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THE MOTION PLANNING PROBLEM
AND EXPONENTIAL STABILIZATION

OF A HEAVY CHAIN.
PART II

Abstract. This is the second part of paper [8], where a model of a heavy chain system
with a punctual load (tip mass) in the form of a system of partial differential equations was
interpreted as an abstract semigroup system and then analysed on a Hilbert state space.

In particular, in [8] we have formulated the problem of exponential stabilizability of
a heavy chain in a given position. It was also shown that the exponential stability can
be achieved by applying a stabilizer of the colocated-type. The proof used the method of
Lyapunov functionals.

In the present paper, we give other two proofs of the exponential stability, which provides
an additional intrinsic insight into the exponential stabilizability mechanism. The first proof
makes use of some spectral properties of the system. In the second proof, we employ some
relationships between exponential stability and exact observability.
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1. INTRODUCTION

Let H := R⊕H1
L(0, L)⊕ L2(0, L), where

H1
L(0, L) :=

{
Φ ∈ H1(0, L) : Φ(L) = 0

}
is a closed subspace of the Sobolev space H1(0, L). We endow H with the energetic
scalar product, which is equivalent to the natural scalar product of H,〈 v

φ
ψ

 ,
 V

Φ
Ψ

〉 = µvV +
∫ L

0

g(ξ + µ)φ′(ξ)Φ′(ξ)dξ +
∫ L

0

ψ(ξ)Ψ(ξ)dξ.
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The semigroup model on H of the controlled open–loop heavy chain system, con-
sidered in [8], was as follows{

Ẋ(t) = A [X(t) + du̇(t)]
y(t) = h∗X(t) + u(t)

}
,

with a linear unbounded state operator A

A

 v

Φ
Ψ

 =

 gΦ′(0)
Ψ[

g(·+ µ)Φ′(·)
]′
 ,

D(A) =


 v

Φ
Ψ

 ∈ H : Φ ∈ H2(0, L), Ψ ∈ H1
L(0, L), Ψ(0) = v

 ,

a factor control vector d ∈ H \D(A) and an observation vector h ∈ D(A):

d =

 −1
0

−1

 , h =
1
g

 0
− ln(·+ µ) + ln(L+ µ)

0

 .
Recall that [9, Thorem 2.1 and its proof] A is invertible with a compact

skew–adjoint inverse, whence A has a compact resolvent and is skew-adjoint too,
and has a countable spectrum consisting entirely of purely imaginary single eigen-
values λ±n ∼ ±j nπ

β−α , n ∈ N. The set of corresponding normalized eigenvectors
forms an orthonormal basis (ONB) of H. Consequently, A generates a unitary group
{S(t)}t∈R on H.

To stabilize the chain position, a negative feedback control law of the
colocated-type has been proposed in [8]:

u̇(t) = −kd#X − κu(t), k > 0, κ > 0

where

d#X = g(L+ µ)Φ′(L), D(d#) = {X ∈ H : Φ′ is continuous at θ = L} .

Recall that

d ∈ D(d#), d#d = 0, d#
∣∣
D(A)

= −d∗A = d∗A∗.

The closed-loop feedback control system analysis requires examination of its subsys-
tem corresponding to κ = 0 [8, Formula (4.5)]

Ẋ = A
[
X − kdd#X

]
:= AcX
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and
X ∈ D(Ac) ⇐⇒

[
X ∈ D(d#), X − kdd#X ∈ D(A)

]
.

From [8, Theorem 4.1] we know that the closed-loop system operator Ac generates a
C0-semigroup of contractions on H. Actually, this semigroup is exponentially stable
(EXS) as shown in [8, Theorem 4.2] using the method of Lyapunov functionals.

This result is simple but it does not provide an explanation of the exponential
stabilization mechanism. The aim of this paper is to provide two other proofs which
offer an intrinsic insight into this mechanism.

The first proof makes use of some spectral methods. It consists in showing that
the generalized eigenspaces of Ac form an unconditional (Riesz) basis in the state
space H, the fact which can be derived from the criterion given in [17] and [18]. Then
EXS follows because the spectral mapping property holds for Ac.

Our second proof makes use of some relationships between EXS and the exact
observability. Such relationships where more or less known in the literature; however,
they where explicitly established in a clear time-domain setting in [14]. We revised
the scheme therein, getting some simplifications and generalizations. Moreover, we
propose to add to that scheme some frequency-domain tools in order to make them
easier to apply. The scheme in [14], in a modified form, is as follows. We start
with proving that under some standard conditions there is an equivalence between
EXS and the finite-time exact observability of the closed-loop feedback system, and
this equivalence even holds for a wide class of non-colocated stabilizers – Theorem
4.1. Our next result, Theorem 4.2, says that, roughly speaking the finite-time exact
observability of the closed-loop feedback system follows from the finite-time exact
observability of the open-loop feedback system, provided that the input-output system
operator is bounded on some L2(0, T )-type space. Thus, certain frequency-domain
tools may readily be applied to verify the assumptions of Theorem 4.1 effectively. In
particular, the Ingham inequality may be used to verify whether the finite-time exact
observability of the open-loop feedback system holds, while the Paley-Wiener theory,
modulo a simple trick, is useful in getting the desired boundedness of the input-output
operator.

The results are illustrated with a heavy chain system, and they confirm the EXS
established in [8] using the Lyapunov-Datko theorem.

2. SOME AUXILIARY RESULTS

Lemma 2.1. The closed-loop state operator Ac is invertible with the inverse A−1
c ∈

L(H),
A−1

c = A−1 − kdd∗. (2.1)

The operator A−1
c is compact.

Proof. Invertibility of A−1
c holds iff the equation

H 3 y = AcX = A
[
X − kdd#X

]
(2.2)
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is uniquely solvable with respect to X ∈ D(Ac). To find such a solution, we apply
the operator A−1 to the both sides, getting

X − kdd#X = A−1y.

A solution of the last equation exists only if

d#X = d#A−1y = −d∗A−1Ay = −d∗y.

Now X = A−1y− kdd∗y is the unique solution of (2.2), defining the inverse operator
(2.1). Since A−1 is compact, A−1

c is compact too, as those operators differ by a
self-adjoint rank one operator.

A consequence of Lemma 2.1 is that Ac may only have a point spectrum
(eigenvalues). To determine the latter we need the following spectral observa-
bility/controllability-type result.

Lemma 2.2. Let {ek}k∈Z be the ONB of eigenvectors of A, corresponding to its
(purely imaginary) eigenvalues {λk}k∈Z. Then

∀k ∈ Z d#ek 6= 0. (2.3)

Proof. For a proof by contradiction, suppose that there exists k∈Z such that d#ek =0.
Then Φ′(L) = 0, where Φ is the second component of ek. Since ek solves the
boundary-value eigenproblem for A:

g(ξ + µ)Φ′′(ξ) + gΦ′(ξ)− λ2Φ(ξ) = 0
Φ(L) = 0
gΦ′(0) = λ2Φ(0)

 (2.4)

with λ = λk, it also solves
g(ξ + µ)Φ′′(ξ) + gΦ′(ξ)− λ2Φ(ξ) = 0

Φ(L) = 0
Φ′(L) = 0

 . (2.5)

A general solution of the first equation in (2.4) or (2.5) is [8, Appendix A]

Φ(ξ) = C1I0

(
2λ

√
ξ + µ

g

)
+ C2K0

(
2λ

√
ξ + µ

g

)
(2.6)

where In stands for the modified n-th order Bessel function of the first kind and Kn

denotes the modified n-th order Bessel function of the second kind, n ∈ {0}∪N. Since
I ′0(z) = I1(z) [9, 6.496.9] and K ′

0(z) = −K1(z) [9, 6.496.18] then substituting (2.6)
into the boundary conditions of (2.5), we obtain the linear homogeneous system[

I0(λβ) K0(λβ)

−I1(λβ) K1(λβ)

][
C1

C2

]
=

[
0
0

]
, β := 2

√
L+ µ

g
.



The motion planning problem and exponential stabilization. . . 485

Its determinant is ruled by the Wronskian of {I0,K0} [9, 6.487.2],

W ({I0,K0}) = I0(z)K1(z) + I1(z)K0(z) = z−1,

and thus it is nonzero. Hence ek = 0 which contradicts ‖ek‖ = 1.

Lemma 2.2 is an important result which enables us to establish some further facts.

Lemma 2.3. All eigenvalues of Ac, if they exist, are in C− := {s ∈ C : Re s < 0}.

Proof. Indeed, if f ∈ D(Ac) is a normalized eigenvector of Ac corresponding to an
eigenvalue λ, then by (complexified) dissipative inequality [8, inequality (4.4)]

〈AcX,X〉+ 〈X,AcX〉 = −2k[d#X]2 ≤ 0 ∀X ∈ D(Ac) (2.7)

there holds
Reλ = −k

∣∣d#f
∣∣2 ≤ 0,

so it remains to exclude Reλ = 0. This may hold iff d#f = 0. But then f satisfies

λf = Acf = A
[
f − kdd#f

]
= Af,

whence the pair (λ, f) solves the eigenproblem for the open-loop state operator A.
Since all eigenvalues of A are single, there exists k ∈ Z such that f = ηek, for
some scaling multiplier η ∈ C. Consequently, d#ek = 0, which contradicts (2.3) in
Lemma 2.2.

Our next step will be to examine the auxiliary system transfer function, defined
for s ∈ C being not an eigenvalue of A, as

Ĝ(s) := sd#(sI −A)−1d = −s2d∗(sI −A)−1d+ s ‖d‖2 (= d#A(sI −A)−1d). (2.8)

To find a detailed form of Ĝ, we observe that, by the definition of d# and (2.8),

Ĝ(s) = sg(L+ µ)
[
second component of (sI −A)−1d

]′∣∣∣
θ=L

.

The second component of (sI − A)−1d coincides with the (unique) solution to the
boundary-value problem

g(ξ + µ)Φ′′(ξ) + gΦ′(ξ)− s2Φ(ξ) ≡ 1
Φ(L) = 0

gΦ′(0)− s2Φ(0) = 1

 .

Its solution is [8, Appendix B]

Φ(ξ) =
1
s2

[
−1 +

K2(sα)
∆(s)

I0

(
2s

√
ξ + µ

g

)
− I2(sα)

∆(s)
K0

(
2s

√
ξ + µ

g

)]
, α := 2

√
µ

g
,

(2.9)
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where ∆(s) := I0(sβ)K2(sα) − K0(sβ)I2(sα) = 0 stands for the open-loop sys-
tem characteristic function. Since I ′0(z) = I1(z) [9, 6.496.9] and K ′

0(z) = −K1(z)
[9, 6.496.18], then

Φ′(L) =
2

sgβ∆(s)
[I1(sβ)K2(sα) + I2(sα)K1(sβ)] ,

and consequently

Ĝ(s) =
βg

2︸︷︷︸
=
√

g(L+µ)

I1(sβ)K2(sα) + I2(sα)K1(sβ)
I0(sβ)K2(sα)− I2(sα)K0(sβ)

. (2.10)

Recall the concept of a Herglotz-Nevanlinna function [6, Section 2 and Appen-
dix A], [3]1).

Definition 2.1. A function f : C → C is called a Herglotz-Nevanlinna function if:
(a) f is analytic on C\R, (b) f is symmetric with respect to real axis, i.e., f(z) = f(z)
for z ∈ C \ R and (c) Im f(z) ≥ 0 for Im z > 0.

Lemma 2.4. The function f(z) := jĜ(−jz) is a Herglotz-Nevanlinna function2).
Moreover, for large |s|, s ∈ C, there holds

Ĝ(s) ∼ βg

2
coth[s(β − α)] =

√
g(L+ µ) coth[s(β − α)]. (2.11)

Proof. Recall that s = −jz (⇔ z = js) maps bijectively the upper open complex
half-plane onto C+ := {s ∈ C : Re s > 0}. Condition (a) of Definition 2.1 holds
because Ĝ is defined outside the (purely point) spectrum of A entirely located on jR.

By (2.8), for s /∈ jR, there is

Ĝ(−s) = −sd#(−sI −A)−1d = sd∗A(−sI −A)−1d = sd∗A∗(−sI −A∗)−1d =

= −sd#(sI −A)−1d = −Ĝ(s),

whence, with s = −jz, we get

f(z) = jĜ(−jz) = −jĜ(−jz) = jĜ(−jz) = f(z), z /∈ R,

and (b) of Definition 2.1 is satisfied.
Observe that

jωk〈d, ek〉 = 〈d,−jωkek〉 = 〈d,A∗ek〉 = 〈A∗ek, d〉 = −d∗Aek = d#ek.

1) The first paper brings a self-contained collection of basic facts on scalar Herglotz functions beauti-
fully compiled from many monographs and illustrated with numerous examples, while the second
is recommendable out of providing certain links between Herglotz functions and control theory.

2) Such a function Ĝ was traditionally called a lossless impedance/transfer function. This concept
has been introduced in connection with Brune-Cauer-Darlington-Foster synthesis known in the
circuit theory.
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Hence, a consequence of the expansion

Ĝ(s) = sd#(sI −A)−1d =
∑
k∈Z

s

s− jωk
〈d, ek〉d#ek =

=
∑
k∈Z

s

(s− jωk)jωk

∣∣d#ek

∣∣2 , s 6= jωk, k ∈ Z,

where {ek}k∈Z denotes ONB of eigenvectors of A∗, corresponding to its purely imag-
inary single eigenvalues {jωk}k∈Z, or equivalently zeroes of ∆(s), is that for s ∈ C+:

Re[Ĝ(s)] =
∑
k∈Z

Re
[ s

(s− jωk)jωk

] ∣∣d#ek

∣∣2 = Re s
∑
k∈Z

∣∣d#ek

∣∣2
Re2 s+ (ωk − Im s)2

≥ 0.

Since Im f(z) = Re Ĝ(s), then (c) of Definition 2.1 holds. In addition, by Lemma 2.1
all residua of Ĝ are positive:

Res
s=jωk

Ĝ(s) =
∣∣d#ek

∣∣2 > 0. (2.12)

For any n = 0, 1, . . ., the following asymptotic formulae hold for large |z| [9, the
simplest forms of 6.641.5 and 6.641.6 with k = 0] or in [5, p. 63, pp. 104–105 and
440–441]:

In(z) ∼ ez + (−1)n j sign(Im z) e−z

√
2zπ

, |arg z| ≤ 3π
2

(2.13)

and

Kn(z) ∼
√

π

2z
e−z, |arg z| ≤ 3π

2
. (2.14)

Taking (2.14) and (2.13) into account in (2.10), we easily conclude that (2.11)
holds true.

An alternative proof of (2.11) is given in Appendix A. The fact (2.14) is more
or less standard, while a proof of (2.13), which is a less standard result, is given in
Appendix B.

The spectrum of Ac is now fully characterized by knowledge of Ĝ.

Lemma 2.5. All eigenvalues of Ac satisfy the characteristic equation

1 + kĜ(s) = 0.

Proof. By Lemma 2.3, without loss of generality, we may assume that Re s < 0, which
enables us to apply the resolvent of A to the both sides of the eigenproblem for Ac

sX = AcX = A
[
X − kdd#X

]
,

getting
X + kA(sI −A)−1dd#X = 0.
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This equation may have a solution if

d#X
[
1 + kd#A(sI −A)−1d

]
= d#X︸ ︷︷ ︸

6=0

[
1 + kĜ(s)

]
= 0.

Here d#X 6= 0, for if not, then X would be an eigenvector of A too, which would
contradict (2.3).

An important conclusion from Lemmas 2.5 and 2.4 is that asymptotic eigenvalues
of the closed-loop operator Ac satisfy the equation

1+k
βg

2
coth[s(β−α)] = 1+k

βg

2
es(β−α) + e−s(β−α)

es(β−α) − e−s(β−α)
= 0 ⇐⇒ e2s(β−α) =

2− kβg

2 + kβg
,

whence they are:

sn =


1

β − α
ln
√

2− kβg

2 + kβg
+ j

nπ

β − α
, if k <

2
βg

1
β − α

ln
√
kβg − 2
2 + kβg

+ j
nπ +

π

2
β − α

, if k >
2
βg

 . (2.15)

Notice that in the case of k =
2
βg

=
1√

g(L+ µ)
there are no asymptotic eigenvalues3).

Lemma 2.6. For any s /∈ [σ(A) ∪ σ(Ac)], the resolvent of Ac may be represented as:

(λI −Ac)−1 = (λI −A)−1 − k

1 + kĜ(λ)
A(λI −A)−1dd#(λI −A)−1. (2.16)

Proof. Applying the resolvent of A to the both sides of the equation

sX −A
[
X − kdd#X

]
= Y ∈ H

one gets
X = (sI −A)−1Y − kA(sI −A)−1dd#X. (2.17)

It is clear that if the last equation has a solution, it belongs to D(d#), whence by
Lemma 2.5, a solution must satisfy

d#X =
1

1 + kĜ(s)
d#(sI −A)−1Y.

Eliminating d#X from (2.17), we obtain (2.16).

3) It was established numerically, using the principle of argument, that the exemplary heavy chain
system described in [8] has then a finite number of eigenvalues, whence the closed system cannot
be superstable in the sense of [2].



The motion planning problem and exponential stabilization. . . 489

We are going to prove an important result characterizing the asymptotic behaviour
of (sI−Ac)−1 along the negative real semi-axis. For that we need to know the adjoint
of Ac.

Lemma 2.7. The adjoint of closed-loop feedback operator is

A∗cY := −A
[
Y + kdd#Y

]
, Y ∈ D(A∗c) ⇐⇒

[
Y ∈ D(d#), Y + kdd#Y ∈ D(A)

]
(2.18)

and it satisfies the dissipative inequality

〈A∗cY, Y 〉+ 〈Y,A∗cY 〉 = −2k[d#Y ]2 ≤ 0 ∀ Y ∈ D(A∗c). (2.19)

Proof. Let X ∈ D(Ac). Then

〈Y,AcX〉 =
〈
Y,A

[
X − kdd#X

]〉
=

=
〈
Y + kdd#Y,A

[
X − kdd#X

]〉︸ ︷︷ ︸
À

+ kd#Y
〈
−d,A

[
X − kdd#X

]〉︸ ︷︷ ︸
Á

,

provided that Y ∈ D(d#). Since

−
〈
A
[
X − kdd#X

]
, d
〉

= d#
[
X − kdd#X

]
= d#X

then Á = kd#Y d#X. Assuming Y + kdd#Y ∈ D(A∗) = D(A) as A∗ = −A, we get

À =
〈
−A

[
Y + kdd#Y

]
, X − kdd#X

〉
=

=
〈
−A

[
Y + kdd#Y

]
, X
〉

+
〈
A
[
Y + kdd#Y

]
, d
〉
kd#X =

=
〈
−A

[
Y + kdd#Y

]
, X
〉
−Á.

Hence À + Á = 〈−A
[
Y + kdd#Y

]
, X〉 which yields (2.18).

As regards (2.19), observe that for Y ∈ D(A∗c) there holds

〈A∗cY, Y 〉+ 〈Y,A∗cY 〉 = 〈−A
[
Y + kdd#Y

]︸ ︷︷ ︸
:=w

, Y 〉+ 〈Y,−A
[
Y + kdd#Y

]
〉 =

= 〈−Aw,w − kdd#w〉+ 〈w − kdd#w,−Aw〉 =

= kd#w〈Aw, d〉+ kd#w〈d,Aw〉 = −2k[d#w]2 =

= −2k[d#Y ]2 ≤ 0.

(2.20)

Theorem 2.1. |λ|
∥∥(λI −Ac)−1

∥∥ is bounded for any large negative λ, provided that

k 6= 1
lim

λ→∞
Ĝ(λ)

.

Proof. By (2.7)

‖f‖2 = 2k
∫ ∞

0

∣∣d#Sc(t)f
∣∣2 dt = 2k‖d#Sc(·)f‖2L2(0,∞), f ∈ D(Ac).
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Since the Laplace transform of Sc(t)f is (sI −Ac)−1f , then, with ε > 0, the Schwarz
inequality yields for each f ∈ D(Ac):∣∣∣√2ε d#(εI −Ac)−1f

∣∣∣ = ∣∣∣∣∫ ∞

0

√
2εe−εt d#Sc(t)fdt

∣∣∣∣ =
=
∣∣∣∣〈√2εe−ε(·), d#Sc(·)f

〉
L2(0,∞)

∣∣∣∣ ≤
≤
∥∥∥√2εe−ε(·)

∥∥∥
L2(0,∞)

‖d#Sc(·)f‖L2(0,∞) =
1√
2k
‖f‖.

This means that the linear functional d#(εI − Ac)−1 extends to a linear bounded
everywhere defined functional, whose norm satisfies∥∥∥√2ε d#(εI −Ac)−1

∥∥∥ ≤ 1√
2k
, ε > 0. (2.21)

Similarly, the linear functional d#(ηI−A∗c)−1 extends to a linear bounded everywhere
defined functional, whose norm satisfies∥∥∥√2η d#(ηI −A∗c)−1

∥∥∥ ≤ 1√
2k
, η > 0. (2.22)

Indeed, by (2.19)

‖f‖2 = 2k
∫ ∞

0

∣∣d#S∗c (t)f
∣∣2 dt = 2k‖d#S∗c (·)f‖2L2(0,∞), f ∈ D(A∗c).

Since the Laplace transform of S∗c (t)f is (sI −A∗c)−1f , then with η > 0, the Schwarz
inequality yields for each f ∈ D(A∗c):∣∣∣√2η d#(ηI −A∗c)−1f

∣∣∣ = ∣∣∣∣∫ ∞

0

√
2ηe−ηt d#S∗c (t)fdt

∣∣∣∣ =
=
∣∣∣∣〈√2ηe−η(·), d#S∗c (·)f

〉
L2(0,∞)

∣∣∣∣ ≤
≤
∥∥∥√2ηe−η(·)

∥∥∥
L2(0,∞)

‖d#S∗c (·)f‖L2(0,∞) =
1√
2k
‖f‖,

from which (2.22) follows.
Applying d# to the both sides of (2.16), we get

d#(λI −Ac)−1 =
1

1 + kĜ(λ)
d#(λI −A)−1, λ ≥ 0,

whence, by (2.21) and (2.11)4),∥∥∥√2ε d#(εI −A)−1
∥∥∥ ≤ ∥∥∥√2ε d#(εI −Ac)−1

∥∥∥ [1 + kmax
ε≥0

Ĝ(ε)
]
≤

≤ 1√
2k

[
1 + kmax

ε≥0
Ĝ(ε)

]
<∞, ε > 0.

4) Here (2.11) implies the existence of the limit lims→∞ Ĝ(s) = βg
2

, which means that Ĝ(s) is
regular at the point {∞} ∩ R, as lims→∞ Ĝ(n)(s) = 0, for any n ∈ N.
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From (2.16), it also follows that

λ(λI −Ac)−1d = λ(λI −A)−1d− kĜ(λ)
1 + kĜ(λ)

A(λI −A)−1d,

whence
Ac(λI −Ac)−1d =

1
1 + kĜ(λ)

A(λI −A)−1d. (2.23)

It is clear that ∥∥Ac(λI −Ac)−1d
∥∥ =

∥∥d∗A∗c(λI −A∗c)−1
∥∥ . (2.24)

If f ∈ H, then (λI −A∗c)−1f ∈ D(Ac) which, by Lemma 2.7, implies

(λI −A∗c)−1f ∈ D(d#), (λI −A∗c)−1f + kdd#(λI −A∗c)−1f ∈ D(A)

with
−A

[
(λI −A∗c)−1f + kdd#(λI −A∗c)−1f

]
= A∗c(λI −A∗c)−1f.

Applying d∗ to the both sides and taking into account that d#
∣∣
D(A)

= −d∗A, we get

d∗A∗c(λI −A∗c)−1f = −d∗A
[
(λI −A∗c)−1f + kdd#(λI −A∗c)−1f

]
=

= d#
[
(λI −A∗c)−1f + kdd#(λI −A∗c)−1f

]
= d#(λI −A∗c)−1f.

Owing to this, (2.24) and (2.22), there holds:∥∥∥√2ηAc(ηI −Ac)−1d
∥∥∥ =

∥∥∥√2ηd#(ηI −A∗c)−1
∥∥∥ ≤ 1√

2k
, η > 0.

Now first taking the adjoint of (2.23) with λ = η > 0 (whence Ĝ(η) is real), then
noting that on D(Ac): d# = −d∗Ac, and finally applying (2.21) yields the estimate∥∥∥√2η d#(ηI −A∗)−1

∥∥∥ ≤ ∥∥∥√2η d#(ηI −A∗c)−1
∥∥∥ [1 + kmax

η≥0
Ĝ(η)

]
≤

≤ 1√
2k

[
1 + kmax

η≥0
Ĝ(η)

]
<∞, η > 0.

The just established estimates, holding for ε ∈ (0,∞):∥∥∥√4kε d#(εI −A)−1
∥∥∥ ,∥∥∥√4kε d#(εI −A∗)−1

∥∥∥ ≤ 1 + kmax
ε≥0

Ĝ(ε), (2.25)

will be important in examining the behaviour of λ(λI −Ac)−1 for a large negative λ.
Firstly, observe that (2.16) remains valid for a large negative λ, provided that

1− kβg
2 6= 0. This is because

∥∥(λI −A)−1
∥∥ ≤ 1/ |λ| for any real λ (even with =), the

transfer function Ĝ is, thanks to Ĝ(−s) = −Ĝ(s), s /∈ jR, an odd function of the real
argument, i.e.,

Ĝ(−λ) = −Ĝ(λ), λ ∈ R, (2.26)
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and 1 + kĜ(λ) = 1− kĜ(−λ) −→ 1− kβg
2 6= 0 as λ→ −∞, by (2.11).

Secondly, as (2.16) is meaningful for a large negative λ, then∥∥λ(λI −Ac)−1
∥∥ ≤ ∥∥λ(λI −A)−1

∥∥+

+
k∣∣1 + kĜ(λ)

∣∣︸ ︷︷ ︸
Ê

∥∥∥√−λA(λI −A)−1d
∥∥∥︸ ︷︷ ︸

Ë

∥∥∥√−λd#(λI −A)−1
∥∥∥︸ ︷︷ ︸

Ì

.

Term Ê is bounded for a large negative λ, because, by (2.11) and (2.26):

k

|1 + kĜ(λ)|
=

k

|1− kĜ(−λ)|
−→ 2k

2− kβg
<∞ as λ→ −∞.

Next,

Ë =
∥∥∥√−λA(λI −A)−1d

∥∥∥ =
∥∥∥√−λd∗A∗(λI −A∗)−1

∥∥∥ =

=
∥∥∥−√−λd#(λI +A)−1

∥∥∥ =
∥∥∥√−λd#((−λ)I −A)−1

∥∥∥
is bounded for λ < 0, by (2.25) with ε = −λ > 0. Similarly

Ì =
∥∥∥√−λd#(λI −A)−1

∥∥∥ =
∥∥∥−√−λd#(−λI +A)−1

∥∥∥ =

=
∥∥∥−√−λd#((−λ)I −A∗)−1

∥∥∥ =
∥∥∥√−λd#((−λ)I −A∗)−1

∥∥∥
is bounded for λ < 0, by (2.25) with ε = −λ > 0.

3. SPECTRAL PROOF OF EXPONENTIAL STABILITY

Our basic tool for deducing EXS from spectral data will be the results of [17, Theorem
3.4.1, p. 85, Lemma 3.1.1, p. 70 and Theorem 3.5.1, p. 89 with complementary
information following from Corollary 3.5.3, p. 91] abbreviated in [18, Theorem 2.3,
p. 247 together with Lemma 2.5, p. 248].

Definition 3.1. Let G : (D(G) ⊂ H) → H be a closed densely defined linear operator.
A closed linear hull Eλ(G) of all eigenvectors and generalized eigenvectors correspond-
ing to an eigenvalue λ of G is called a generalized eigenspace 5) corresponding to λ;
dim Eλ(G) is called the algebraic multiplicity of an eigenvalue λ, while

νλ := min {m ∈ N : (G− λI)mEλ(G) = {0}}

is the index of λ.
5) Recall that Eλ(G) equals the range of the Riesz projector

1

2πj

Z
|s−λ|<ε

(sI −G)−1ds

associated with λ, where ε is a sufficiently small positive number.
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Theorem 3.1 (Röh). Let G : (D(G) ⊂ H) −→ H be a densely defined maximal
dissipative operator on a Hilbert space H with the following properties:

n0 := dim
[
D(G)/{x ∈ D(G) : Re〈Gx, x〉 = 0}

]
<∞, (3.1)

the spectrum σ(G) of G is in the open left complex half-plane, i.e.,

σ(G) ⊂ C−. (3.2)

Then G has a compact resolvent. In particular, if σ(G) 6= ∅, then σ(G) consists
entirely of isolated eigenvalues with finite algebraic multiplicities.

Assume that, in addition, σ(G) = {sn}n∈N, i.e., G has countably many
eigenvalues6) {sn}n∈N which are enumerated without repetition, satisfy the condition

νsn ≤ ν <∞, n ∈ N, (3.3)

where νsn
denotes the index of the eigenvalue sn and the Carleson condition, i.e.,

∃δ > 0 : ∀k ∈ N
∞∏

n=1
n6=k

∣∣∣∣sk − sn

sk + sn

∣∣∣∣ ≥ δ. (3.4)

Then its generalized eigenspaces {Esn(G)}n∈N form and unconditional (Riesz) basis
in their closed linear hull, i.e., in their closed linear hull each vector x has a unique
expansion x =

∑
n∈N

xn, xn ∈ Esn(G), where the series converges unconditionally in H

(the union of orthonormal bases of the eigenspaces {Esn
(G)}n∈N is then an uncon-

ditional (Riesz) vector basis of the closed linear hull of the generalized eigenspaces
{Esn

(G)}n∈N).
Moreover, if conditions (3.1)–(3.4) hold, then a necessary and sufficient condition

for completeness of generalized eigenspaces {Esn(G)}n∈N is the existence of a sequence
of points {zn}n∈N in the resolvent set of G, Re zn −→ −∞ as n→∞, such that:{

|Re zn| ‖(znI −G)−1‖
}

n∈N ∈ `
∞(N). (3.5)

Furthermore, if (3.5) holds then7) the semigroup {T (t)}t≥0 of contractions, generated
by G has the spectral mapping property:

∀t ≥ 0 : σ [T (t)] = exp [σ(G)t], (3.6)

which, in particular, implies that {T (t)}t≥0 is EXS iff [17, (1.1.11), p.12]8)

sup
n∈N

Re sn < 0. (3.7)

Remark 3.1. A result closely related to that part of Theorem 3.1 which concerns the
existence of a Riesz basis of generalized eigenspaces in their closed linear hull, but
without the completeness, has been known since [12, Theorem 2.2]9). However, the

6) In [17, p. 79] this assumption appears in text rather than in formulation of a theorem.
7) In fact, G is a spectral operator [18, Corollary 2.4, p. 248]. An operator whose spectrum consists

of isolated eigenvalues is called spectral iff its eigenspaces form an unconditional (Riesz) basis of
the whole space H.

8) Actually the semigroup {T (t)}t≥0 possesses the so-called spectrum determined growth property.
9) Or even in the monograph [7, Section 6.6] under some more restrictive assumptions.
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last paper appeared in the references neither in [17] nor in [18]. A result related to
Theorem 3.1 has been recently established in [19, Theorem 2, p. 969] where, however,
a partial completeness result was derived starting from different arguments, and the
Carleson condition was replaced by the requirement that the eigenvectors associated
with exponentials {esn(·)}n∈N form a Riesz basis of L2(0, T ) for any T > 0. The
authors included neither [12], nor [17], nor [18] in the references.

We should apply Theorem 3.1 to G = Ac. Ac is maximally dissipative, as a
generator of a semigroup of contractions. In Röh’s terminology, maximally dissipa-
tive operators satisfying (3.1) are called dissipative operators of finite-dimensional
damping, and, in particular, by (2.7) there is n0 = 1, i.e., Ac is of one-dimensional
damping. Indeed, her

n0 = codim
{
X ∈ D(Ac) : d#X = 0

}
= codim

{
x ∈ D(A) : d#x = 0

}
=

= codim {z ∈ H : d∗z = 0} = 1.

Since, by Lemma 2.3, (3.2) holds, then Ac has a compact resolvent, which agrees
with the assertion of our Lemma 2.1, established independently of Theorem 3.1. As
we already know, σ(Ac) 6= ∅, whence it consists entirely of isolated eigenvalues with
finite algebraic multiplicities.

From (2.15) – the asymptotic formulae for eigenvalues, we deduce that if k 6= 2
βg

then Ac has countably many eigenvalues located in a bounded strip parallel to
jR and they are uniformly separated, i.e.

inf
n 6=m

|sn − sm| > 0,

whence, by [17, Lemma 3.3.1, p. 81] or [18, Lemma 2.1, p. 247], they satisfy
the Carleson condition (3.4). It also follows from (2.15) that asymptotic eigenval-
ues are single, whence all eigenvalues satisfy (3.3) and the generalized eigenspaces
Esn(Ac) are asymptotically one-dimensional eigenspaces. By Theorem 3.1, the gener-
alized eigenspaces {Esn(Ac)}n∈N form an unconditional (Riesz) basis in their closed
linear hull.

Finally, by Theorem 2.1, (3.5) is met for, e.g., zn := −n, and the last assertion of
Theorem 3.1 implies that the generalized eigenspaces {Esn

(Ac)}n∈N span the whole
state space H, whence they form an unconditional (Riesz) basis in H. Owing to this,
EXS for k 6= 2

gβ may be deduced from spectral mapping property (3.6). This is
because (2.15), in conjunction with σ(Ac) ⊂ C− implies (3.7).

4. EXACT OBSERVABILITY APPROACH TO EXS

4.1. GENERAL CONSIDERATIONS

The attempt to conclude EXS which will be discussed in this section has for years
been known for certain particular systems and its origins are associated with such
names as: M. Slemrod, D. Russell, A. Haraux and E. Zuazua. Nevertheless, its
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general scheme has most recently been consolidated and extended by Lasiecka and
Triggiani in an “almost trivial” form [14, Claim 2.3, p. 1071 and Proposition 3.1,
p. 1074]. A related result, specialized to a class of well-posed linear systems, can
be found in Curtain and Weiss [4, Theorem 1.1 with Q = 0, p. 274]. Though the
arguments of [14, Proposition 3.1, p. 1074] are gathered into three steps, only two
of them are in fact essential. They will be formulated below as two theorems in a
context more general than the closed-loop system dictated by Ac.

Theorem 4.1. Let AF : (D(AF ) ⊂ H) −→ H be an infinitesimal generator of a
linear C0-semigroup {SF (t)}t≥0 on a Hilbert space H with a scalar product 〈·, ·〉H and
C ∈ L(D(AF ),Y), where Y is a Hilbert space with a scalar product 〈·, ·〉Y. Assume
that H ∈ L(H) is a bounded self-adjoint and coercive, i.e., H = H∗ ≥ εI for some
ε > 0, and is a solution to the operator Lyapunov equation

〈AFx,Hx〉H + 〈x,HAFx〉H = −‖Cx‖2Y , x ∈ D(AF ). (4.1)

Then {SF (t)}t≥0 is EXS iff the pair (AF , C) is exactly observable in a finite time
T > 0, i.e., there exist T > 0 and γ > 0 such that:∫ T

0

‖CSF (t)x0‖2Y dt ≥ γ ‖x0‖2H , x0 ∈ D(AF ). (4.2)

Proof. The scalar product 〈x1, x2〉e := 〈x1,Hx2〉H = 〈H1/2x1,H1/2x2〉H and the
original one are equivalent. Indeed,

ε ‖x‖2H ≤ 〈x,Hx〉H =
∥∥H1/2x

∥∥2

H = ‖x‖2e ≤ ‖x‖2H ‖H‖L(H) .

Under the linear transformation z = H1/2x, the semigroup operator SF (t) is sim-
ilar to H1/2SF (t)H−1/2. The semigroup {H1/2SF (t)H−1/2}t≥0 is generated by
H1/2AFH−1/2 with domain H1/2D(AF ).

Putting x = SF (t)x0, x0 ∈ D(AF ), in (4.1), we obtain

d
dt
〈SF (t)x0,HSF (t)x0〉H =

d
dt
‖SF (t)x0‖2e = −‖CSF (t)x0‖2Y ,

where the last term is continuous in t ≥ 0. Integrating both sides from 0 to t, yields

‖x0‖2e − ‖SF (t)x0‖2e =
∫ t

0

‖CSF (τ)x0‖2Y dτ, x0 ∈ D(AF ), t ≥ 0. (4.3)

Sufficiency. Assume that (4.2) holds. Then applying (4.3) twice at t = T , we obtain

‖SF (T )x0‖2e ≤ ‖x0‖2e ≤ ‖H‖L(H) ‖x0‖2H ≤ ‖H‖L(H)

1
γ

∫ T

0

‖CSF (t)x0‖2Y dt =

=
1
γ
‖H‖L(H)

[
‖x0‖2e − ‖SF (T )x0‖2e

]
, x0 ∈ D(AF ),

whence (
1 +

1
γ
‖H‖L(H)

)
‖SF (T )x0‖2e ≤

1
γ
‖H‖L(H) ‖x0‖2e .
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Consequently,

∀x0 ∈ D(AF ) ‖SF (T )x0‖2e ≤
‖H‖L(H)

γ + ‖H‖L(H)

‖x0‖2e

or, equivalently,

∀x0 ∈ D(AF )
∥∥∥[H1/2SF (T )H−1/2

]
H1/2x0

∥∥∥2

H
≤

‖H‖L(H)

γ + ‖H‖L(H)

∥∥∥H1/2x0

∥∥∥2

H
.

Since D(AF ) = H then, using the similarity transformation z = H1/2x, we conclude
that {H1/2SF (T )H−1/2}t≥0 satisfies:

∥∥∥H1/2SF (T )H−1/2
∥∥∥2

H
≤

‖H‖L(H)

γ + ‖H‖L(H)

< 1,

which is known to guarantee EXS of {H1/2SF (t)H−1/2}t≥0. Hence {SF (t)}t≥0 is
EXS.

Necessity. If {SF (t)}t≥0 is EXS then {H1/2SF (t)H−1/2}t≥0 is EXS too, so there
exist M ≥ 1 and α > 0 such that

‖SF (t)x0‖e =
∥∥∥[H1/2SF (t)H−1/2

]
H1/2x0

∥∥∥
H
≤

≤Me−αt
∥∥∥H1/2x0

∥∥∥
H
, x0 ∈ H, t ≥ 0

and, by (4.3),∫ t

0

‖CSF (τ)x0‖2Y d = ‖x0‖2e − ‖SF (t)x0‖2e ≥

≥
(
1−M2e−2αt

)
‖x0‖2e , x0 ∈ D(AF ), t ≥ 0.

Taking an arbitrary T > 1
α lnM ≥ 0 and γ := (1 − M2e−2αT )ε > 0, we come

to (4.2).

Remark 4.1. This result is inspired by [10, Propositions 1 and 2] and by [14, Step 3
of the proof of Proposition 3.1, p. 1075].

While using Theorem 4.1 to deduce EXS, one has to verify its assumptions with
respect to AF being the closed-loop feedback system state operator. An important
fact, which has been widely discussed in [14], is that the exact observability condition
(4.2) may be deduced from its counterpart for an open-loop (uncontrolled) system,
provided that the input-output open system operator may be extended to an operator
which belongs to L(L2(0, T )) [14, Claim 2.3, p. 1071].

Passing to the details, let us consider the feedback system depicted in Figure 4.1.
We shall prove the following theorem.



The motion planning problem and exponential stabilization. . . 497
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Fig. 4.1. Feedback system structure

Theorem 4.2. Assume that the open-loop state operator A generates a linear semi-
group {S(t)}t≥0 on a Hilbert space H with a scalar product 〈·, ·〉H and

∀s ∈ C+ ∪ {0} (sI −A)−1 ∈ L(H). (4.4)

Let C ∈ L(D(A),Y), where Y is a Hilbert space with a scalar product 〈·, ·〉Y and the
pair (A, C) is exactly observable in a finite time, i.e., there exist T > 0 and θ > 0
such that:

∀x0 ∈ D(A)
∫ T

0

‖CS(t)x0‖2Y dt ≥ θ ‖x0‖2H . (4.5)

The factor control operator D ∈ L(U,H) satisfies R(D) ⊂ D(C), CD ∈ L(U,Y) and
K ∈ L(Y,U), where U is a Hilbert space U with a scalar product 〈·, ·〉U. Let the
feedback system state operator

AFx := A (x−DKCx) , D(AF ) ⇐⇒ [x ∈ D(C), (x−DKCx) ∈ D(A)]

be such that (AF , C) satisfies all assumptions of Theorem 4.1 except for (4.2), which
is not assumed to hold. If there exists λ > 0 such that

Ĝ(λ+ ·) ∈ H∞(C+,L(U,Y)) (4.6)

then (4.2) holds.

Proof. By (4.1), the semigroup {SF (t)}t≥0 is uniformly bounded and therefore
(sI −AF )−1 ∈ L(H) for any s ∈ C+. Moreover, for any z ∈ H: (sI−AF )−1z ∈ D(AF )
is the unique solution of the resolvent equation

sx−AFx = sx−A (x−DKCx) = z.

By (4.4),

s(sI −A)−1x−A(sI −A)−1 (x−DKCx) = x+A(sI −A)−1DKCx = (sI −A)−1z,

whence, in particular for x0 ∈ D(A),{
I +

[
sC(sI −A)−1D − CD

]
K
}
C(sI −AF )−1x0 ≡ C(sI −A)−1x0 on C+. (4.7)
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The RHS of (4.7) is the Laplace transform of CS(·)x0 ∈ C([0,∞),Y) ∩ L2(0, T ;Y).
Next, C(sI − AF )−1x0 is the Laplace transform of CSF (·)x0 ∈ C([0,∞),Y) ∩
L2(0,∞;Y), whilst the open system transfer function C+ 3 s 7−→ Ĝ(s) ∈ L(U,Y),

Ĝ(s) := sC(sI −A)−1D − CD = s2 (CA−1)︸ ︷︷ ︸
∈L(H,Y)

(sI −A)−1D − s(CA−1)− CD︸︷︷︸
=Ĝ(0)

grows polynomially in |s| for large Re s. By Schwartz’s theorem, it is the Laplace
transform of a (Laplace transformable) distribution - the open system impulse re-
sponse, G(·) with support in [0,∞) taking operator values in L(U,Y).

To get (4.2) from (4.5), we represent (4.7) in the time-domain as∫ t

0

{
e−λ(t−τ) [I +G(t− τ)K]

} [
e−λτCSF (τ)x0

]
dτ = e−λtCS(t)x0. (4.8)

Consider now the convolution operator Fλu :=
{
e−λ(·) [I +G(·)K]

}
? u induced by

the LHS of (4.8). If there exists λ > 0 such that (4.6) holds, then, by a vector version
of the Paley-Wiener theorem,

Fλ ∈ L(L2(0,∞;U),L2(0,∞;Y)), ‖Fλ‖ =
∥∥∥Ĝ(λ+ ·)

∥∥∥
H∞(C+,L(U,Y))

. (4.9)

By the causality of Fλ and some obvious inequalities, there follows

‖Fλu‖L2(0,T ;Y) = ‖(Fλu)T ‖L2(0,∞;Y) = ‖(FλuT )T ‖L2(0,∞;Y) ≤ ‖FλuT ‖L2(0,∞;Y) ≤

≤ ‖Fλ‖ ‖uT ‖L2(0,∞;U) = ‖Fλ‖ ‖u‖L2(0,T ;U) ∀u ∈ L2(0,∞;U).

In particular, for u = e−λ(·)CSF (·)x0 ∈ L2(0,∞;U), we obtain

e−λT ‖CS(·)x0‖L2(0,T ;Y) ≤
∥∥∥e−λ(·)CS(·)x0

∥∥∥
L2(0,T ;Y)

=︸︷︷︸
(4.8)

=︸︷︷︸
(4.8)

∥∥∥Fλ

[
e−λ(·)CSF (·)x0

]∥∥∥
L2(0,T ;Y)

≤

≤ ‖Fλ‖
∥∥∥e−λ(·)CSF (·)x0

∥∥∥
L2(0,T ;U)

≤

≤ ‖Fλ‖ ‖CSF (·)x0‖L2(0,T ;U) ,

whence

θ ‖Fλ‖−2
e−2λT ‖x0‖2H ≤︸︷︷︸

(4.5)

‖Fλ‖−2
e−2λT ‖CS(·)x0‖2L2(0,T ;Y) ≤ ‖CSF (·)x0‖2L2(0,T ;U) ,

i.e., (4.2) holds with the same T > 0 and γ := θ ‖Fλ‖−2
e−2λT .
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The finite-time exact observability of the open-loop system, i.e., the condition
(4.5), can often be deduced either from time-domain considerations or from a theo-
rem on Ingham’s inequality which we recall below in its original formulation [11] or
[20, p. 162]10).

Theorem 4.3. Assume that the strictly increasing sequence {λn}n∈Z of real numbers
satisfies the gap condition λn+1− λn ≥ δ for all n ∈ Z and some δ > 0. Then, for all
T > 2π/δ:

2T
π

(
1− 4π2

T 2δ2

) ∞∑
n=−∞

|an|2 ≤
T∫

0

∣∣∣ ∞∑
n=−∞

ane
jtλn

∣∣∣2dt ≤ 8T
π

(
1 +

4π2

T 2δ2

) ∞∑
n=−∞

|an|2 (4.10)

for every complex sequence {an}n∈Z ∈ `2(Z).

Remark 4.2. When Theorem 4.3 is applicable, a stronger form of (4.5) is usually
obtained:

∃T > 0, Θ, θ > 0 : ∀x0 ∈ D(A) Θ ‖x0‖2H ≥
∫ T

0

‖CS(t)x0‖2Y dt ≥ θ ‖x0‖2H . (4.11)

In this case, (4.7) may be considered even for an arbitrary x0, because the RHS of (4.7)
is then the Laplace transform of an extended open system finite-time observability map,
and x0 7→ C(sI − AF )−1x0 corresponds to the extended closed system infinite-time
observability map.

4.2. IMPLICATIONS FOR A HEAVY CHAIN SYSTEM

Theorem 4.3 enables us to get both finite-time admissibility and exact observability of
the pair (A, d#) (here C = d#) associated with the uncontrolled system. Recall that
the open system state operator A has a system of eigenvectors {en}n∈Z, corresponding
to its (purely imaginary) eigenvalues {jωn}n∈Z, which forms an ONB of H. Thus, for
every x0 ∈ D(A)

CS(t)x0 = d#S(t)x0 =
∞∑

n=−∞
ejtωn〈x0, en〉Hd#en, t ≥ 0.

This suggests taking λn = ωn and an = 〈x0, en〉Hd#en, n ∈ Z. Since ωn ∼ nπ
β−α

and each of the eigenvalues jωn is single, then there exists δ > 0 for which the gap
condition of Theorem 4.3 is fulfilled.

10) See also http://planetmath.org/encyclopedia/ProofOfInghamInequality.html for a very
similar proof of the lower bound in (4.10).
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Using (2.11), we can strengthen (2.12) to get11)

0 <
∣∣d#en

∣∣2 ∼ Res
s=±j nπ

β−α

βg

2
coth[s(β − α)] =

βg

2(β − α)
.

By Parseval’s identity, {〈x0, en〉H}n∈Z ∈ `2(Z) and therefore {an}n∈Z ∈ `2(Z). From
Theorem 4.3 we conclude that there exists a large enough T , greater than 2π

β−α ,
for which Ingham’s inequality (4.10) holds. Consequently, we get the following
form of (4.11)

2T
π

(
1− 4π2

T 2δ2

)
inf
n∈Z

∣∣d#en

∣∣2 ‖x0‖2H ≤
∫ T

0

∣∣d#S(t)x0

∣∣2 dt ≤

≤ 8T
π

(
1 +

4π2

T 2δ2

)
sup
n∈Z

∣∣d#en

∣∣2 ‖x0‖2H , ∀x0 ∈ D(A),

where the first inequality establishes the finite-time admissibility of (A, d#) which
is here of lesser importance, while the second inequality gives the desired finite-time
exact observability of (A, d#).

(4.4) is clearly satisfied. The assumption of Theorem 4.1, needed for Theorem 4.2
to be useful, holds true for H = I. To show that EXS follows from Theorems 4.2 and
4.1, it remains to prove that the open system finite-time exact observability implies
the closed system finite-time exact observability, which is the case if (4.9) holds.
But here, (4.6) is satisfied thanks to (2.11), because the Nyquist plot of Ĝ(λ + ·)

asymptotically coincides with the Nyquist plot of
βg

2
coth [(β − α)(λ+ ·)], where the

last one is an ellipse, provided that λ > 0. This is confirmed by direct plotting of
those two curves, as documented by Figures 4.2, 4.3.

Fig. 4.2. Nyquist plot of s 7−→ Ĝ(s + 1) Fig. 4.3. Nyquist plot of
s 7−→ βg

2
coth[(β − α)(s + 1)]

11) As expected, this agrees with the well-known Mittag-Leffler expansion - see, e.g. [13, Solution of
Problem 5.2.5]:

βg

2
coth [(β − α)s] =

βg

2(β − α)

"
1

s
+

X
n∈Z

s

s2 +
“

nπ
β−α

”2

#
∼

βg

2(β − α)

X
n∈Z

s

s2 +
“

nπ
β−α

”2
.
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5. DISCUSSION AND CONCLUSIONS

Two proofs of EXS of the heavy chain system, an analysis of which was initiated in [8],
have been given in the present paper as alternatives to the proof given in [8, Theorem
4.2] and based on the method of Lyapunov functionals. The two new proofs are
considerably more complicated than that of [8]; however, they offer an elucidation
of intrinsic mechanism of exponential stabilization by the colocated feedback control
law. Let us list some detailed items.

— A crucial point of the spectral method of proving EXS is the spectral observabil-
ity/controllability results of Lemma 2.2, which asserts that (2.3) decides whether
an eigenvalue of an open-loop system located on jR is being shifted or not, by
the feedback action, to C−. Here (2.3) holds due to the linear independence of
the Bessel functions I0 and K0. The method of obtaining EXS based on the
exact observability approach required a strengthened form of (2.3), as shown is
Section 4.2.

— By the result of [1] or [15], it follows from Lemmas 2.1 and 2.3 that the semigroup
generated by Ac is strongly asymptotically stable. Both our methods show that in
order to get EXS one has to examine certain properties of the transfer function Ĝ
in details. In particular, our both new proofs involve a sharp asymptotic expression
of Ĝ for large |s|. Obtaining such an expression is not a trivial task and we had
to use an advanced asymptotic expression for the Bessel function In in order to
derive it. The spectral method of obtaining EXS involves, in addition, a rather
precise investigation of (λI −Ac)−1 on the real axis.

— An advantage of the spectral method in relation to other approaches is that it
provides additional valuable information on the feedback system properties, e.g.,
the existence of Riesz basis of generalized eigenspaces. Its drawback is that we
did not conclude EXS for k = 2/(gβ), which is not the case for other proofs. Our
former proof using the method of Lyapunov functionals is the simplest one but,
on the other hand, its drawback is that a general rule of constructing a quadratic
Lyapunov functional which yields EXS remains unknown. Our new proofs are
more algorithmic, but they are decidedly less simple and therefore less attractive
for the control engineering community. Finally, observe that the proof via the exact
observability approach is mostly related to the classical control theory, though it
uses less elementary mathematical apparatus, which may be difficult to understand
for control engineers.

Closing our discussion, let us mention that a yet another proof of EXS has been
drawn from the Gearhardt-Prüss-Huang criterion [16, Corollary 4, p. 853], but out
of complicated (computer-aided) calculations involved, we decided to omit it.
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A. AN ALTERNATIVE PROOF OF (2.11)

Recall that each Herglotz-Nevanlinna function has the unique representation

f(z) = a+ bz +
∫

R

[
1

t− z
− t

1 + t2

]
d[σ(t)], (A.1)

where a = Re[f(j)], b = lim
λ↗∞

f(jλ)
jλ

≥ 0 and σ(t) is a measure satisfying∫
R

1
1 + t2

d[σ(t)] <∞.

Substituting −jf(js) = Ĝ(s) we can convert (A.1) into a representation for Ĝ:

Ĝ(s) = −aj + bs− j

∫
R

[
1

t− js
− t

1 + t2

]
d[σ(t)],

where now a = Re[jĜ(1)] = 0, because Ĝ(1) ∈ R and

b = lim
λ↗∞

jĜ(λ)
jλ

= lim
λ↗∞

Ĝ(λ)
λ

=︸︷︷︸
(2.8)

lim
λ↗∞

d#(λI−A)−1d = −d∗ lim
λ↗∞

A(λI−A)−1d = 0,

by a well-known property of a C0-semigroup generator. Thus the purely atomic mea-
sure σ(t) =

∑
n∈Z {ωn}, where jωn = λn is an eigenvalue of A, enables us to recover

Ĝ from its poles (spectral data). Using the asymptotic formula for eigenvalues of
A and the corresponding purely atomic measure σas(t) =

∑
n∈Z

{
nπ

β−α

}
, one recov-

ers an asymptotic form of Ĝ, which asymptotically coincides with the Mittag-Leffler
expansion of βg

2 coth[s(β − α)] we have already recalled in Section 4.2,

Ĝ(s) = −j
∫

R

1 + jst

(t− js)(1 + t2)
d[σ(t)] ∼ −j

∫
R

1 + jst

(t− js)(1 + t2)
d[σas(t)] =

= −j
∞∑

n=1

[
1 + jsωn

ωn − js
+

1− jsωn

−ωn − js

]
1

1 + ω2
n

=
∞∑

n=1

2s
s2 + ω2

n

.

B. AN ALTERNATIVE PROOF OF (2.13)

This asymptotic formula exemplifies the Stokes phenomenon: an analytic function
may display asymptotic behaviour which varies with a part of the complex plane. In
particular, for large real X ∈ R, the following asymptotic relationship holds

Jn(X) ∼
√

2
πX

cos
(
X − nπ

2
− π

4

)
= a+ϑ+(X) + a−ϑ−(X),
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where

ϑ±(z) :=
e±jz

√
z
, a± :=

√
1
2π
e
±j
(nπ

2
+
π

4

)
.

The constants a± are called Stokes multipliers. The upper imaginary semiaxis, where
ϑ− dominates, and the lower imaginary semiaxis, where ϑ+ dominates, are called
Stokes lines. The real semiaxes, where both functions ϑ± are in balance, are the
so-called anti-Stokes lines. All those objects together create the Stokes structure.
However, the validity of the asymptotic expression may not be analytically continued
to the whole complex plane C, as revealed by examining the monodromy property of
Jn. Near z = 0, Jn has the series representation

Jn(z) ∼ (z/2)n
∞∑

m=0

(
−z2/4

)m
m!(m+ n)!

which implies the monodromy property of Jn,

Jn(ze2jπ) = e2jnπJn(z).

On comparison, the asymptotic expression yields

Jn(ze2jπ) = e−jπJn(z),

i.e., it does not preserve the monodromy property. By recovering the monodromy
property, it is possible to get the asymptotic expression

Jn(z) ∼

{
a+ϑ+(z) + a−ϑ−(z), if z ∈ C+

a′+ϑ+(z) + a−ϑ−(z), if z ∈ C−

}
(B.1)

with a′+ :=
√

1
2π e

j( 3nπ
2 + π

4 ). Using the identity In(s) = jnJn(js), i.e., by rotating the
Stokes structure for Jn by angle −π/2 (clockwise), one can get (2.13) from (B.1).
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