Professor Andrzej Lasota in memoriam

Dobiesław Brydak, Bogdan Choczewski, Marek Czerni

ASYMPTOTIC PROPERTIES OF SOLUTIONS OF SOME ITERATIVE FUNCTIONAL INEQUALITIES

Abstract. Continuous solutions of iterative linear inequalities of the first and second order are considered, belonging to a class \mathcal{F}_T of functions behaving at the origin as a prescribed function T.

Keywords: functional inequalities, continuous solutions, test function, asymptotic behavior.

Mathematics Subject Classification: 39C05.

1. INTRODUCTION

The iterative functional inequality of second order (studied, among others, in [6])

$$\psi[f^2(x)] \le (p(x) + q[f(x)])\psi[f(x)] - p(x)q(x)\psi(x), \tag{1}$$

where ψ is the unknown function, thanks to its specific form, is equivalent to the system consisting of the inequality of first order

$$z[f(x))] \le p(x)z(x) \tag{2}$$

(for the unknown z) and of the linear inhomogeneous functional equation

$$\varphi[f(x)] = q(x)\varphi(x) + z(x). \tag{3}$$

This means that every solution φ of equation (3) with a z satisfying inequality (2) is a solution of inequality (1) and vice versa: given a solution ψ of inequality (1), insert it to (3) in place of φ and calculate z from (3) to get a solution z of inequality (1).

The aim of this paper is to investigate these continuous solutions of inequalities (2) and (1) that behave at the fixed point of f like a prescribed "test" function T, in particular, like any of the functions p, q or f. Basic facts from the theory of iterative

functional inequalities, originated by the first author in [1] (cf. also Chapter 12 in [5]) are recalled, as well as those on the asymptotic behavior of solutions of equation (3), found in the papers by the remaining authors: [2] and [3].

The functions f, p, q and T meet the following general assumptions:

- (H₁) The function $f : I \to I$ is continuous and strictly increasing in an interval $I = [0, a] \ (a > 0 \text{ may belong to } I \text{ or not}).$ Moreover, 0 < f(x) < x for $x \in I^* = I \setminus \{0\}.$
- (H_2) The function $p: I \to \mathbf{R}$ is continuous in I and p(x) > 0 for $x \in I^*$.
- (H₃) The function $q: I \to \mathbf{R}$ is continuous in I and $q(x) \neq 0$ for $x \in I^*$.
- (H_4) The function $T: I \to \mathbf{R}$ is continuous in I and $T(x) \neq 0$ for $x \in I^*, T(0) = 0$.

With f^n denoting the *n*-th iterate of the function f, hypotheses (H_1) imply (see [5]) that

$$\lim_{n \to \infty} f^n(x) = 0 \quad \text{for every} \quad x \in I.$$
(4)

Moreover, 0 is the only fixed point of f in I.

Assuming that (H_4) is satisfied, we introduce the following class of functions

$$\mathcal{F}_T := \{ \varphi : I \to \mathbf{R} : \varphi \text{ is continuous on } I \text{ and the limit } L_{\varphi}^T := \lim_{x \to 0^+} \frac{\varphi(x)}{T(x)} \text{ is finite} \}.$$

Note that if $T(0) \neq 0$, the class \mathcal{F}_T would consist of all functions continuous in *I*. We are interested in solutions of inequalities (2) and (1) belonging to the class \mathcal{F}_T .

2. CONTINUOUS SOLUTIONS OF INEQUALITY (2)

It is known (see [5]) that the number of continuous solutions of inequality (2) as well as of the equation

$$\alpha[f(x)] = p(x)\alpha(x), \quad x \in I, \tag{5}$$

associated to inequality (2), depends on the behavior of the functional sequence

$$P_n(x) = \prod_{i=0}^{n-1} p[f^i(x)], \quad x \in I, \ n \in \mathbf{N}.$$
 (6)

We shall need some results from [4] (cf. also [5], Section 3.1) on continuous solutions α of equation (5). They are quoted below as a lemma, and concern the following two cases:

 (\mathbf{A}) The limit

$$P(x) = \lim_{n \to \infty} P_n(x) \tag{7}$$

exists in I and P is continuous in I. Moreover, P(x) > 0 for $x \in I^*$. (B) There exists an interval $J \subset I$ such that, uniformly in J,

$$\lim_{n \to \infty} P_n(x) = 0$$

Lemma 1. Let hypotheses (H_1) and (H_2) be fulfilled.

i) In case (A) all continuous solutions $\alpha: I \to R$ of equation (5) are given by

$$\alpha(x) = \frac{c}{P(x)} \quad for \quad x \in I,$$

where c is any real number.

ii) If, moreover, p(0) = 0, then in case (**B**) equation (5) has in I continuous solution depending on an arbitrary function. (This means that for any $x_0 \in I^*$ and every continuous function $\alpha_0 : [f(x_0), x_0] \to \mathbf{R}$ fulfilling the boundary condition $\alpha_0[f(x_0)] = p(x_0)\alpha_0(x_0)$ there is the unique continuous solution $\alpha : I \to \mathbf{R}$ of equation (5) such that

$$\alpha(x) = \alpha_0(x) \quad for \quad x \in [f(x_0), x_0] \quad and \quad \alpha(0) = 0,$$

and every continuous solution to (5) may be obtained in this manner.)

For the sake of completeness, we now quote from [1] (cf. also [5], Chapter 12.) as next lemmas, some representation theorems which will be useful in the sequel. We start with the notions of an $\{f\}$ -monotonic function.

Definition 1. A continuous function $\eta : I \longrightarrow \mathbf{R}$ [resp. $\vartheta : I \rightarrow \mathbf{R}$] is said to be $\{f\}$ -decreasing in I [resp. $\{f\}$ -increasing in I], if

$$\eta[f(x)] \le \eta(x), \quad x \in I \qquad [resp., \quad \vartheta[f(x)] \ge \vartheta(x), \quad x \in I]. \tag{8}$$

The family of all continuous $\{f\}$ -decreasing [resp., $\{f\}$ -increasing] functions will be denoted by \mathcal{D}_f [resp., \mathcal{I}_f].

Theorem 1. Let hypotheses (H_1) , (H_2) be satisfied and case (A) occur. Then the general continuous solution z of inequality (2) is given by

$$z(x) = \frac{\eta(x)}{P(x)}, \quad x \in I$$
(9)

where η is an arbitrary function from \mathcal{D}_{f} .

Note that, by Lemma 1*i*), formula (9) says that the function z is the product of a function from \mathcal{D}_f and of a solution of equation (5). Similar assertion remains true for case (**B**), but in a narrower class of solutions than that of continuous ones, namely, solutions called *regular*.

Definition 2. A continuous solution z of inequality (2) is said to be regular [a CR-solution, for short] if there exists a continuous solution α of equation (5) such that $\alpha(x) \leq z(x), x \in I$, and the function α_z defined by formula

$$\alpha_z(x) = \lim_{n \to \infty} \frac{z[f^n(x)]}{P_n(x)} \quad \text{for} \quad x \in I^\star, \quad \alpha_z(0) = 0,$$
(10)

is a continuous solution of equation (5) in I.

Some necessary and sufficient conditions for a solution of (2) to be *regular* are collected in [1], cf. also [5], Section 12.4. A representation theorem based on the results found therein reads:

Theorem 2. Let hypotheses $(H_1), (H_2)$ be satisfied, p(0) = 0, and let case (B) occur. i) The general CR-solution z of inequality (2) such that (cf. (10))

$$\alpha_z(x) \neq 0, \quad x \in I^\star, \tag{11}$$

is given by the formula (valid for $x \in I^*$)

$$z(x) = \begin{cases} \eta(x)\alpha(x), & \text{if } \alpha_z(x) > 0, x \in I^\star, \\ \vartheta(x)\alpha(x), & \text{if } \alpha_z(x) < 0, x \in I^\star, \end{cases}$$
(12)

where α is an arbitrary continuous solution of equation (5) vanishing at x = 0only, $\eta \in \mathcal{D}_f$ and $\vartheta \in \mathcal{I}_f$, both are arbitrary and such that

$$\eta(0) = 1, \quad \vartheta(0) = -1.$$
 (13)

ii) The general CR-solution z of inequality (2) such that

$$\alpha_z(x) = 0 \quad for \quad x \in I, \tag{14}$$

is given by the formula

$$z(x) = \eta(x)\alpha_0(x), \quad x \in I,$$
(15)

where $\eta \in \mathcal{D}_f$ is arbitrary with $\eta(0) = 0$ and α_0 is a positive on I^* continuous solution of (2).

Finally, we put

$$p_T(x) = \frac{p(x)T(x)}{T[f(x)]}, \quad x \in I^*,$$
(16)

and introduce an auxiliary equation.

Lemma 2. Let hypotheses $(H_1), (H_2)$ and (H_4) be fulfilled and let the limit

$$p_T(0) := \lim_{x \to 0^+} p_T(x) \tag{17}$$

exist. Then there is a one-to-one correspondence between the continuous solutions $\beta: I \to \mathbf{R}$ of the auxiliary equation

$$\beta[f(x)] = p_T(x)\beta(x), \quad x \in I,$$
(18)

where p_T is given by (16) and (17), and the solutions α of equation (5), belonging to \mathcal{F}_T .

Proof. The equivalence claimed in the lemma is established as follows. If a function $\alpha \in \mathcal{F}_T$ satisfies (5), then it is easily verified that the function $\beta : I \longrightarrow \mathbf{R}$ given by

$$\beta(x) = \frac{\alpha(x)}{T(x)}, \quad x \in I^{\star}, \qquad \beta(0) = L_{\alpha}^{T}$$
(19)

(cf. the definition of \mathcal{F}_T), is a continuous in I solution of (18). Conversely, if a continuous $\beta : I \to \mathbf{R}$ satisfies (18) then $\alpha := T \cdot \beta$ is a solution to (5), belonging to \mathcal{F}_T .

3. SOLUTIONS OF INEQUALITY (2) ASYMPTOTICALLY COMPARABLE WITH ${\cal T}$

We start with introducing the functional sequence corresponding to (6) (with p replaced by p_T), defined by

$$P_n^T(x) = \prod_{i=0}^{n-1} p_T[f^i(x)], \quad x \in I, n \in \mathbf{N}$$
(20)

It is easy to verify the following formula

$$P_n^T(x) = \frac{T(x)P_n(x)}{T[f^n(x)]}, \quad x \in I^*, \qquad P_n^T(0) = [p_T(0)]^n.$$
(21)

Case (A)

We note that p(0) = 1 in this case (see [3]) and, consequently, P(0) = 1, where the function P is defined by (6). Moreover, since P_n^T tends to ∞ when n does (cf. (4) and T(0) = 0), the zero function (defined on I) is the only continuous solution of equation (18) in I, cf. [4]. Thus, by virtue of Lemma 2, this zero function is also the only solution of equation (2) in the class \mathcal{F}_T .

As a simple consequence of Theorem 2i) we obtain

Theorem 3. Let hypotheses (H_1) , (H_2) be satisfied and let case (**A**) occur. Then the general solution $z \in \mathcal{F}_T$ of inequality (2) is given by formula (9), where $\eta \in \mathcal{D}_f \cap \mathcal{F}_T$ is arbitrary.

Proof. Refer to (9), (6) and (7) (with P(0) = 1), and the definition of the class \mathcal{F}_T to obtain the relations

$$\lim_{x \to 0^+} \frac{\eta(x)}{T(x)} = \lim_{x \to 0^+} \frac{z(x)P(x)}{T(x)} = \lim_{x \to 0^+} \frac{z(x)}{T(x)},$$

whenever the functions z and η have the properties stated in the theorem.

Remark 1. Note that if $k : I \to \mathbf{R}$ is any nonnegative function from \mathcal{D}_f , such that $\lim_{x\to 0^+} k(x)$ exists (in particular, if k is increasing), then the function $\eta := k \cdot T \in \mathcal{D}_f \cap \mathcal{F}_T$.

Case (\mathbf{B})

We start with a theorem which describes all CR-solutions $z \in \mathcal{F}_T$ of (2) in the case of the function α_z defined by (10) vanishing at zero only.

Theorem 4. Let hypotheses (H_1) , (H_2) be satisfied, p(0) = 0 and let case (**B**) occur. Then the general CR-solution $z \in \mathcal{F}_T$ of inequality (2) such that (11) holds is given by formula (12), where $\alpha \in \mathcal{F}_T$ is an arbitrary continuous solution of (5) vanishing at x = 0 only and $\eta \in \mathcal{D}_f$ if $\alpha_z > 0$ [resp. $\theta \in \mathcal{I}_f$ if $\varphi_z < 0$] is an arbitrary function satisfying (13).

When $\alpha_z = 0$ in I we have only a sufficient condition for z to be in \mathcal{F}_T :

Theorem 5. Let hypotheses (H_1) , (H_2) be satisfied, p(0) = 0 and let case (**B**) occur. Moreover let α_0 be a continuous solution of (5) such that (14) holds and let $\eta \in \mathcal{D}_f$ be arbitrary with (13). If either $\alpha_0 \in \mathcal{F}_T$ or $\eta \in \mathcal{F}_T$, then the function z defined by formula (15) is a CR-solution of (2) in the class \mathcal{F}_T .

Theorems 5 and 6 follow directly from formula (12), resp. (16), and the definition of $\mathcal{F}_{\mathcal{T}}$.

Finally we consider the following two subcases of (\mathbf{B}) :

 $(\mathbf{BA^T})$ The case (\mathbf{B}) occurs, the limit

$$P^{T}(x) = \lim_{n \to \infty} P_{n}^{T}(x)$$
(22)

exists in I and P^T is continuous in I. Moreover, $P^T(x) > 0$, for $x \in I^*$.

 $(\mathbf{BB^T})$ The case (\mathbf{B}) occurs and there exists an $x_0 \in I^*$ such that, uniformly in $[f(x_0), x_0]$,

$$\lim_{n \to \infty} P_n^T(x) = 0.$$

We shall present the following

Theorem 6. Let hypotheses (H_1) , (H_2) be fulfilled and let the limit (17) exist. In cases $(\mathbf{BA^T})$ or $(\mathbf{BB^T})$, every CR-solution z of inequality (2) such that (11) or (14) holds belongs to the class \mathcal{F}_T .

Moreover, in case (**BA**^T), the general CR-solution $z \in \mathcal{F}_T$ of inequality (2) such that (11) is satisfied, is given by the formulae (for $x \in I$)

$$z(x) = c \cdot \frac{\eta(x)T(x)}{P^T(x)} \quad with \quad c > 0; \qquad z(x) = c \cdot \frac{\vartheta(x)T(x)}{P^T(x)} \quad with \quad c < 0$$
(23)

where P_T is defined by (22), $\eta \in \mathcal{D}_f$ and $\vartheta \in \mathcal{I}_f$ satisfy condition (13).

Proof. Case (**BA**^T). If $z \in \mathcal{F}_T$ is a *CR*-solution of inequality (2) and (11) holds, then by Theorem 4 it is given by formula (12), where $\alpha \in \mathcal{F}_T$ is any continuous solution of equation (5) vanishing at x = 0 only and η and ϑ are some $\{f\}$ -monotonic functions described in the assertion of the theorem. Define β by (19). Lemma 2 says that this β is a continuous solution of equation (18). Consequently from Lemma 1, applied to equation (18), we obtain $\beta(x) = c/P^T(x)$, where $c \neq 0$. Thanks to (**BA**^T), (12) and (19), we get (23). Of course, the function z defined by (23) is a *CR*-solution of inequality (2). Moreover, $z \in \mathcal{F}_T$, because (we take the first equality in (23); for the other, the proof is the same)

$$\lim_{x \to 0^+} \frac{z(x)}{T(x)} = \lim_{x \to 0^+} c \cdot \frac{\eta(x)}{P^T(x)} = c \ \eta(0) = c.$$

Case (**BB**^T). Given a continuous solution α of equation (5) vanishing at x = 0 only, in virtue of Theorem 5, it is enough to check whether it belongs to \mathcal{F}_T . For, we know that a continuous solution of both equations (5) and (18) depends on an arbitrary function. Let us then take an $x_0 \in I^*$ and define

$$\beta_0(x) = rac{lpha(x)}{T(x)}$$
 for $x \in [f(x_0), x_0]$

Since $\alpha[f(x_0)] = p(x_0)\alpha(x_0)$, the relation $\beta_0[f(x_0)] = p_T(x_0)\beta_0(x_0)$ also holds (see (19) and (16)). Consequently, there exists the (unique) continuous solution β of (18) such that $\beta(x) = \beta_0(x)$ for $x \in [f(x_0), x_0]$ and $\beta(0) = 0$. Obviously, $\alpha^* := \beta \cdot T$ satisfies (5), is continuous, vanishes at x = 0 only and is in \mathcal{F}_T . And $\alpha^*(x) = \alpha(x)$ for $x \in [f(x_0), x_0]$. This means that $\alpha^* = \alpha$, i.e., $\alpha \in \mathcal{F}_T$, as claimed.

To conclude the section, we supply some examples concerning solutions of inequality (2) that behave at the origin like the given functions p or f, occurring in (2).

Example 1. Take I = [0, 1) and consider the inequality

$$z(x^2) \le \frac{1}{1+x} z(x).$$
 (24)

Here

$$P_n(x) = \prod_{i=0}^{n-1} (1+x^{2^i})^{-1} = \frac{1-x}{1-x^{2^n}}, \text{ whence } P(x) = 1-x.$$

Consequently, case (**A**) occurs and the continuous solutions of inequality (24) are of the form $z(x) = \eta(x)/(1-x)$, $x \in I$, where $\eta \in \mathcal{D}_f$ is arbitrary. Let $T(x) = f(x) = x^2$, $x \in I$. By Theorem 3, $z \in \mathcal{F}_f$ if and only if there exists the finite limit $\lim_{x\to 0^+} x^{-2}\eta(x)$ (which is the case, for instance, when $\eta(x) = x^{\gamma}, \gamma \geq 2$ or $\eta(x) = e^{x^2} - 1$).

Example 2. Consider the inequality

$$z(\frac{x}{2}) \le \frac{1}{2}z(x) \tag{25}$$

in the interval I = [0, 1) and take T(x) = f(x) = x/2, $x \in I$. Since $\lim_{n\to\infty} P_n(x) = \lim_{n\to\infty} 2^{-n} = 0$ and $P_n^T(x) = 1, x \in I$, case (**BA**^T) occurs. In virtue of Theorem 6, the general *CR*-solution $z \in \mathcal{F}_f$ has the form

$$z(x) = x\eta(x), \quad \eta(0) > 0 \quad \text{or} \quad z(x) = x\vartheta(x), \quad \vartheta(0) < 0.$$

Take the function $z: I \to R$, given by $z(x) = e^x - 1$, $x \in I$, which is a particular continuous solution of (25), and the identity function α_0 (on I), which is a particular continuous solution of the equation

$$\alpha(\frac{x}{2}) = \frac{1}{2}\alpha(x),\tag{26}$$

corresponding to inequality (25). Since $\lim_{x\to 0^+} [(e^x - 1)/x] = 1$, then $z \in \mathcal{F}_f$. By Theorem 12.4.3 from [5], z is an *CR*-solution of (25) and $\alpha_z(x) = x$ for $x \in I$. The function η given by

$$\eta(x) = \frac{e^x - 1}{x}, \quad x \in I^*, \quad \eta(0) = 1,$$

belongs to \mathcal{D}_f and our solution z of (25) is of the form (12) with η as above and $\alpha(x) = x$ for $x \in I$.

For another continuous solution z of (25) given by $z(x) = ax^2, a > 0$, we calculate $\lim_{x\to 0^+} \left(z[f^n(x)]/P_n(x)\right) = \lim_{x\to 0^+} (ax^22^{-n}) = 0$. Consequently, this solution z is regular with $\alpha_z(x) = 0$ for $x \in I$; moreover, it is actually given by formula (9) with $\eta \in \mathcal{D}_f, \ \eta(x) = ax, \ x \in I$, and a positive in I^* continuous solution α_0 of (26) defined by $\alpha_0(x) = x, \ x \in I$.

4. SOLUTIONS OF INEQUALITY (1) ASYMPTOTICALLY COMPARABLE WITH ${\cal T}$

Thanks to the equivalence of inequality (1) and the system consisting of inequality (2) and equation (3), we may use a uniqueness result from [4], which is adapted to equation (3) and quoted below as the last lemma.

Given a continuous function $r: I^* \to \mathbf{R}$, define on I^* the (continuous) functions q_T and z_T as follows

$$q_T(x) = \frac{q(x)T(x)}{T[f(x)]}, \text{ and } z_T(x) = \frac{z(x)}{T[f(x)]}, \text{ for } x \in I^\star.$$
 (27)

Now, we are in a position to formulate

Lemma 3. Assume that hypotheses $(H_1) - (H_4)$ are fulfilled, and that there exist the finite limits

$$q_T(0) := \lim_{x \to 0^+} q_T(x); \qquad z_T(0) := \lim_{x \to 0^+} z_T(x).$$
(28)

i) If

$$q_T(0)| > 1,$$
 (29)

then equation (3) has the unique solution φ in \mathcal{F}_T which is given by the formula

$$\varphi(x) = -\sum_{n=0}^{\infty} \frac{z[f^n(x)]}{Q_{n+1}(x)}, \quad x \in I^*; \qquad \varphi(0) = 0, \tag{30}$$

where (cf. (6))

$$Q_{n+1} = \prod_{i=0}^{n} q \circ f^{i}, \quad n \in N \cup \{0\}.$$
 (31)

ii) If $|q_T(0)| < 1$, then for any $x_0 \in I^*$ every continuous function $\varphi_0 : [f(x_0), x_0] \to \mathbf{R}$ satisfying the condition: $\varphi(f(x_0)) = q(x_0\varphi(x_0) + z(x_0))$ can be uniquely extended to a solution $\varphi : I \to \mathbf{R}$ of (3) belonging to \mathcal{F}_T .

Since (2) with (3) are equivalent to (1), directly from Lemma 3i) we get the following

Theorem 7. Assume that hypotheses $(H_1) - (H_4)$ are fulfilled, inequality (2) has a continuous solution $z : I \to \mathbf{R}$ and there exist limits (28) and condition (29) is satisfied.

Then all solutions $\psi \in \mathcal{F}_T$ (3) (with this z, thus also of inequality (1)) are given by the formula

$$\psi(x) = -\sum_{n=0}^{\infty} \frac{z[f^n(x)]}{Q_{n+1}(x)}, \quad x \in I^*; \qquad \psi(0) = 0.$$
(32)

In the case of z a CR-solution (cf. Definition 2) to (2), formula (32) may be written in another form, see [6].

Theorem 8. Assume that hypotheses $(H_1) - (H_4)$ are fulfilled, z is a CR- solution to (2), case (A) or (B) occurs and there exist the second limit in (28) and a finite limit

$$t := \lim_{x \to 0^+} \frac{T(x)}{T[f(x)]}.$$
(33)

Moreover,

$$|q(0) t| > 1. (34)$$

If $\psi \in \mathcal{F}_T$ solves equation (3) (with this z, hence also of inequality (1)), then

$$\psi(x) = -S(x) \sum_{n=0}^{\infty} \frac{\zeta[f^n(x)]P_n(x)}{Q_{n+1}(x)}, \quad x \in I^*, \qquad \psi(0) = 0, \tag{35}$$

where:

- a) in case (A) there is S = 1/P (a continuous solution of equation (5) when P is defined by (7), cf. Lemma 1), and $\zeta = \eta \in \mathcal{D}_f \cap \mathcal{F}_T, \eta(0) = 1;$
- b) in case (**B**), when $\alpha_z \neq 0$ for $x \in I^*$ (cf. Definition 2), there is $S = \alpha \in \mathcal{F}_T$ solving (5) and vanishing at zero only, and $\zeta = \eta \in \mathcal{D}_f, \eta(0) = 1$ (when $\alpha_z > 0$), whereas $\zeta = \vartheta \in \mathcal{I}_f, \vartheta(0) = -1$ (when $\alpha_z < 0$);
- c) in case (**B**), when $\alpha_z = 0$ for $x \in I$, there is $S = \alpha_0$, which is a continuous solution of equation (5), positive in I^* (provided it does exist), $\zeta = \eta \in \mathcal{D}_f, \eta(0) = 1$, and either α_0 or η belongs to \mathcal{F}_T .

Proof. Note first that because of (27) and (33), for $z \in \mathcal{F}_T$, from (28) we derive

$$q_T(0) = \lim_{x \to 0^+} \left(q(x) \frac{T(x)}{T[f(x)]} \right) = q(0)t; \quad z_T(0) = \lim_{x \to 0^+} \left(\frac{z(x)}{T(x)} \frac{T(x)}{T[f(x)]} \right) = L_z^T t$$

Thus, thanks to inequality (34), Lemma 3 applies and formula (30) determines the solutions $\varphi \in \mathcal{F}_T$ of equation (3), whence, as $\psi = \varphi$, those of inequality (1).

It remains to check formulae (35). Observe first that if α is a solution to (5), then it also satisfies, for every $n \in N$, the equations below, resulting from equation (5) on iterating it n times,

$$\alpha[f^n(x)] = P_n(x)\alpha(x), \quad x \in I.$$
(36)

- a) Because of Theorem 3, the solutions $z \in \mathcal{F}_T$ of (2) are given by (9), and the function $\alpha = 1/P$ satisfies (3). Using (9) and (36) in (30), we get (35).
- b) This results from Theorem 4 and formula (12) with (36), when used in (30).
- c) By Theorem 5, we obtain formula (15) for z and (35) follows from (36).

The applicability of Theorems 7 and 8 in the case of the "test function" T = q or T = f will be shown in next two examples.

Example 3. Take I = [0, 1) and consider the inequality

$$\psi(x^4) \le \left(\frac{1}{1+x} + 2x^2\right) \,\psi(x^2) - \frac{2x}{1+x} \,\psi(x), \quad x \in I.$$
(37)

This inequality is of the form (1), with $f(x) = x^2$, $p(x) = (1 + x)^{-1}$, q(x) = 2x; all for $x \in I$. These functions fulfil hypotheses $(H_1) - (H_3)$. The function $\eta : I \to \mathbf{R}$, given by $\eta(x) = \ln(1 + x^2)$, $x \in I$, satisfies (8), so that $\eta \in \mathcal{D}_f$, and it produces the solution $z : I \to \mathbf{R}$;

$$z(x) = \frac{\ln(1+x^2)}{1-x}, \quad x \in I,$$
(38)

of inequality (24) (cf. (2)), related to (37). For T(x) = q(x) = 2x, the limits (28) are:

$$q_T(0) = \lim_{x \to 0^+} \frac{[q(x)]^2}{q[f(x)]} = 2; \quad z_T(0) = \lim_{x \to 0^+} \frac{z(x)}{q[f(x)]} = \lim_{x \to 0^+} \frac{1}{2} \frac{\ln(1+x^2)}{x^2} = \frac{1}{2},$$

so that condition (29) is fulfilled. Consequently, Theorem 7 works, and in the class \mathcal{F}_q inequality (37) has the solution $\psi : I \to \mathbf{R}$ given by formula (32), in which $f^n(x) = x^{2^n}$,

$$Q_{n+1}(x) = \prod_{i=0}^{n} (2x^{2^{i}}) = 2^{n+1}x^{2^{n+1}-1}$$

and z is given by (38). Thus (35) now takes the form

$$\psi(x) = -\sum_{n=0}^{\infty} 2^{-n-1} x^{1-2^{n+1}} \frac{\ln(1+x^{2^{n+1}})}{1-x^{2^n}}, \quad \psi(0) = 0.$$

Example 4. Take I = [0, 1) and consider the inequality

$$\psi\left(\frac{1}{4}x\right) \le \left(\frac{1}{2} + \cos\left(\frac{1}{4}x\right)\right)\psi\left(\frac{1}{2}x\right) - \frac{1}{2}\cos\left(\frac{1}{2}x\right)\psi(x), \quad x \in I.$$
(39)

The given functions $f(x) = \frac{1}{2}x$, $p(x) = \frac{1}{2}$, $q(x) = \cos(\frac{1}{2}x)$, and $T(x) = f(x) = \frac{1}{2}x$, $x \in I$, satisfy hypotheses $(H_1) - (H_4)$. We note that the function $z : I \to \mathbf{R}$ given by $z(x) = e^x - 1, x \in I$, is a regular solution of inequality (25) (related to (39), cf. (2)) and $\alpha_z(x) = x, x \in I^*$. Moreover, $z \in \mathcal{F}_f$ (see Example 2). In turn, since $P_n(x) = 2^{-n}$, case (**B**) occurs. Finally, we have $f^i(x) = 2^{-i}x$, whence

$$Q_{n+1}(x) = \prod_{i=0}^{n} \cos\left(2^{-i}x\right) = \frac{\sin x \cos x}{2^n \sin\left(2^{-n}x\right)}$$

(see (31)). We calculate the limits (see (28) and (33)):

$$t = \lim_{x \to 0^+} \frac{f(x)}{f^2(x)} = 2; \quad z_T(0) = \lim_{x \to 0^+} \frac{z(x)}{f^2(x)} = 4 \lim_{x \to 0^+} \frac{e^x - 1}{x} = 4$$

Since q(0) = 1, (34) holds. By Theorem 8 formula (35) represents all solutions $\psi \in \mathcal{F}_f$ of inequality (39). With $S = \alpha_z = id|_I$ (which satisfies equation (25) and vanishes at zero only), formula (35) now takes the form

$$\psi(x) = -\frac{x}{\sin x \cos x} \sum_{n=0}^{\infty} \eta(2^{-n}x) \sin(2^{-n}x), \quad x \in I^*, \quad \psi(0) = 0,$$

where $\eta \in \mathcal{D}_f, \eta(0) = 1$, is arbitrary. We may take $\eta(x) = (e^x - 1)/x, x \in I^*, \eta(0) = 1$ (cf. Example 2), to get a particular solution $\psi \in \mathcal{F}_f$ of inequality (1).

REFERENCES

- D. Brydak, On functional inequalities in a single variable, Dissertationes Math. 160 (1979).
- [2] B. Choczewski, Solutions of linear iterative functional equations behaving like the forcing term in the equation, Aequationes Math. **60** (2000), 308–314.
- [3] B. Choczewski, M. Czerni, Solutions of linear nonhomogeneous functional equation in some special class of functions, Aequationes Math (to appear).
- B. Choczewski, M. Kuczma, On the "indeterminate case" in the theory of a linear functional equation, Fund. Math. 58 (1966), 163–175.
- [5] M. Kuczma, B. Choczewski, R. Ger, *Iterative Functional Equations*, Encyclopedia of Mathematics and Its Applications 32, Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, Sydney, 1990.
- [6] M. Stopa, On the form of solutions of some iterative functional inequality, Publ. Math. (Debrecen) 45 (1994), 371–377.

Dobiesław Brydak

Pedagogical University of Cracow Department of Mathematics ul. Podchorążych 2, 30-084 Kraków, Poland

Bogdan Choczewski smchocze@cyf-kr.edu.pl

AGH University of Science and Technology Faculty of Applied Mathematics al. Mickiewicza 30, 30-059 Kraków, Poland

Marek Czerni mczerni@ultra.wsp.krakow.pl

Pedagogical University of Cracow Department of Mathematics ul. Podchorążych 2, 30-084 Kraków, Poland

Received: March 18, 2008. Accepted: May 4, 2008.