Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper is devoted to Professor Andrzej Lasota's contribution to the ergodic theory of stochastic operators. We have selected some of his important papers and shown their influence on the evolution of this topic. We emphasize the role A. Lasota played in promoting abstract mathematical theories by showing their applications. The article is focused exclusively on ergodic properties of discrete stochastic semigroups {Pn : n ≥ 0}. Nevertheless, almost all of Lasota's results presented here have their one-parameter continuous semigroup analogs.
Czasopismo
Rocznik
Tom
Strony
395--413
Opis fizyczny
Bibliogr. 109 poz.
Twórcy
autor
- Gdansk University of Technology, Department of Mathematics, ul. Narutowicza 11/12, 80 952 Gdańsk, Poland, bartowk@mifgate.mif.pg.gda.pl
Bibliografia
- [1] R. Alicki, M. Fannes, Quantum Dynamical Systems, Oxford University Press, 2001.
- [2] S. Alpay, A. Binhadjah, E.Yu. Emel’yanov, Z. Ercan, Mean ergodicity of positive operators in KB-spaces, J. Math. Anal. Appl. 323 (2006), 371–378.
- [3] O. Arino, M. Kimmel, Asymptotic analysis of a cell cycle model based on unequal division, SIAM J. Appl. Math. 47 (1987) 1, 128–145.
- [4] W. Arveson, Noncommutative Dynamics and E-Semigroups, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.
- [5] Sh.A. Ayupov, T.A. Sarymsakov, Markov operators on quantum probability spaces, Probability theory and applications, Proc. World Congr. Bernoulli Soc.,Tashkent/USSR, 1986 (1987) 1, 445–454.
- [6] W. Bahsoun, P. Góra, S. Mayoral, M. Morales, Random dynamics and finance: Constructing implied binomial trees from a predetermined stationary density, App.Stochastic Models Bus. Ind., (in press).
- [7] K. Baron, A. Lasota, Asymptotic properties of Markov operators defined by Volterra type integrals, Ann. Polon. Math. 58 (1993) 2, 161–175.
- [8] W. Bartoszek, Norm residuality of ergodic operators, Bull. Polish Acad. Sci. Math. 29 (1981), 165–167.
- [9] W. Bartoszek, Asymptotic periodicity of the iterates of positive contractions on Banach lattices, Studia Math. 91 (1988), 179–188.
- [10] W. Bartoszek, Asymptotic properties of the iterates of stochastic operators on (AL) Banach lattices, Ann. Polon. Math. 52 (1990), 165–173.
- [11] W. Bartoszek, Riesz Decomposition Property implies asymptotic periodicity of positive and constrictive operators, Proc. Amer. Math. Soc. 116 (1992) 1, 101–111.
- [12] W. Bartoszek, On uniformly smoothing stochastic operators, Comment. Math. Univ. Carolinae 36 (1995) 1, 203–206.
- [13] W. Bartoszek, Convergence of iterates of Lasota-Mackey-Tyrcha operators, Ann. Polon. Math. 63 (1996) 3, 281–292.
- [14] W. Bartoszek, One-parameter positive contraction semigroups are convergent, Univ. Iagel. Acta Math. 33 (1996), 49–57.
- [15] W. Bartoszek, Weak* convergence of iterates of Lasota-Mackey-Tyrcha operators, Coll. Math. 88 (2001) 1, 29–38.
- [16] W. Bartoszek, On iterates of strong Feller operators on ordered phase spaces, Coll. Math. 101 (2004) 1, 121–134.
- [17] W. Bartoszek, T. Brown, On Frobenius-Perron operators which overlap supports, Bull. Polish Acad. Sci. Math. 45 (1997) 1, 17–24.
- [18] W. Bartoszek, B. Kuna, On residualities in the set of Markov operators on C1, Proc. Amer. Math. Soc. 133 (2005) 7, 2119–2129.
- [19] A. Boyarsky, P. Góra, Laws of Chaos, Birkhauser, Boston, 1997.
- [20] A. Boyarsky, Y.S. Lou, A compactness theorem for approximating the invariant densities of higher dimensional transformations, J. Math. Anal. Appl. 173 (1993), 173–190.
- [21] O. Bratelli, D. Robinson, Operator Algebras and Quantum Statistical Mechanics 2,volume I, II of Texts and Monographs in Physics, II edition, Springer-Verlag, New York, 1997.
- [22] J. Buzzi, Exponential decay of correlations for random Lasota-Yorke maps, Commun. Math. Phys. 208 (1999), 25–54.
- [23] G. Chakvetadze, Stochastic stability in a model of drilling, J. Dyn. Cont. Sys. 6 (2000)1, 75–95.
- [24] C. Chiu, Q. Du, T.Y. Li, Error estimates of the Markov finite approximation of the Frobenius-Perron operator, Nonlinear Anal., Theory, Meth., Appl. 19 (1992) 4, 291–308.
- [25] J. Ding, T.Y. Li, Markov finite approximation of Frobenius-Perron operator, Nonlinear Anal., Theory, Meth., Appl. 17 (1991) 8, 759–772.
- [26] E.Yu. Emel’yanov, Some open questions on positive operators in Banach lattices, Vladikavkaz Mat. J. 7 (2005) 4, 17–21.
- [27] E.Yu. Emel’yanov, Positive asymptotically regular operators in L1-spaces and KB-spaces, Proc. Positivity IV – Theory and Applications Dresden, Germany, (2006), 53–61.
- [28] E.Yu. Emel’yanov, M.P.H. Wolff, Positive operators on Banach spaces ordered by strongly normal cones, Positivity and Its Applications, Nijmegen, 2001, Positivity 7 (2003), 3–22.
- [29] E.Yu. Emel’yanov, M.P.H. Wolff, Mean lower bounds for Markov operators, Ann. Polon. Math. 83 (2004) 1, 11–19.
- [30] E.Yu. Emel’yanov, M.P.H. Wolff, Asymptotic behavior of Markov semigroups on preduals of von Neumann algebras, J. Math. Anal. Appl. 314 (2006), 749–763.
- [31] H. Gacki, A. Lasota, Markov operators defined by Volterra type integrals with advanced argument, Ann. Polon. Math. 51 (1990), 155–166.
- [32] F. Hofbauer, G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z. 180 (1982), 119–140.
- [33] K. Horbacz, Dynamical systems with multiplicative perturbations: the strong convergence of measures, Ann. Polon. Math. 58 (1993) 1, 85–93.
- [34] K. Horbacz, Randomly connected dynamical systems asymptotic stability, Ann. Polon. Math. 68 (1998) 1, 31–50.
- [35] T. Inoue, Ergodic theorems for piecewise affine Markov maps with indifferent fixed points, Hiroshima Math. J. 24 (1994), 447–471.
- [36] T. Inoue, H. Ishitani, Asymptotic periodicity of densities and ergodic properties for nonsingular systems, Hiroshima Math. J. 21 (1991) 3, 597–620.
- [37] C.T. Ionescu-Tulcea, G. Marinescu, Theorie ergodique pour des classes d’operations non completement continues, Ann. Math. 52 (1950) 1, 140–147.
- [38] A. Iwanik, Approximation theorem for stochastic operators, Indiana Univ. Math. J. 29 (1980), 415–425.
- [39] A. Iwanik, Baire category of mixing for stochastic operators, Rend. Circ. Mat. Palermo (2) Suppl. 28 (1992), 201–217.
- [40] A. Iwanik, R. Rebowski, Structure of mixing and category of complete mixing for stochastic operators, Ann. Polon. Math. 55 (1992), 233–242.
- [41] M. Jabłoński, On invariant measures for piecewise C2 transformations of the n-dimensional cube, Ann. Polon. Math. 43 (1983), 185–195.
- [42] W. Jarczyk, A. Lasota, Invariant measures for fractals and dynamical systems, Bull. Polish Acad. Sci. Math. 43 (1995) 4, 347–361.
- [43] A.A. Katz, One property of the weak covergence of operators iterations in von Neumann algebras, Vladikavkaz Math. J. 5 (2003), 34–35.
- [44] J. Komornik, Asymptotic periodicity of the iterates of weakly constrictive Markov operators, Tohoku Math. J. 38 (1986), 15–27.
- [45] J. Komornik, Asymptotic decomposition of smoothong positive operators, Acta Univ. Carolinae – Math. Phys. 30 (1989) 2, 77–81.
- [46] J. Komornik, A. Lasota, Asymptotic decomposition of Markov operators, Bull. Polish Acad. Sci. Math. 35 (1987), 321–327.
- [47] J. Komornik, I. Melichercik, The Foguel alternative for integral Markov operators, WSSIAA 4 (1995), 441–452.
- [48] J. Komornik, E.G.F. Thomas, Asymptotic periodicity of Markov operators on signed measures, Math. Bohem. 116 (1991) 2, 174–180.
- [49] T. Komorowski, J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), 221–228.
- [50] Z. Kowalski, Ergodic properties of piecewise monotonic transformations, Societe Mathematique de France, Asterisque 49 (1977), 145–149.
- [51] Z. Kowalski, Piecewise monotonic transformations and their invariant measure, Bull. Polish Acad. Sci. Math. 27 (1979), 63–69.
- [52] Z. Kowalski, Estimation and approximation theorems for invariant measures of piecewise monotonic transformations, Bull. Polish Acad. Sci. Math. 29 (1981), 115–119.
- [53] A. Lasota Invariant principle for discrete time dynamical systems, Univ. Iagel. Acta Math. 31 (1994), 111–127.
- [54] A. Lasota, T.Y.Li, J.A. Yorke, Asymptotic periodicity of the iterates of Markov operators, Trans. Amer. Math. Soc. 286 (1984) 2, 751–764.
- [55] A. Lasota, M.C. Mackey, Globally asymptotic properties of proliferating cell populations, J. Math. Biol. 19 (1984), 43–62.
- [56] A. Lasota, M.C. Mackey, Chaos, Fractal and Noise, Stochastic Aspects of Dynamics, Second Edition, Springer-Verlag, New York, 1994.
- [57] A. Lasota, M.C. Mackey, Cell division and the stability of cellular populations, J. Math. Biol. 38 (1999), 241–261.
- [58] A. Lasota, M.C. Mackey, J. Tyrcha, The statistical dynamics of recurrent biological events, J. Math. Biol. 30 (1992), 775–800.
- [59] A. Lasota, J. Myjak, Generic properties of stochastic semigroups, Bull. Polish Acad. Sci. Math. 40 (1992), 283–292.
- [60] A. Lasota, J. Myjak, Fractals, semifractals and Markov operators, Internat. J. Bifur. Chaos 9 (1999) 2, 307–325.
- [61] A. Lasota, J. Myjak, T. Szarek, Markov operators with a unique invariant measure, J. Math. Anal. Appl. 276 (2002), 343–356.
- [62] A. Lasota, P. Rusek, Applications of ergodic theory to the determining of cogged bits efficiency, Archiwum Górnictwa 19 (1974) 3, 281–295.
- [63] A. Lasota, T. Szarek, Lower bound technique in the theory of a stochastic differential equation, J. Diff. Eq. 231 (2006), 513–533.
- [64] A. Lasota, J. Traple, Properties of stationary solutions of a generalized Tjon-Wu equation, J. Math. Anal. Appl. 335 (2007), 669–682.
- [65] A. Lasota, J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481–488.
- [66] A. Lasota, J.A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982) 1, 375–384.
- [67] A. Lasota, J.A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Computational Dynamics 2 (1994) 1, 41–77.
- [68] T.Y. Li, Finite approximation for the Frobenius-Perron operator. A solution to Ulam’s conjecture, J. Approximation Theory 17 (1976), 177–186.
- [69] T.Y. Li, J.A. Yorke, Ergodic maps on [0, 1] and nonlinear pseudo-random number generators, Nonlinear Anal., Theory, Meth., Appl. 2 (1978) 4, 473–481.
- [70] T.Y. Li, J.A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc. 235 (1978), 183–192.
- [71] M. Lin, Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 19 (1971), 231–242.
- [72] M.C. Mackey, R. Rudnicki, A new criterion for the global stability of simultaneous cell replication and maturation, J. Math. Biol. 38 (1999), 195–219.
- [73] I. Melichercik Asymptotic behaviour of some Markov operators appearing in mathematical models of biology, Math. Slovaca, 48 (1998) 3, 303–314.
- [74] M. Miklavcic, Asymptotic periodicity of the iterates of positivity preserving operators, Trans. Amer. Math. Soc. 307 (1988) 2, 469–479.
- [75] M. Miklavcic, On limit states of a linearized Botzmann equation, SIAM J. Math. Anal. 19 (1988), 150–152.
- [76] W.M. Miller, Stability and approximation of invariant measures for a class of nonexpanding transformations, Nonlinear Anal., Theory, Meth. Appl. 23 (1994) 8, 1013–1025.
- [77] T. Morita, A generalized local limit theorem for Lasota-Yorke transformations, Osaka J. Math. 26 (1989), 579–595.
- [78] T. Morita, Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition, J. Math. Soc. Japan 46 (1994) 2, 309–343.
- [79] F. Mukhamedov, S. Temir, H. Akin, On asymptotic stability for positive L1-contractions of finite Jordan algebras, Sib. Adv. Math. 15 (2005) 3, 28–43.
- [80] F. Mukhamedov, S. Temir, H. Akin, On mixing and completely mixing properties of positive L1-contractions of finite von Neumann algebras, Proc. Amer. Math. Soc. 134 (2005) 3, 843–850.
- [81] F. Mukhamedov, S. Temir, H. Akin, On stability properties of positive contractions of L1-spaces associated with finite von Neumann algebras, Coll. Math. 105 (2006), 259–269.
- [82] J. Myjak, T. Szarek, Some generic properties of concentration dimension of measure, Bollettino U.M.I., (8)6-B(2003), 211–219.
- [83] K. Oczkowicz, Asymptotic stability of Markov operators corresponding to the dynamical systems with multiplicative perturbations, Ann. Math. Silesianae, 7 (1993), 99–108.
- [84] K. Pichór, Asymptotic stability of a partial differential equation with an integral perturbation, Ann. Polon. Math., 68 (1998) 1, 83–96.
- [85] J. Piórek, An example of a genuinely discontinuous generically chaotic transformation of the interval, Ann. Polon. Math. 63 (1996), 167–172.
- [86] M. Podhorodyński, Stability of abstract Markov processes, Periodica Math. Hungarica 28 (1994) 2, 109–121.
- [87] R. Rudnicki, Stability in L1 of some integral operators, Integr. Equat. Oper. Th. 24 (1996), 320–327.
- [88] R. Rudnicki, Generic properties of multiplicative functions and stochastic semigroups, Bull. Polish Acad. Sci. Math. 45 (1997) 1, 7–16.
- [89] R. Rudnicki, Asymptotic stability of Markov operators: a counter-example, ibid. 45 (1997), 1–5.
- [90] M.R. Rychlik, Bounded variation and invariant measures, Studia Math. 76 (1983),69–80.
- [91] T.A. Sarymsakov, N.P. Zimakov, Ergodic principle for the Markov semigroup in ordered normal spaces with basis (in Russian), Dokl. Akad. Nauk SSSR, 289 (1986) 3, 554–558.
- [92] R. Sine, Constricted systems, Rocky Mountain J. Math. 21 (1991), 1373–1383.
- [93] J. Socała, Asymptotic behaviour of the iterates of nonnegative operators on a Banach lattice, Ann. Polon. Math. 68 (1998) 1, 1–16.
- [94] K.V. Storozhuk, Asymptotical behavior of subspaces under action of asymptotically finite-dimensional semigroups of operators, arXiv, (2004), 1–10.
- [95] K.V. Storozhuk, Occasionally attracting compact sets and compact-supercyclicity, arXiv, (2006), 1–5.
- [96] K.V. Storozhuk, An extension of the Vu-Sine theorem and compact-supercyclicity, J. Math. Anal. Appl. 332 (2007), 1365–1370.
- [97] T. Szarek, The stability of Markov operators on Polish space, Stud. Math. 143 (2000) 2, 145–152.
- [98] T. Szarek, On typical Markov operators acting on Borel measures, Abstract and Applied Analysis 5 (2005), 489–497.
- [99] T. Szarek, Feller processes on non-locally compact spaces, Ann. Probab. 34 (2006) 5, 1849–1863.
- [100] J.J. Tyson, K.B. Hannsgen, The distribution of the cell size and generation time in a model of the cell cycle incorporating size control and random transitions, J. Theor. Biol. 113 (1985), 29–62.
- [101] J.J. Tyson, K.B. Hannsgen, Cell growth and division: a deterministic/probabilistic model of the cell cycle, J. Math. Biol. 23 (1986), 231–246.
- [102] J. Tyrcha, Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle, J. Math. Biol. 26 (1988), 465–475.
- [103] S. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Math., vol. 8, Interscience, New York, 1960.
- [104] Vu Quoc Phong, Asymptotic almost periodicity and compactyfying representations of semigroups, Ukrain. Mat. Zh. 38 (1986), 688–696. (in Russian)
- [105] G.F. Webb, A. Grabosch, Asynchronous exponential growth in transition probability models of the cell cycle, SIAM J. Math. Anal. 18 (1987) 4, 897–908.
- [106] K. Yosida, S. Kakutani, Operator-theoretical treatment of Markoff’s process and mean ergodic theorem, Ann. Math. 42 (1941) 1, 188–227.
- [107] R. Zaharopol, A local zero-two law and some applications, Turk J. Math. 24 (2000), 109–120.
- [108] R. Zaharopol, Iterated function systems generated by strict contractions and place-dependent probabilities, Bull. Polish Acad. Sci. Math. 48 (2000) 4, 429–438.
- [109] A. Zalewska-Mitura, A generalization of the lower bound function theorem for Markov operators, Univ. Iagel. Acta Math. 31 (1994), 79–85.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH9-0005-0003