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1. INTRODUCTION

The iterative functional inequality of second order (studied, among others, in [6])

ψ[f2(x)] ≤ (p(x) + q[f(x)])ψ[f(x)]− p(x)q(x)ψ(x), (1)

where ψ is the unknown function, thanks to its specific form, is equivalent to the
system consisting of the inequality of first order

z[f(x))] ≤ p(x)z(x) (2)

(for the unknown z) and of the linear inhomogeneous functional equation

ϕ[f(x)] = q(x)ϕ(x) + z(x). (3)

This means that every solution ϕ of equation (3) with a z satisfying inequality (2) is
a solution of inequality (1) and vice versa: given a solution ψ of inequality (1), insert
it to (3) in place of ϕ and calculate z from (3) to get a solution z of inequality (1).

The aim of this paper is to investigate these continuous solutions of inequalities
(2) and (1) that behave at the fixed point of f like a prescribed “test” function T , in
particular, like any of the functions p, q or f . Basic facts from the theory of iterative
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functional inequalities, originated by the first author in [1] (cf. also Chapter 12 in [5])
are recalled, as well as those on the asymptotic behavior of solutions of equation (3),
found in the papers by the remaining authors: [2] and [3].

The functions f, p, q and T meet the following general assumptions:

(H1) The function f : I → I is continuous and strictly increasing in an interval
I = [0, a| (a > 0 may belong to I or not). Moreover, 0 < f(x) < x for
x ∈ I? = I \ {0}.

(H2) The function p : I → R is continuous in I and p(x) > 0 for x ∈ I?.
(H3) The function q : I → R is continuous in I and q(x) 6= 0 for x ∈ I?.
(H4) The function T : I → R is continuous in I and T (x) 6= 0 for x ∈ I?, T (0) = 0.

With fn denoting the n-th iterate of the function f , hypotheses (H1) imply
(see [5]) that

lim
n→∞

fn(x) = 0 for every x ∈ I. (4)

Moreover, 0 is the only fixed point of f in I.
Assuming that (H4) is satisfied, we introduce the following class of functions

FT :=
{
ϕ : I → R : ϕ is continuous on I and the limit LT

ϕ := lim
x→0+

ϕ(x)
T (x)

is finite
}
.

Note that if T (0) 6= 0, the class FT would consist of all functions continuous in I.
We are interested in solutions of inequalities (2) and (1) belonging to the class FT .

2. CONTINUOUS SOLUTIONS OF INEQUALITY (2)

It is known (see [5]) that the number of continuous solutions of inequality (2) as well
as of the equation

α[f(x)] = p(x)α(x), x ∈ I, (5)

associated to inequality (2), depends on the behavior of the functional sequence

Pn(x) =
n−1∏
i=0

p[f i(x)], x ∈ I, n ∈ N. (6)

We shall need some results from [4] (cf. also [5], Section 3.1) on continuous solu-
tions α of equation (5). They are quoted below as a lemma, and concern the following
two cases:

(A) The limit
P (x) = lim

n→∞
Pn(x) (7)

exists in I and P is continuous in I. Moreover, P (x) > 0 for x ∈ I?.
(B) There exists an interval J ⊂ I such that, uniformly in J ,

lim
n→∞

Pn(x) = 0.
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Lemma 1. Let hypotheses (H1) and (H2) be fulfilled.

i) In case (A) all continuous solutions α : I → R of equation (5) are given by

α(x) =
c

P (x)
for x ∈ I,

where c is any real number.
ii) If, moreover, p(0) = 0, then in case (B) equation (5) has in I continuous solu-

tion depending on an arbitrary function. (This means that for any x0 ∈ I? and
every continuous function α0 : [f(x0), x0] → R fulfilling the boundary condition
α0[f(x0)] = p(x0)α0(x0) there is the unique continuous solution α : I → R of
equation (5) such that

α(x) = α0(x) for x ∈ [f(x0), x0] and α(0) = 0,

and every continuous solution to (5) may be obtained in this manner.)

For the sake of completeness, we now quote from [1] (cf. also [5], Chapter 12.) as
next lemmas, some representation theorems which will be useful in the sequel. We
start with the notions of an {f}-monotonic function.

Definition 1. A continuous function η : I −→ R [resp. ϑ : I → R] is said to be
{f}-decreasing in I [resp. {f}-increasing in I], if

η[f(x)] ≤ η(x), x ∈ I [resp., ϑ[f(x)] ≥ ϑ(x), x ∈ I]. (8)

The family of all continuous {f}-decreasing [resp., {f}-increasing] functions will be
denoted by Df [resp., If ].

Theorem 1. Let hypotheses (H1), (H2) be satisfied and case (A) occur. Then the
general continuous solution z of inequality (2) is given by

z(x) =
η(x)
P (x)

, x ∈ I (9)

where η is an arbitrary function from Df .

Note that, by Lemma 1i), formula (9) says that the function z is the product of a
function from Df and of a solution of equation (5). Similar assertion remains true for
case (B), but in a narrower class of solutions than that of continuous ones, namely,
solutions called regular.

Definition 2. A continuous solution z of inequality (2) is said to be regular [a
CR-solution, for short] if there exists a continuous solution α of equation (5) such
that α(x) ≤ z(x), x ∈ I, and the function αz defined by formula

αz(x) = lim
n→∞

z[fn(x)]
Pn(x)

for x ∈ I?, αz(0) = 0, (10)

is a continuous solution of equation (5) in I.
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Some necessary and sufficient conditions for a solution of (2) to be regular are
collected in [1], cf. also [5], Section 12.4. A representation theorem based on the
results found therein reads:

Theorem 2. Let hypotheses (H1),(H2) be satisfied, p(0) = 0, and let case (B) occur.

i) The general CR-solution z of inequality (2) such that (cf. (10))

αz(x) 6= 0, x ∈ I?, (11)

is given by the formula (valid for x ∈ I?)

z(x) =

{
η(x)α(x), if αz(x) > 0, x ∈ I?,

ϑ(x)α(x), if αz(x) < 0, x ∈ I?,
(12)

where α is an arbitrary continuous solution of equation (5) vanishing at x = 0
only, η ∈ Df and ϑ ∈ If , both are arbitrary and such that

η(0) = 1, ϑ(0) = −1. (13)

ii) The general CR-solution z of inequality (2) such that

αz(x) = 0 for x ∈ I, (14)

is given by the formula

z(x) = η(x)α0(x), x ∈ I, (15)

where η ∈ Df is arbitrary with η(0) = 0 and α0 is a positive on I? continuous
solution of (2).

Finally, we put

pT (x) =
p(x)T (x)
T [f(x)]

, x ∈ I?, (16)

and introduce an auxiliary equation.

Lemma 2. Let hypotheses (H1), (H2) and (H4) be fulfilled and let the limit

pT (0) := lim
x→0+

pT (x) (17)

exist. Then there is a one-to-one correspondence between the continuous solutions
β : I → R of the auxiliary equation

β[f(x)] = pT (x)β(x), x ∈ I, (18)

where pT is given by (16) and (17), and the solutions α of equation (5), belonging
to FT .
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Proof. The equivalence claimed in the lemma is established as follows. If a function
α ∈ FT satisfies (5), then it is easily verified that the function β : I −→ R given by

β(x) =
α(x)
T (x)

, x ∈ I?, β(0) = LT
α (19)

(cf. the definition of FT ), is a continuous in I solution of (18). Conversely, if a
continuous β : I → R satisfies (18) then α := T · β is a solution to (5), belonging
to FT .

3. SOLUTIONS OF INEQUALITY (2) ASYMPTOTICALLY COMPARABLE
WITH T

We start with introducing the functional sequence corresponding to (6) (with p re-
placed by pT ), defined by

PT
n (x) =

n−1∏
i=0

pT [f i(x)], x ∈ I, n ∈ N (20)

It is easy to verify the following formula

PT
n (x) =

T (x)Pn(x)
T [fn(x)]

, x ∈ I?, PT
n (0) = [pT (0)]n. (21)

Case (A)
We note that p(0) = 1 in this case (see [3]) and, consequently, P (0) = 1, where

the function P is defined by (6). Moreover, since PT
n tends to ∞ when n does (cf.

(4) and T (0) = 0), the zero function (defined on I) is the only continuous solution of
equation (18) in I, cf. [4]. Thus, by virtue of Lemma 2, this zero function is also the
only solution of equation (2) in the class FT .

As a simple consequence of Theorem 2i) we obtain

Theorem 3. Let hypotheses (H1), (H2) be satisfied and let case (A) occur. Then the
general solution z ∈ FT of inequality (2) is given by formula (9), where η ∈ Df ∩ FT

is arbitrary.

Proof. Refer to (9), (6) and (7) (with P (0) = 1), and the definition of the class FT

to obtain the relations

lim
x→0+

η(x)
T (x)

= lim
x→0+

z(x)P (x)
T (x)

= lim
x→0+

z(x)
T (x)

,

whenever the functions z and η have the properties stated in the theorem.

Remark 1. Note that if k : I → R is any nonnegative function from Df , such that
limx→0+ k(x) exists (in particular, if k is increasing), then the function η := k · T ∈
Df ∩ FT .
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Case (B)
We start with a theorem which describes all CR-solutions z ∈ FT of (2) in the

case of the function αz defined by (10) vanishing at zero only.

Theorem 4. Let hypotheses (H1), (H2) be satisfied, p(0) = 0 and let case (B) occur.
Then the general CR-solution z ∈ FT of inequality (2) such that (11) holds is given
by formula (12), where α ∈ FT is an arbitrary continuous solution of (5) vanishing
at x = 0 only and η ∈ Df if αz > 0 [resp. θ ∈ If if ϕz < 0] is an arbitrary function
satisfying (13).

When αz = 0 in I we have only a sufficient condition for z to be in FT :

Theorem 5. Let hypotheses (H1), (H2) be satisfied, p(0) = 0 and let case (B) occur.
Moreover let α0 be a continuous solution of (5) such that (14) holds and let η ∈ Df

be arbitrary with (13). If either α0 ∈ FT or η ∈ FT , then the function z defined by
formula (15) is a CR-solution of (2) in the class FT .

Theorems 5 and 6 follow directly from formula (12), resp. (16), and the definition
of FT .

Finally we consider the following two subcases of (B):
(BAT) The case (B) occurs, the limit

PT (x) = lim
n→∞

PT
n (x) (22)

exists in I and PT is continuous in I. Moreover, PT (x) > 0, for x ∈ I?.
(BBT) The case (B) occurs and there exists an x0 ∈ I? such that, uniformly in

[f(x0), x0],
lim

n→∞
PT

n (x) = 0.

We shall present the following

Theorem 6. Let hypotheses (H1), (H2) be fulfilled and let the limit (17) exist. In
cases (BAT) or (BBT), every CR-solution z of inequality (2) such that (11) or (14)
holds belongs to the class FT .

Moreover, in case (BAT), the general CR-solution z ∈ FT of inequality (2) such
that (11) is satisfied, is given by the formulae (for x ∈ I)

z(x) = c · η(x)T (x)
PT (x)

with c > 0; z(x) = c · ϑ(x)T (x)
PT (x)

with c < 0 (23)

where PT is defined by (22), η ∈ Df and ϑ ∈ If satisfy condition (13).

Proof. Case (BAT). If z ∈ FT is a CR-solution of inequality (2) and (11) holds, then
by Theorem 4 it is given by formula (12), where α ∈ FT is any continuous solution of
equation (5) vanishing at x = 0 only and η and ϑ are some {f}−monotonic functions
described in the assertion of the theorem. Define β by (19). Lemma 2 says that this
β is a continuous solution of equation (18). Consequently from Lemma 1, applied
to equation (18), we obtain β(x) = c/PT (x), where c 6= 0. Thanks to (BAT), (12)
and (19), we get (23). Of course, the function z defined by (23) is a CR-solution of
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inequality (2). Moreover, z ∈ FT , because (we take the first equality in (23); for the
other, the proof is the same)

lim
x→0+

z(x)
T (x)

= lim
x→0+

c · η(x)
PT (x)

= c η(0) = c.

Case (BBT). Given a continuous solution α of equation (5) vanishing at x = 0
only, in virtue of Theorem 5, it is enough to check whether it belongs to FT . For,
we know that a continuous solution of both equations (5) and (18) depends on an
arbitrary function. Let us then take an x0 ∈ I? and define

β0(x) =
α(x)
T (x)

for x ∈ [f(x0), x0].

Since α[f(x0)] = p(x0)α(x0), the relation β0[f(x0)] = pT (x0)β0(x0) also holds (see
(19) and (16)). Consequently, there exists the (unique) continuous solution β of (18)
such that β(x) = β0(x) for x ∈ [f(x0), x0] and β(0) = 0. Obviously, α? := β · T
satisfies (5), is continuous, vanishes at x = 0 only and is in FT . And α?(x) = α(x)
for x ∈ [f(x0), x0]. This means that α? = α, i.e., α ∈ FT , as claimed.

To conclude the section, we supply some examples concerning solutions of inequal-
ity (2) that behave at the origin like the given functions p or f , occurring in (2).

Example 1. Take I = [0, 1) and consider the inequality

z(x2) ≤ 1
1 + x

z(x). (24)

Here

Pn(x) =
n−1∏
i=0

(1 + x2i

)−1 =
1− x

1− x2n , whence P (x) = 1− x.

Consequently, case (A) occurs and the continuous solutions of inequality (24) are
of the form z(x) = η(x)/(1 − x), x ∈ I, where η ∈ Df is arbitrary. Let T (x) =
f(x) = x2, x ∈ I. By Theorem 3, z ∈ Ff if and only if there exists the finite
limit limx→0+ x−2η(x) (which is the case, for instance, when η(x) = xγ , γ ≥ 2 or
η(x) = ex2 − 1).

Example 2. Consider the inequality

z(
x

2
) ≤ 1

2
z(x) (25)

in the interval I = [0, 1) and take T (x) = f(x) = x/2, x ∈ I. Since limn→∞ Pn(x) =
limn→∞ 2−n = 0 and PT

n (x) = 1, x ∈ I, case (BAT) occurs. In virtue of Theorem 6,
the general CR-solution z ∈ Ff has the form

z(x) = xη(x), η(0) > 0 or z(x) = xϑ(x), ϑ(0) < 0.
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Take the function z : I → R, given by z(x) = ex − 1, x ∈ I, which is a particular
continuous solution of (25), and the identity function α0 (on I), which is a particular
continuous solution of the equation

α(
x

2
) =

1
2
α(x), (26)

corresponding to inequality (25). Since limx→0+ [(ex − 1)/x] = 1, then z ∈ Ff . By
Theorem 12.4.3 from [5], z is an CR-solution of (25) and αz(x) = x for x ∈ I. The
function η given by

η(x) =
ex − 1
x

, x ∈ I?, η(0) = 1,

belongs to Df and our solution z of (25) is of the form (12) with η as above and
α(x) = x for x ∈ I.

For another continuous solution z of (25) given by z(x) = ax2, a > 0, we calculate
limx→0+

(
z[fn(x)]/Pn(x)

)
= limx→0+ (ax22−n) = 0. Consequently, this solution z is

regular with αz(x) = 0 for x ∈ I; moreover, it is actually given by formula (9) with
η ∈ Df , η(x) = ax, x ∈ I, and a positive in I? continuous solution α0 of (26) defined
by α0(x) = x, x ∈ I.

4. SOLUTIONS OF INEQUALITY (1) ASYMPTOTICALLY COMPARABLE
WITH T

Thanks to the equivalence of inequality (1) and the system consisting of inequality
(2) and equation (3), we may use a uniqueness result from [4], which is adapted to
equation (3) and quoted below as the last lemma.

Given a continuous function r : I? → R, define on I? the (continuous) functions
qT and zT as follows

qT (x) =
q(x)T (x)
T [f(x)]

, and zT (x) =
z(x)

T [f(x)]
, for x ∈ I?. (27)

Now, we are in a position to formulate

Lemma 3. Assume that hypotheses (H1)− (H4) are fulfilled, and that there exist the
finite limits

qT (0) := lim
x→0+

qT (x); zT (0) := lim
x→0+

zT (x). (28)

i) If
|qT (0)| > 1, (29)

then equation (3) has the unique solution ϕ in FT which is given by the formula

ϕ(x) = −
∞∑

n=0

z[fn(x)]
Qn+1(x)

, x ∈ I?; ϕ(0) = 0, (30)
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where (cf. (6))

Qn+1 =
n∏

i=0

q ◦ f i, n ∈ N ∪ {0}. (31)

ii) If |qT (0)| < 1, then for any x0 ∈ I? every continuous function ϕ0 : [f(x0), x0] → R
satisfying the condition: ϕ(f(x0)) = q(x0ϕ(x0) + z(x0)) can be uniquely extended
to a solution ϕ : I → R of (3) belonging to FT .

Since (2) with (3) are equivalent to (1), directly from Lemma 3i) we get the
following

Theorem 7. Assume that hypotheses (H1) − (H4) are fulfilled, inequality (2) has
a continuous solution z : I → R and there exist limits (28) and condition (29) is
satisfied.

Then all solutions ψ ∈ FT (3) (with this z, thus also of inequality (1)) are given
by the formula

ψ(x) = −
∞∑

n=0

z[fn(x)]
Qn+1(x)

, x ∈ I?; ψ(0) = 0. (32)

In the case of z a CR-solution (cf. Definition 2) to (2), formula (32) may be
written in another form, see [6].

Theorem 8. Assume that hypotheses (H1) − (H4) are fulfilled, z is a CR- solution
to (2), case (A) or (B) occurs and there exist the second limit in (28) and a finite
limit

t := lim
x→0+

T (x)
T [f(x)]

. (33)

Moreover,
|q(0) t| > 1. (34)

If ψ ∈ FT solves equation (3) (with this z, hence also of inequality (1)), then

ψ(x) = −S(x)
∞∑

n=0

ζ[fn(x)]Pn(x)
Qn+1(x)

, x ∈ I?, ψ(0) = 0, (35)

where:

a) in case (A) there is S = 1/P (a continuous solution of equation (5) when P is
defined by (7), cf. Lemma 1), and ζ = η ∈ Df ∩ FT , η(0) = 1;

b) in case (B), when αz 6= 0 for x ∈ I? (cf. Definition 2), there is S = α ∈ FT

solving (5) and vanishing at zero only, and ζ = η ∈ Df , η(0) = 1 (when αz > 0),
whereas ζ = ϑ ∈ If , ϑ(0) = −1 (when αz < 0);

c) in case (B), when αz = 0 for x ∈ I, there is S = α0, which is a continuous solution
of equation (5), positive in I? (provided it does exist), ζ = η ∈ Df , η(0) = 1, and
either α0 or η belongs to FT .
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Proof. Note first that because of (27) and (33), for z ∈ FT , from (28) we derive

qT (0) = lim
x→0+

(
q(x)

T (x)
T [f(x)]

)
= q(0)t; zT (0) = lim

x→0+

( z(x)
T (x)

T (x)
T [f(x)]

)
= LT

z t.

Thus, thanks to inequality (34), Lemma 3 applies and formula (30) determines the
solutions ϕ ∈ FT of equation (3), whence, as ψ = ϕ, those of inequality (1).

It remains to check formulae (35). Observe first that if α is a solution to (5), then
it also satisfies, for every n ∈ N , the equations below, resulting from equation (5) on
iterating it n times,

α[fn(x)] = Pn(x)α(x), x ∈ I. (36)

a) Because of Theorem 3, the solutions z ∈ FT of (2) are given by (9), and the
function α = 1/P satisfies (3). Using (9) and (36) in (30), we get (35).

b) This results from Theorem 4 and formula (12) with (36), when used in (30).
c) By Theorem 5, we obtain formula (15) for z and (35) follows from (36).

The applicability of Theorems 7 and 8 in the case of the “test function” T = q or
T = f will be shown in next two examples.

Example 3. Take I = [0, 1) and consider the inequality

ψ(x4) ≤
( 1
1 + x

+ 2x2
)
ψ(x2)− 2x

1 + x
ψ(x), x ∈ I. (37)

This inequality is of the form (1), with f(x) = x2, p(x) = (1 + x)−1, q(x) = 2x; all
for x ∈ I. These functions fulfil hypotheses (H1) − (H3). The function η : I → R,
given by η(x) = ln (1 + x2), x ∈ I, satisfies (8), so that η ∈ Df , and it produces the
solution z : I → R;

z(x) =
ln (1 + x2)

1− x
, x ∈ I, (38)

of inequality (24) (cf. (2)), related to (37). For T (x) = q(x) = 2x, the limits (28) are:

qT (0) = lim
x→0+

[q(x)]2

q[f(x)]
= 2; zT (0) = lim

x→0+

z(x)
q[f(x)]

= lim
x→0+

1
2

ln(1 + x2)
x2

=
1
2
,

so that condition (29) is fulfilled. Consequently, Theorem 7 works, and in the class
Fq inequality (37) has the solution ψ : I → R given by formula (32), in which
fn(x) = x2n

,

Qn+1(x) =
n∏

i=0

(2x2i

) = 2n+1x2n+1−1

and z is given by (38). Thus (35) now takes the form

ψ(x) = −
∞∑

n=0

2−n−1x1−2n+1 ln(1 + x2n+1
)

1− x2n , ψ(0) = 0.
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Example 4. Take I = [0, 1) and consider the inequality

ψ
(1

4
x
)
≤

(
1
2

+ cos
(1

4
x
))

ψ
(1

2
x
)
− 1

2
cos

(1
2
x
)
ψ(x), x ∈ I. (39)

The given functions f(x) = 1
2x, p(x) = 1

2 , q(x) = cos (1
2x), and T (x) = f(x) =

1
2x, x ∈ I, satisfy hypotheses (H1) − (H4). We note that the function z : I → R
given by z(x) = ex − 1, x ∈ I, is a regular solution of inequality (25) (related to (39),
cf. (2)) and αz(x) = x, x ∈ I∗. Moreover, z ∈ Ff (see Example 2). In turn, since
Pn(x) = 2−n, case (B) occurs. Finally, we have f i(x) = 2−ix, whence

Qn+1(x) =
n∏

i=0

cos (2−ix) =
sinx cosx

2n sin (2−nx)
.

(see (31)). We calculate the limits (see (28) and (33)):

t = lim
x→0+

f(x)
f2(x)

= 2; zT (0) = lim
x→0+

z(x)
f2(x)

= 4 lim
x→0+

ex − 1
x

= 4.

Since q(0) = 1, (34) holds. By Theorem 8 formula (35) represents all solutions ψ ∈ Ff

of inequality (39). With S = αz = id|I (which satisfies equation (25) and vanishes at
zero only), formula (35) now takes the form

ψ(x) = − x

sinx cosx

∞∑
n=0

η(2−nx) sin (2−nx), x ∈ I∗, ψ(0) = 0,

where η ∈ Df , η(0) = 1, is arbitrary. We may take η(x) = (ex− 1)/x, x ∈ I∗, η(0) = 1
(cf. Example 2), to get a particular solution ψ ∈ Ff of inequality (1).
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