to \mathbb{R}$ continuous at at least one point satisfies the simultaneous system of functional inequalities

$$\gamma(x+a) \le \gamma(x) + \alpha, \qquad \gamma(x+b) \le \gamma(x) + \beta, \qquad x \in \mathbb{R},$$

then

$$\gamma(x) = \frac{\alpha}{a}x + \gamma(0), \qquad x \in \mathbb{R}.$$

3. COMMUTING FUNCTIONS

Remark 1. Functions $\psi, \varphi : I \to \mathbb{R}$ are generators of the same iteration group $(f^t)_{t \in \mathbb{R}}$ iff there exists a constant $a \in \mathbb{R}$ such that $\psi = \varphi + a$.

In [3] we have proved the following

Theorem 2. Let $f: I \to I$ be strictly increasing, onto and without fixed points in an open interval I. Suppose that $(f^t)_{t \in \mathbb{R}}$ is a measurable iteration group of f. If a function $g: I \to I$ is continuous at at least one point and commutes with two functions f^a and f^b such that $\frac{b}{a}$ is irrational, then there exists a $c \in \mathbb{R}$ such that $g = f^c$.

Assuming that a < 0 < b, the commutativity assumption may be weakened. Namely, we prove the following

Theorem 3. Let $f: I \to I$ be strictly increasing, onto and without fixed points in an open interval I. Suppose that $(f^t)_{t \in \mathbb{R}}$ is a measurable iteration group of f. If a function $g: I \to I$ is continuous at at least one point and

$$g \circ f^a \leq f^a \circ g, \qquad g \circ f^o \leq f^o \circ g,$$

where $a, b \in \mathbb{R} \setminus \{0\}$ are such that $\frac{b}{a}$ is irrational and a < 0 < b, then there exists a $c \in \mathbb{R}$ such that $g = f^c$.

Proof. According to Zdun's theorem, $(f^t)_{t \in \mathbb{R}}$ has to be a continuous iteration group (cf. [5]). Consequently, there exists a continuous and strictly monotonic function $\varphi: I \to \mathbb{R}$ with $\varphi(I) = \mathbb{R}$ such that

$$f^t(x) = \varphi^{-1}(\varphi(x) + t), \qquad x \in I, \ t \in \mathbb{R}.$$

Without any loss of generality, we may assume that φ is increasing. By the assumption we hence get

$$g\left(\varphi^{-1}\left(\varphi(x)+a\right)\right) \le \varphi^{-1}\left(\varphi(g(x))+a\right), \qquad x \in I,$$

and

$$g\left(\varphi^{-1}\left(\varphi(x)+b\right)\right) \le \varphi^{-1}\left(\varphi(g(x))+b\right), \qquad x \in I$$

It follows that the function $\gamma := \varphi \circ g \circ \varphi^{-1}$ satisfies the simultaneous system of functional inequalities

$$\gamma(t+a) \le \gamma(t) + a, \qquad \gamma(t+b) \le \gamma(t) + b, \qquad t \in \mathbb{R}.$$

Since the function γ is continuous at at least one point, there is a $c \in \mathbb{R}$ such that $\gamma(t) = t + c$ for all $t \in \mathbb{R}$ (cf. Theorem 1 in [1]). Thus $\varphi \circ g \circ \varphi^{-1}(t) = t + c$ for all $t \in \mathbb{R}$, whence $g = \varphi^{-1}(\varphi(x) + c)$ for all $x \in I$ which, by representation formula (RF), means that $g = f^c$.

Theorem 4. Let $f, g: I \to I$ be strictly increasing, onto and without fixed points in an open interval I. Suppose that $(f^t)_{t\in\mathbb{R}}$ and $(g^t)_{t\in\mathbb{R}}$ are measurable iteration groups of f and g, respectively. If for some noncommensurable $\alpha, \beta \in \mathbb{R}$, each of the functions g^{α} and g^{β} commutes with two functions of the iteration group $(f^t)_{t\in\mathbb{R}}$ of the noncommensurable iterative indices, then

$$g^t = f^{pt}, \qquad t \in \mathbb{R},$$

for some $p \in \mathbb{R}$, $p \neq 0$; in particular, $\{g^t : t \in \mathbb{R}\} = \{f^t : t \in \mathbb{R}\}.$

Proof. In view of Theorem 1 there are $a, b \in \mathbb{R}$ such that $g^{\alpha} = f^a$ and $g^{\beta} = f^b$. Hence, by induction, $g^{m\alpha} = f^{ma}$, $g^{n\beta} = f^{nb}$ for all integers $m, n \in \mathbb{Z}$, whence,

$$g^{m\alpha+n\beta} = f^{ma+nb}, \qquad m, n \in \mathbb{Z}.$$
(3.1)

Since, by the representation formula,

$$f^{t}(x) = \varphi^{-1}\left(\varphi(x) + t\right), \qquad g^{t}(x) = \psi^{-1}\left(\psi(x) + t\right), \qquad x \in I, t \in \mathbb{R},$$

for some homeomorphic functions $\varphi, \psi: I \to \mathbb{R}$, we get

$$\psi^{-1}\left(\psi(x) + m\alpha + n\beta\right) = \varphi^{-1}\left(\varphi(x) + ma + nb\right), \qquad x \in I; n, m \in \mathbb{Z}.$$
 (3.2)

Take an arbitrary $t \in \mathbb{R}$. The density of set $\{m\alpha + n\beta : m, n \in \mathbb{Z}\}$ in \mathbb{R} implies that there exist two sequences of integers (m_k) , (n_k) such that

$$t = \lim_{k \to \infty} (m_k \alpha + n_k \beta). \tag{3.3}$$

The noncommensurability of α and β implies that $\alpha \beta \neq 0$ and

$$\lim_{k \to \infty} |m_k| = \infty = \lim_{k \to \infty} |n_k|.$$

Therefore, from (3.3),

$$\lim_{k \to \infty} \left(\frac{m_k}{n_k} \alpha + \beta \right) = \lim_{k \to \infty} \frac{m_k \alpha + n_k \beta}{n_k} = \lim_{k \to \infty} \frac{t}{n_k} = 0,$$

which implies that

$$\lim_{k \to \infty} \frac{m_k}{n_k} = -\frac{\beta}{\alpha}.$$

From (3.2), for an arbitrarily fixed $x \in I$,

$$m_k a + n_k b = \varphi \left[\psi^{-1} \left(\psi(x) + m_k \alpha + n_k \beta \right) \right] - \varphi(x), \qquad k \in \mathbb{N},$$

whence, by the continuity of $\varphi, \varphi^{-1}, \psi, \psi^{-1}$,

$$\lim_{k \to \infty} \left(m_k a + n_k b \right) = \varphi \left[\psi^{-1} \left(\psi(x) + t \right) \right] - \varphi(x).$$

Repeating now the above argument we infer that

$$\lim_{k \to \infty} \frac{m_k}{n_k} = -\frac{b}{a},$$

and, consequently $\frac{b}{a} = \frac{\beta}{\alpha}$, whence $\frac{a}{\alpha} = \frac{b}{\beta}$. Setting

$$p := \frac{a}{\alpha} = \frac{b}{\beta}$$

we get

$$a = p\alpha, \qquad b = p\beta,$$

which implies that a and b are not commensurable and, by (3.1),

$$g^{m\alpha+n\beta} = f^{p(m\alpha+n\beta)}, \qquad m, n \in \mathbb{Z},$$

whence, in particular,

$$g^{m_k\alpha+n_k\beta} = f^{p(m_k\alpha+n_k\beta)}, \qquad k \in \mathbb{N}.$$

Letting here $k \to \infty$, we obtain

$$g^t = f^{pt},$$

which completes the proof.

Applying Theorem 2 and Theorem 3, we obtain

Theorem 5. Let $f, g: I \to I$ be strictly increasing, onto and without fixed points in an open interval I. Suppose that $(f^t)_{t \in \mathbb{R}}$ and $(g^t)_{t \in \mathbb{R}}$ are measurable iteration groups of f and g, respectively. If for some noncommensurable $\alpha, \beta \in \mathbb{R}$ there are two pairs (a, b) and (c, d) of noncomensurable real numbers such that

$$a < 0 < b,$$
 $g^{\alpha} \circ f^{a} \le f^{a} \circ g^{\alpha},$ $g^{\alpha} \circ f^{b} \le f^{b} \circ g^{\alpha},$

and

$$c < 0 < d,$$
 $g^{\beta} \circ f^{c} \le f^{c} \circ g^{\beta},$ $g^{\beta} \circ f^{d} \le f^{d} \circ g^{\beta},$

then

$$g^t = f^{pt}, \qquad t \in \mathbb{R},$$

for some $p \in \mathbb{R}$, $p \neq 0$; in particular, $\{g^t : t \in \mathbb{R}\} = \{f^t : t \in \mathbb{R}\}$.

Remark 2. Note that the function f^{pt} in the previous result can be treated as the *p*-th iterate of f^t . Indeed, let $\varphi : I \to \mathbb{R}$ be a generator of the iteration group of f. If $n \in \mathbb{N}$, then, by induction,

$$(f^t)^{\frac{m}{n}}(x) = \varphi^{-1}\left(\varphi(x) + \frac{m}{n}t\right) = f^{\frac{m}{n}t}, \qquad n \in \mathbb{N}, m \in \mathbb{Z}, t \in \mathbb{R}, x \in I,$$

which means that

$$(f^t)^p(x) = \varphi^{-1}(\varphi(x) + pt) = f^{pt}, \qquad p \in \mathbb{Q}, t \in \mathbb{R}, x \in I.$$

The continuity of the iteration group and the functions φ and φ^{-1} implies that this relation can be uniquely extended onto all $p \in \mathbb{R}$.

Corollary 1 ([3]). Let $f, g: I \to I$ be strictly increasing, onto and without fixed points in an open interval I. If the measurable iteration groups $(f^t)_{t\in\mathbb{R}}$ and $(g^t)_{t\in\mathbb{R}}$ of f and g, respectively, are commuting in pairs, i.e.,

$$f^t \circ g^t = g^t \circ f^t, \qquad t \in \mathbb{R},$$

then, for every $t \in \mathbb{R}$, $g^t = f^{tp}$ for some $p \in \mathbb{R}$, $p \neq 0$.

4. LOCALLY COMMUTING FUNCTIONS

In this section we prove the following local counterpart of Theorem 2.

Theorem 6. Let $f: I \to I$ be strictly increasing, onto and without fixed points in an open interval I. Suppose that $(f^t)_{t \in \mathbb{R}}$ is a measurable iteration group of f. Let ξ be one of the endpoints of I and $I_{\xi} \subset I$ be an arbitrary nonempty open interval with the endpoint ξ . If a function $g: I_{\xi} \to I$ is continuous at at least one point and there are $a, b \in \mathbb{R}, a \neq 0, \frac{b}{a}$ irrational and such that

$$f^a(I_\xi) \subset I_\xi, \qquad f^b(I_\xi) \subset I_\xi$$

$$(4.1)$$

and

$$g \circ f^a = f^a \circ g, \qquad g \circ f^b = f^b \circ g, \tag{4.2}$$

then $g = f^c |_{I_{\mathcal{E}}}$ for some $c \in \mathbb{R}$.

Proof. We shall only consider the case of ξ finite, as in the opposite case the argument is analogous. Without any loss of generality, we may assume that $\xi = 0$ is the left-end point of I and $I_{\xi} = (0, \delta)$ for some $\delta > 0$. Since

$$f^t(x) = \varphi^{-1} \left(\varphi(x) + t \right), \qquad x \in I, t \in \mathbb{R},$$

for a homeomorphic function $\varphi: I \to \mathbb{R}$, then

$$f^{a}(x) = \varphi^{-1}\left(\varphi(x) + a\right), \qquad f^{b}(x) = \varphi^{-1}\left(\varphi(x) + b\right), \qquad x \in I.$$

Assume that, for instance, φ is increasing. Then, by (4.1), both a and b must be negative, and by (4.2),

$$g\left[\varphi^{-1}\left(\varphi(x)+a\right)\right] = \varphi^{-1}\left(\varphi(g(x))+a\right), \qquad x \in (0,\delta),$$
$$g\left[\varphi^{-1}\left(\varphi(x)+b\right)\right] = \varphi^{-1}\left(\varphi(g(x))+b\right), \qquad x \in (0,\delta).$$

Since $\varphi((0, \delta)) = (-\infty, \varphi(\delta))$, the function $\gamma := \varphi \circ g \circ \varphi^{-1}$ is defined on $(-\infty, \varphi(\delta))$ and satisfies the simultaneous system of functional equations

$$\gamma(t+a) = \gamma(t) + a, \qquad \gamma(t+b) = \gamma(t) + b, \qquad t < \varphi(\delta).$$

Assuming $I = \mathbb{R}$, $\xi = -\infty$, $I_{\xi} = (-\infty, \varphi(\delta))$, $f_1(t) = t + a$, $f_2(t) = t + b$, $g_1 = g_2 = 1$ it is easy to verify that the conditions of Theorem 1 are fulfilled. Therefore there exists a unique function $\Phi : \mathbb{R} \to \mathbb{R}$ such that $\Phi \mid_{(-\infty,\varphi(\delta))} = \gamma$ and

$$\Phi(t+a) = \Phi(t) + a, \qquad \Phi(t+b) = \Phi(t) + b, \qquad t \in \mathbb{R}.$$

Since the function Φ is continuous at at least one point, applying Theorem 1 of [3], we conclude that, for some $c \in \mathbb{R}$,

$$\Phi(t) = t + c, \qquad t \in \mathbb{R}.$$

It follows that $\gamma(t) := \varphi \circ g \circ \varphi^{-1}(t) = t + c$ for all $t < \varphi(\delta)$, whence, by representation formula (RF)

$$g(x) = \varphi^{-1} \left(\varphi(x) + c \right) = f^c(x), \qquad x \in (0, \delta).$$

This completes the proof.

5. EQUALITY OF ITERATION GROUPS

We begin this section with the following

Proposition 1. Let $f, g: I \to I$ be strictly increasing, onto and without fixed points in an open interval I. Suppose that $(f^t)_{t\in\mathbb{R}}$ and $(g^t)_{t\in\mathbb{R}}$ are measurable iteration groups of f and g, respectively. If for some $x_0 \in I$,

$$f^t(x_0) = g^t(x_0) \quad \text{for all } t \in \mathbb{R},$$

then

$$f^t = g^t \quad for \ all \ t \in \mathbb{R}.$$

Proof. Let $\varphi, \psi: I \to \mathbb{R}$ be the generators of the iteration groups $(f^t)_{t \in \mathbb{R}}$ and $(g^t)_{t \in \mathbb{R}}$, respectively. By the assumption,

$$\varphi^{-1}(\varphi(x_0) + t) = \psi^{-1}(\psi(x_0) + t), \qquad t \in \mathbb{R},$$

whence, after simple calculations, we obtain

$$\psi(x) = \varphi(x) + \psi(x_0) - \varphi(x_0),$$

and Remark 1 completes the proof.

Remark 3. According to the above proposition, every measurable iteration group is uniquely determined by any of its orbits $\{f^t(x_0) : t \in \mathbb{R}\}$.

Theorem 7. Let $f, g: I \to I$ be strictly increasing, onto and without fixed points in an open interval I. Suppose that $(f^t)_{t\in\mathbb{R}}$ and $(g^t)_{t\in\mathbb{R}}$ are measurable iteration groups of f and g, respectively. If

$$f^a \le g^{\alpha}, \qquad f^b \le g^{\beta},$$

for some $a, b, \alpha, \beta \in \mathbb{R}$ such that

$$a < 0 < b, \qquad \frac{b}{a} \notin \mathbb{Q}, \qquad \frac{\alpha}{a} \ge \frac{\beta}{b},$$

then

$$g^t = f^{pt}, \qquad t \in \mathbb{R},$$

for some $p \in \mathbb{R}$, $p \neq 0$; in particular, $\{g^t : t \in \mathbb{R}\} = \{f^t : t \in \mathbb{R}\}.$

Proof. Let $\varphi, \psi: I \to \mathbb{R}$ be the generators of the iteration groups $(f^t)_{t \in \mathbb{R}}$ and $(g^t)_{t \in \mathbb{R}}$, respectively. By the assumption,

$$\varphi^{-1}\left(\varphi(x)+a\right) \le \psi^{-1}\left(\psi(x)+\alpha\right), \qquad x \in I,$$

and

$$\varphi^{-1}(\varphi(x)+b) \le \psi^{-1}(\psi(x)+\beta), \qquad x \in I.$$

Setting $\gamma := \psi \circ \varphi^{-1}$ we hence get

$$\gamma(t+a) \le \gamma(t) + \alpha, \qquad \gamma(t+b) \le \gamma(t) + \beta, \qquad t \in \mathbb{R}.$$

Applying Lemma 1 we obtain $\gamma(t) = \frac{1}{p}t + q$ for all $t \in \mathbb{R}$, where $p := \frac{a}{\alpha}$ and $q = \gamma(0)$, that is $\psi \circ \varphi^{-1}(t) = \frac{1}{p}t + q$ $(t \in \mathbb{R})$ whence

$$\psi(x) = p\varphi(x) + q, \qquad t \in \mathbb{R}.$$

Now, by simple calculations, we obtain

$$g^{t}(x) = \psi^{-1}(\psi(x) + t) = \varphi^{-1}(\varphi(x) + pt) = f^{pt}(x)$$

for all $x \in I$ and $t \in \mathbb{R}$.

If $\alpha = a$ and $\beta = b$ in the above theorem, then p = 1 and we obtain the following

Corollary 2. Let $f, g: I \to I$ be strictly increasing, onto and without fixed points in an open interval I. Suppose that $(f^t)_{t\in\mathbb{R}}$ and $(g^t)_{t\in\mathbb{R}}$ are measurable iteration group of f and g, respectively. If

$$f^{\alpha} \leq g^{a}, \qquad f^{b} \leq g^{b},$$

for some $a, b \in \mathbb{R}$ such that

$$a < 0 < b, \qquad \frac{b}{a} \notin \mathbb{Q},$$

then

$$f^t = g^t, \qquad t \in \mathbb{R}.$$

Acknowledgements

The research was supported by the Silesian University Mathematical Department (Iterative Functional Equations and Real Analysis Programme).

REFERENCES

- D. Krassowska, J. Matkowski, A pair of linear functional inequalities and a characterization of L^p-norm, Ann. Polon. Math. 85 (2005) 1, 1–10.
- [2] M. Kuczma, Functional equations in a single variable, Monografie Mat. 46, Polish Scientific Publishers, Warsaw, 1968.
- J. Matkowski, Cauchy functional equation on restricted domain and commuting functions, in Iteration Theory and Its Functional Equations, Proc., Schloss Hofen 1984, Springer Verlag 1163 (1985), 101–106.
- [4] J. Matkowski, On extension of solutions of a simultaneous system of linear functional equations (in peparation).
- [5] M.C. Zdun, Continuous and differentiable iteration groups, Prace Matematyczne, Silesian University, 1979.

Janusz Matkowski j.matkowski@wmie.uz.im.zgora.pl

University of Zielona Góra Institute of Mathematics, Computer Science and Econometry, ul. Podgórna 50, 65-246 Zielona Góra, Poland

Silesian University Institute of Mathematics 40-007 Katowice, Poland

Received: November 6, 2007. Revised: February 10, 2008. Accepted: January 20, 2008.