Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We study properties of the Lasota partial differential equation in two different spaces: V∞ (Hölder continuous functions) and Lp. The aim of this paper is to generalize the results of [1].
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
453--461
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
autor
- Jagiellonian University, Institute of Mathematics, ul. Prof. Lojasiewicza, 30-348 Kraków, Poland, Antoni.Leon.Dawidowicz@im.uj.edu.pl
Bibliografia
- [1] Z. Brzeźniak, A.L. Dawidowicz, On the periodic solution to the von Foerster-Lasota equation, to appear in Semigroup Forum.
- [2] A.L. Dawidowicz, On the existence of an invariant measure for a quasi-linear partial differential equation, Zeszyty Naukowe UJ, Prace Matematyczne 23 (1982), 117–123.
- [3] A.L. Dawidowicz, On the existence of an invariant measure for the dynamical system generated by partial differential equation, Ann. Polon. Math. XLI (1983), 129–137.
- [4] A.L. Dawidowicz, N. Haribash, On the periodic solutions of von Foerster type equation, Universitatis Iagellonicae Acta Mathematica (1999) 37, 321–324.
- [5] A. Lasota, G. Pianigiani, Invariant measures on topological spaces, Boll. Un. Mat. Ital. (5) 15-B (1977), 592–603.
- [6] A. Lasota, T. Szarek, Dimension of measures invariant with respect to Wazewska partial differential equation, J. Differential Equations 196 (2004) 2, 448–465.
- [7] K. Łoskot, Turbulent solutions of first order partial differential equation, J. Differential Equations 58 (1985) 1, 1–14.
- [8] R. Rudnicki, Invariant measures for the flow of a first order partial differential equation, Ergodic Theory and Dynamical Systems, 5 (1985) 3, 437–443.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH9-0005-0006