PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The motion planning problem and exponential stabilization of a heavy chain. Part II

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This is the second part of paper [8], where a model of a heavy chain system with a punctual load (tip mass) in the form of a system of partial differential equations was interpreted as an abstract semigroup system and then analysed on a Hilbert state space. In particular, in [8] we have formulated the problem of exponential stabilizability of a heavy chain in a given position. It was also shown that the exponential stability can be achieved by applying a stabilizer of the colocated-type. The proof used the method of Lyapunov functionals. In the present paper, we give other two proofs of the exponential stability, which provides an additional intrinsic insight into the exponential stabilizability mechanism. The first proof makes use of some spectral properties of the system. In the second proof, we employ some relationships between exponential stability and exact observability.
Rocznik
Strony
481--505
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • AGH University of Science and Technology Institute of Automatics al. A. Mickiewicza 30, Bl, rm.314. 30-059 Kraków, Poland, pgrab@ia.agh.edu.pl
Bibliografia
  • [1] W. Arendt, C.J.K. Batty, Tauberian theorems and stability of one-parameter semigroups, Transactions of the American Mathematical Society 306 (1988), 837–852.
  • [2] A.V. Balakrishnan, Superstability of systems, Applied Mathematics and Computation 164 (2005), 321–326.
  • [3] S. Belyi, S. Hassi, H. de Snoo, E. Tsekanovskiˇi, A general realization theorem for matrix-valued Herglotz-Nevanlinna functions, Linear Algebra and Its Applications 419 (2006), 331–358.
  • [4] R.F. Curtain, G. Weiss, Exponential stability of well-posed linear systems by collocated feedback. SIAM Journal on Control and Optimization 45 (2006), 273–297.
  • [5] R.B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, London, 1973.
  • [6] F. Gesztesy, E. Tsekanovskii, On matrix-valued Herglotz functions, Mathematische Nachrichten 218 (2000), 61–138.
  • [7] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Non–selfadjoint Operators, Moscow: Nauka. 1965 (in Russian). English translation: Translations of Mathematical Monographs 18, Providence: AMS. 1969.
  • [8] P. Grabowski, The motion planning problem and exponential stabilization of a heavy chain. Part I, to appear in International Journal of Control.
  • [9] I.S. Gradshteyn, I.M. Ryzhik, Tables of integrals, series, and products, Academic Press, San Diego, CA, 1984. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. 6th ed.
  • [10] Haraux A., Une remarque sur la stabilisation de certains systèmes du deuxième ordre, Portugaliae Mathematica 46 (1989), 245–258. Scanned version available from The Portugal National Library URL: http://purl.pt/404/1/vol6-1947/jpg/spm_1989-fasc3_0019_245_t0.jpg
  • [11] A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Mathematische Zeitschrift 41 (1936), 367–379.
  • [12] V.E. Kacnel’son, Conditions under which systems of eigenvectors of some classes of operators form a basis, Funktsjonal’nyj Analiz i evo Prilozhenija 1 (1967), 39–51. English translation in: Functional Analysis and Its Applications 1 (1968), 122–132.
  • [13] J. Krzyż, Problems in Complex Variable Theory, Elsevier, New York, 1972.
  • [14] I. Lasiecka, R. Triggiani, L2(∑)-regularity of the boundary to boundary operator B* L for hyperbolic and Petrowski PDEs, Abstract and Applied Analysis (2003), 19, 1061–1139 with complement: Lasiecka I., Triggiani R., The operator B* L for the wave equation with Dirichlet control, Abstract and Applied Analysis (2004) 7, 625–634.
  • [15] Yu.I. Lyubich, Vu Quôc Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Mathematica 88 (1988), 37–42.
  • [16] J. Prüss, On the spectrum of C0-semigroup, TRANSACTIONS of the AMS 284 (1984), 847–857.
  • [17] H. Röh, Spectral Analysis of Non Self-Adjoint C0-Semigroup Generators, PhD. Thesis. Department of Mathematics, Hariot-Watt University, February 1982.
  • [18] H. Röh, Dissipative operator with finite dimensional damping, Proceedings of the Royal Society of Edinburgh 91A (1982), 243–263.
  • [19] Xu Gen-Qi, Guo Bao-Zhu, Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation, SIAM Journal of Control and Optimization 42 (2003), 966–984.
  • [20] R.M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH9-0005-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.