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ON PERIODIC AND STABLE SOLUTIONS
OF THE LASOTA EQUATION

IN DIFFERENT PHASE SPACES

Abstract. We study properties of the Lasota partial differential equation in two different
spaces: Vα (Hölder continuous functions) and Lp. The aim of this paper is to generalize the
results of [1].
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1. INTRODUCTION

We consider the partial differential equation

∂u

∂t
+ x

∂u

∂x
= λ(x)u, t ≥ 0, 0 ≤ x ≤ 1 (1.1)

with the initial condition

u(0, x) = v(x), 0 ≤ x ≤ 1, (1.2)

where v belongs to some normed vector space V of functions defined on [0, 1] and
λ : [0, 1] → R is a given continuous function. Let a semidynamical system

Tt : V → V

be given by the formula
(Ttv)(x) = u(t, x),

where u is the solution of (1.1), (1.2). It is clear that this unique solution is given by
the formula

(Ttv)(x) = u(t, x) = eg(x)e−g(xe−t)v(xe−t), x ∈ [0, 1], (1.3)
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where

g(x) = −
∫ 1

x

λ(s)
s

ds

with the condition ∫ 1

0

λ(s)
s

ds = ∞. (1.4)

We wish to investigate some properties of system (1.3): periodic solutions, strong and
exponential stability.

Definition 1.1. A function v0 ∈ V is a periodic point of the semigroup (Tt)t≥0, with
a period t0 ≥ 0 iff Tt0v0 = v0. A number t0 > 0, is called a principal period of a
periodic point v0 iff the set of all periods of v0 is equal to Nt0.

Definition 1.2. The semigroup (Tt)t≥0 is strongly stable in V iff for every v ∈ V ,

lim
t→∞

Ttv = 0 in V.

Definition 1.3. The semigroup (Tt)t≥0 is exponentially stable iff there exist D < ∞
and ω > 0 such that

‖Tt‖ ≤ De−ωt, for t ≥ 0.

The problem of the chaotic behaviour of a partial differential equation was consid-
ered by Lasota [5], Rudnicki [8], Łoskot [7] and Szarek [6]. In the papers [1–4] there
were described properties of the partial differential equation, analogical to (1.1), but
with a constant function λ:

∂u

∂t
+ x

∂u

∂x
= γu, t ≥ 0, 0 ≤ x ≤ 1 (1.5)

and with the initial condition

u(0, x) = v(x), 0 ≤ x ≤ 1. (1.6)

This work has been intended as an attempt at generalizing the results of [1]. In [1]
there was described the chaotic and stability behaviour of the suitable semidynamical
system

(T̃tv)(x) = ũ(t, x) = eγtv(xe−t), x ∈ [0, 1] (1.7)

in different phase spaces V . All properties depended on the value γ. We are interested
in finding a connection between this two equations. It is easy to check that if u and
ũ are the solutions of equation (1.1) and (1.5), respectively, then

ũ(t, x) = κ(x)u(t, x), (1.8)

where
κ(x) = e

R x
0

λ(0)−λ(s)
s ds and γ = λ(0). (1.9)

Hence the diagram
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V
Tt−−−−→ V

mκ

y ymκ

V −−−−→eTt

V

This substitution will be a useful tool. It will be used in the proofs of theorems
on chaos and stability of system (1.3) in the spaces Vα and Lp.

2. PROPERTIES OF THE DYNAMICAL SYSTEM (Tt)t≥0 IN THE SPACE Vα

Let v be a continous function on [0, 1] such that v(0) = 0. For every interval A ⊂ [0, 1]
and for every α ∈ (0, 1], define

HA,α(v) = sup
x,y∈A,x 6=y

|v(x)− v(y)|
|x− y|α

.

A function v for which HA,α(v) < ∞ is called a Hölder continuous on the interval A
with exponent α. Write

Hα = H[0,1],α.

Definition 2.1. Denote by Vα the space of all Hölder continuous functions v on [0, 1]
with exponent α, vanishing at zero and satisfying the following condition

lim
x→0

H[0,x],α(v) = 0.

Certain properties of system (1.7) in the space Vα have been estabilished. For
γ > α, there exist periodic solutions of problem (1.5) and the set of all periodic
points is dense in Vα. Strong and exponential stability take place, provided that
γ ≤ α and γ < α, respectively (see [1] for more details).

Theorem 2.2. Let

|λ(0)− λ(x)| ≤ Cx, C > 0, x ∈ [0, 1] (2.1)

hold. Then the function u ∈ Vα if and only if ũ ∈ Vα.

Proof. The assumption u ∈ Vα means that u is a Hölder continuous function with
exponent α, vanishing at zero and lima→0 H[0,a],α(u) = 0. This gives

H[0,a],α(ũ) = sup
x,y∈[0,a],x6=y

|ũ(t, x)− ũ(t, y)|
|x− y|α

=

= sup
x,y∈[0,a],x 6=y

|κ(x)u(t, x)− κ(y)u(t, y)|
|x− y|α

≤

≤ sup
x∈[0,a]

|κ(x)| · sup
x,y∈[0,a],x 6=y

|u(t, x)− u(t, y)|
|x− y|α

+

+ sup
y∈[0,a]

|u(t, y)| · sup
x,y∈[0,a],x 6=y

|κ(x)− κ(y)|
|x− y|α

.
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Using (1.9) and (2.1), we obtain

|κ(x)| ≤ e
R x
0

|λ(0)−λ(s)|
s ds ≤ e

R x
0 Cds = eCx.

It remains to show that the function κ is Hölder continous. If κ
1
α apears the Lipschitz

function, it will mean that κ is Hölder continuous with exponent α. For x ∈ [0, a]

|(κ 1
α (x))′| =

∣∣∣∣e 1
α

R x
0

λ(0)−λ(s)
s ds · 1

α
· λ(0)− λ(x)

x

∣∣∣∣ ≤ ∣∣∣∣e 1
α

R x
0 Cds · C

α

∣∣∣∣ =
=
∣∣∣∣eCx

α · C

α

∣∣∣∣ ≤ e
Ca
α · C

α
.

Summarizing,

H[0,a],α(ũ) ≤ eCa

(
H[0,a],α(u) + sup

y∈[0,a]

|u(t, y)| ·
(

C

α

)α
)

.

Therefore, lima→0 H[0,a],α(ũ) = 0 and finally ũ ∈ Vα. The rest of the proof runs
as before. We can draw the same conclusion for the funcition u, assuming that
ũ ∈ Vα.

Assumption (2.1) will be needed throughout this section and the above theorem
will be crucial for next results.

Theorem 2.3. If λ(0) > α ∈ (0, 1], then for any t0 there exists such v0 ∈ Vα that

Tt0v0 = v0 (2.2)

and
Ttv0 = v0 if and only if t = nt0 for some positive integer n. (2.3)

Proof. Let w be an arbitrary Hölder continuous function with the exponent α defined
on the interval [e−t0 , 1] and satisfying the following conditions:

e−g(e−t0 )w(e−t0) = w(1), (2.4)

∀t ∈ (0, t0) e−g(e−t)w(e−t) 6= w(1). (2.5)

Consider the following function v on the interval (0, 1] :

v(x) = eg(x)e−g(xent0 )w(xent0) for x ∈ [e−(n+1)t0 , e−nt0 ].

The function v is defined on the whole interval (0, 1] =
⋃∞

n=0(e
−(n+1)t0 , e−nt0 ]

and come into being by squeezing the graph of the function w into each interval
(e−(n+1)t0 , e−nt0 ].
By the assumption of the continuity of w on [e−t0 , 1], its boundedness follows, i.e.,
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there is M > 0 such that |w(x)| ≤ M for each x ∈ [e−t0 , 1]. By the above, for
x ∈ [e−(n+1)t0 , e−nt0 ], the following estimate holds:

|v(x)| = eg(x)e−g(xent0 )|w(xent0)| ≤ Meg(x) · sup
x∈[e−t0 ,1]

e−g(x) ≤ M1eg(x),

where M1 = M · supx∈[e−t0 ,1] e−g(x). From assumption (1.4), limx→0 eg(x) = 0, so
we deduce that v(0) = 0. We obtain the continuous function v defined on the whole
interval [0, 1]. Property (2.2) follows from (2.4), while property (2.3) from (2.5).

The assumption λ(0) > α yields ṽ ∈ Vα, see [1] for details. Under Theorem 2.2,
we see at once that v ∈ Vα.

Theorem 2.4. For λ(0) > α, the set of periodic points of (1.1) is dense in Vα.

Proof. Let v be an arbitrary function belonging to Vα. Define

w(x) = eg(x)

(
e−g(xent0 )v(xent0)−

∞∑
k=n+1

me−g(xekt0 )

)
, (2.6)

where m = e−g(e−t0 )v(e−t0)−v(1) and x ∈ [e−(n+1)t0 , e−nt0 ]. To show the correctness
of this definition, it is sufficient to make the following observation

eg(e−(n+1)t0 )

(
e−g(e−(n+1)t0ent0 )v(e−(n+1)t0ent0)−

∞∑
k=n+1

me−g(e−(n+1)t0ekt0)
)

=

= eg(e−(n+1)t0 )

(
v(1) + m−

∞∑
k=n+1

me−g(e−(n+1)t0ekt0)
)

=

= eg(e−(n+1)t0 )
(
e−g(e−(n+1)t0e(n+1)t0)v(e−(n+1)t0e(n+1)t0) −

−
∞∑

k=n+2

me−g(e−(n+1)t0ekt0)
)

.

The function w is continuous and vanishes at 0, which is a consequence of (2.6).
Let ε > 0. Since v ∈ Vα and w ∈ Vα, there exists such t0 that H[0,e−t0 ],α(v) < ε

4 and
H[0,e−t0 ],α(w) < ε

4 . From (1.8) we know that w(x) = ew(x)
κ(x) , where w̃ is the periodic

solution of (1.5). For λ(0) > α the set of periodic points of (1.5) is dense in Vα (see
[1]), so Hα(v − w̃) < ε

4 and Hα(w − w̃) < ε
4 .

Thus

Hα(v − w) ≤ H[e−t0 ,1],α(v − w) + H[0,e−t0 ],α(v − w) ≤
≤ Hα(v − w̃) + Hα(w̃ − w) + H[0,e−t0 ],α(v) + H[0,e−t0 ],α(w) <

< ε.

This completes the proof.
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Theorem 2.5. If λ(0) ≤ α and v ∈ Vα, then

lim
t→∞

Hα(Ttv) = 0.

Moreover, if λ(0) < α, then the semigroup (Tt)t≥0 is exponentially stable.

Proof. Take any v ∈ Vα. Using Theorem 2.2 and proceeding analogously as in its
proof, we compute

Hα(Ttv) = sup
x,y∈[0,1],x 6=y

|u(t, x)− u(t, y)|
|x− y|α

= sup
x,y∈[0,1],x 6=y

∣∣∣ eu(t,x)
κ(x) − eu(t,y)

κ(y)

∣∣∣
|x− y|α

≤

≤ sup
x∈[0,1]

∣∣∣∣ 1
κ(x)

∣∣∣∣ · sup
x,y∈[0,1],x 6=y

|ũ(t, x)− ũ(t, y)|
|x− y|α

+

+ sup
y∈[0,1]

|ũ(t, y)| · sup
x,y∈[0,1],x 6=y

∣∣∣ 1
κ(x) −

1
κ(y)

∣∣∣
|x− y|α

≤

≤ eC ·

(
Hα(Ttṽ) + sup

y∈[0,1]

|ũ(t, y)| ·
(

C

α

)α
)

.

We know that Ttṽ → 0 in Vα for every ṽ ∈ Vα. The claim limt→∞Hα(Ttṽ) = 0 is
based on the results of paper [1]. From the same source, we have derived the estimate
‖Ttṽ‖ ≤ e(γ−α)t‖ṽ‖.

|ũ(t, y)| = |(Ttṽ)(y)| = |(Ttṽ)(y)− (Ttṽ)(0)| ≤ Hα(Ttṽ)yα ≤ Hα(Ttṽ),

hence, since λ(0) < α, there follows the exponential stability of the semigroup (Tt)t≥0

with D = eC
(
1 +

(
C
α

)α) and ω = α− λ(0).

3. CHAOS AND STABILITY OF THE SYSTEM (Tt)t≥0 IN THE SPACE Lp

Theorem 3.1. Assume that

∃C, q > 0 ∀x ∈ [0, 1] |λ(0)− λ(x)| ≤ Cxq. (3.1)

The function u belongs to the space Lp if and only if ũ ∈ Lp.

Proof. Using (3.1), substitution (1.8) discussed in Section 1 and assuming that u ∈ Lp,
we obtain

‖ũ(t, x)‖p =
∫ 1

0

|κ(x)u(t, x)|pdx ≤
∫ 1

0

ep
R x
0

|λ(0)−λ(s)|
s ds|u(t, x)|pdx ≤

≤
∫ 1

0

e
Cp
q xq

|u(t, x)|pdx ≤ e
Cp
q

∫ 1

0

|u(t, x)|pdx =

= e
Cp
q ‖u(t, x)‖p < ∞

In the same manner, we can establish the inverse implication.
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The above theorem will be significant in obtaining the next one. It enables the
results of [1] to be used and generalized. From now on, we assume (3.1).

Theorem 3.2. For λ(0) > − 1
p there exists a periodic solution of (1.1).

Proof. For any t0, define the following function v :

v(x) = eg(x)e−g(xent0 )w(xent0), x ∈ [e−(n+1)t0 , e−nt0 ], (3.2)

v(0) = 0,

where w is an arbitrary function from the space Lp. We have shown that such function
v is a periodic solution, so it is sufficient to prove that v ∈ Lp. The function v is the
solution of equation (1.1), so we can express it using the function ṽ, the solution of
(1.5), v(x) = ev(x)

κ(x) . Brzeźniak and one of the authors [1] showed that ṽ is a periodic
solution and belongs to Lp when γ > − 1

p . Our assumption and Theorem 3.1 guarantee
the same conclusion for the function v.

Theorem 3.3. If λ(0) > − 1
p , then the set of periodic points is dense in Lp.

Proof. Let w ∈ Lp and ε > 0. Fix t0 such that[∫ e−t0

0

|w(x)|pdx

] 1
p

<
ε

2

and
e

C
q ‖ṽ|| < ε

2
, C > 0

where ṽ is a periodic solution of (1.5).
The function v is defined by formula (3.2). The function v belongs to the set of
periodic points due to Theorem 3.2. It is sufficient to estimate ||v − w||. Since
v(x) = w(x) for x ∈ [e−t0 , 1], it is obvious that ||v − w|| = ||(v − w)1[0,e−t0 ]||, where
1[0,e−t0 ] denotes the indicator of the set [0, e−t0 ]. Applying the estimate from Theorem
3.1 and substitution (1.8), we can assert that

‖v − w‖ ≤ ‖v1[0,e−t0 ]‖+ ‖w1[0,e−t0 ]‖ < ε.

Theorem 3.4. If λ(0) ≤ − 1
p , and v ∈ Lp then

lim
t→∞

‖Ttv‖ = 0.

Moreover, for λ(0) < − 1
p the semigroup (Tt)t≥0 is exponentially stable on Lp.
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Proof. Let v ∈ Lp be an arbitrary function.

‖Ttv‖p =
∫ 1

0

|u(t, x)|pdx =
∫ 1

0

∣∣∣∣ ũ(t, x)
κ(x)

∣∣∣∣p dx =

=
∫ 1

0

∣∣∣∣ 1
κ(x)

(Ttṽ)(x)
∣∣∣∣p dx ≤ e

Cp
q ‖Ttṽ‖p,

where C > 0. We know that ‖Ttṽ‖ → 0, as t → ∞ (see [1]), which proves the first
part of the Theorem. From [1] we know that ‖Ttṽ‖p ≤ e(γp+1)t‖ṽ‖p. It gives the
exponential stability of the semigroup (Tt)t≥0 with D = e

C
q and ω = − 1

p (λ(0)p + 1).
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