Vladimir Samodivkin

ON EQUALITY IN AN UPPER BOUND FOR THE ACYCLIC DOMINATION NUMBER

Abstract. A subset A of vertices in a graph G is acyclic if the subgraph it induces contains no cycles. The acyclic domination number $\gamma_a(G)$ of a graph G is the minimum cardinality of an acyclic dominating set of G. For any graph G with n vertices and maximum degree $\Delta(G)$, $\gamma_a(G) \leq n - \Delta(G)$. In this paper we characterize the connected graphs and the connected triangle-free graphs which achieve this upper bound.

Keywords: dominating set, acyclic set, independent set, acyclic domination number.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

All graphs considered in this paper are finite, undirected and without loops or multiple edges. For the graph theory terminology not presented here, we follow Haynes, et al. [6]. We denote the vertex set and the edge set of a graph G by $V(G)$ and $E(G)$, respectively. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S, G \rangle$. For a vertex x of G, $N(x, G)$ denote the set of all neighbours of x in G, $N[x, G] = N(x, G) \cup \{x\}$ and the degree of x is $deg(x, G) = |N(x, G)|$. The maximum degree in the graph G is denoted by $\Delta(G)$. For a set of vertices $S \subseteq V(G)$, $N(S, G)$ is the union of $N(x, G)$, when $x \in S$.

A dominating set in a graph G is such a set of vertices D that every vertex of G is either in D or is adjacent to an element of D. The domination number $\gamma(G)$ of a graph G is the minimum cardinality of all dominating sets of G. A set $I \subseteq V(G)$ is said to be independent if every pair of vertices in I is nonadjacent. Let $i(G)$ denote the size of a smallest maximal independent set. The number $i(G)$ is called the *independent* domination number. Note that any maximal independent set is dominating (cf. [1]). A subset of vertices A in a graph G is said to be *acyclic* if $\langle A, G \rangle$ contains no cycles. The acyclic domination number $\gamma_a(G)$ of a graph G is the minimum cardinality of acyclic dominating set in G. The concept of acyclic domination in graphs was introduced by

Hedetniemi et al. [7]. Note that for any graph $G, \gamma(G) \leq \gamma_a(G) \leq i(G)$ (cf. [7]). Further results on acyclic domination in graphs may be found in [2, 3, 8, 9].

A classical result by Berge [1] states that for any graph $G, \gamma(G) \leq |V(G)| - \Delta(G)$. Domke et al. [4] noted that $i(G) \leq |V(G)| - \Delta(G)$ and they were first to consider the problem of characterization of the graphs with $\mu(G) = |V(G)| - \Delta(G), \mu \in \{\gamma, i\}.$ Favaron and Mynhardt [5] continued the study on the problem and gave necessary and sufficient conditions for $\mu(G) = |V(G)| - \Delta(G)$, $\mu \in \{\gamma, i\}$. Since $\gamma_a(G) \leq i(G)$, it follows that $\gamma_a(G) \leq |V(G)| - \Delta(G)$. In this paper, we deal with graphs G satisfying $\gamma_a(G) = |V(G)| - \Delta(G).$

We need the following notation. Let G be a graph, $x \in V(G)$, $deg(x, G) = \Delta(G)$. Let $B = N(x, G), C = V(G) - N[x, G]$ and $R = B - N(C, G)$. For each $c \in C$, let $B_c = N(c, G) \cap B$. Now we define the following three properties, the first two of which were also given in [4] and [5]:

- $A_1(x)$: C is independent.
- $A_2(x)$: Every vertex of B has at most one neighbour in C.
- $\widetilde{A_3(x)}$: For every non-empty subset C' of C, the subset $B' = (\cup_{u \in C'} B_u) \cup R$ of B is not dominated by an acyclic set with exactly one vertex in each B_u , $u \in C'$.

We also need the following results:

Theorem 1 ([4]). For any graph G, $i(G) + \Delta(G) \leq |V(G)|$. If $i(G) + \Delta(G) = |V(G)|$. and x is a vertex of G of degree $\Delta(G)$, then $A_1(x)$ holds.

Theorem 2 ([5]). A connected triangle-free graph G satisfies $\gamma(G) = |V(G)| - \Delta(G)$ if and only if G is bipartite with bipartition $A \cup B$, where $|A| \leq |B|$, $\Delta(G) = |B|$, $deg(u, G) \leq 2$ for each $u \in B$, and if $deg(u, G) = 2$ for all $u \in B$, then $deg(v, G) \geq 2$ for each $v \in A$.

If G is a disconnected graph with $k \geq 2$ components, $\Delta(G) \geq 1$ and $i(G)$ + $\Delta(G) = |V(G)|$, then all but one component of G are K₁-components, because of Theorem 1. This shows that it is sufficient to consider the connected graphs G with $\gamma_a(G) + \Delta(G) = |V(G)|.$

2. GRAPHS WHICH SATISFY $\gamma_a(G) + \Delta(G) = |V(G)|$

Theorem 3. Let G be a connected graph, $x \in V(G)$ and $deg(x, G) = \Delta(G)$. Let $A_1(x)$ and $A_2(x)$ hold. Then:

- (i) $|V(G)| \Delta(G) 1 \leq \gamma_a(G);$
- (ii) if $y \in B$ with $N[y, G] \subseteq R \cup \{x\}$ then $\gamma_a(G) = |V(G)| \Delta(G)$;
- (iii) if $R = \emptyset$ and C contains a vertex of degree 1, then $i(G) = \gamma_a(G) = |V(G)|$ $\Delta(G) - 1.$

Proof. (i) By $A_1(x)$ and $A_2(x)$, every acyclic dominating set of G, if it is to dominate C, then it has to have at least one vertex in each of the |C| disjoint sets $\{u\} \cup B_u$, $u \in C$. Hence $\gamma_a(G) \geq |C| = |V(G)| - \Delta(G) - 1$.

(ii) No vertex $y \in B$ with $N[y, G] \subseteq R \cup \{x\}$ is dominated by any subset of $B - R$ and hence, if such y exists, then $\gamma_a(G) \geq |C| + 1 = |V(G)| - \Delta(G)$.

(iii) Let $R = \emptyset$, $u \in C$ and $N(u, G) = \{v\}$. By $A_1(x), C - \{u\}$ is independent and by $A_2(x)$, $M = \{v\} \cup (C - \{u\})$ is independent, too. Since $R = \emptyset$, M is a dominating set of G. Hence M is an independent dominating set of G, of cardinality $|M| = |C|$ \Box $|V(G)| - \Delta(G) - 1$. Since $\gamma_a(G) \leq i(G) \leq |M|$, the result follows by (i).

We now characterize the graphs G for which $\gamma_a(G) = |V(G)| - \Delta(G)$.

Theorem 4. Let G be a connected graph.

- (i) If $\gamma_a(G) = |V(G)| \Delta(G)$, then $A_1(x), A_2(x)$ and $A_3(x)$ hold for every vertex x of degree $\Delta(G)$;
- (ii) If $A_1(x)$, $A_2(x)$ and $A_3(x)$ hold for some vertex x of degree $\Delta(G)$, then $\gamma_a(G)$ = $|V(G)| - \Delta(G).$

Proof. (i) Let $x \in V(G)$, $deg(x, G) = \Delta(G)$ and $\gamma_a(G) = |V(G)| - \Delta(G)$. By Theorem 1, $A_1(x)$ is satisfied. Let $y \in N(x, G)$ and suppose that y is adjacent to r vertices in C with $r > 1$. Then x and y, together with the $|V(G)| - \Delta(G) - 1 - r$ vertices of C that are not in $N(y, G)$, form an acyclic dominating set of G, say M. Then $\gamma_a(G) \leq |M| = (|V(G)| - \Delta(G) - 1 - r) + 2 < |V(G)| - \Delta(G)$, a contradiction. Hence $A_2(x)$ is satisfied, too.

Note that if $u \in C$, then B_u is non-empty, since G is connected. Moreover, the sets B_u form a partition of $N(C, G) = B - R$ by $A_2(x)$. Suppose $A_3(x)$ does not hold and C' is a non-empty subset of C such that there exists an acyclic dominating set D of $(\cup_{u \in C'} B_u) \cup R$, with exactly one vertex in each B_u , $u \in C'$. Then $M = D \cup (C - C')$ is a dominating set of G, of cardinality $|M| = |C| = |V(G)| - \Delta(G) - 1 = \gamma_a(G) - 1$. Since $C - C'$ is independent, D is acyclic and $N(D, G) \cap (C - C') = \emptyset$, it follows that M is an acyclic dominating set of cardinality $\gamma_a(G)-1$, a contradiction. Hence $A_3(x)$ holds.

(ii) Let $x \in V(G)$, $deg(x, G) = \Delta(G)$ and $A_1(x)$, $A_2(x)$ and $A_3(x)$ hold. Let D be any acyclic dominating set of G with $|D| = \gamma_a(G)$; let $C'' = D \cap C$ and $C' = C - C''$. In order to dominate C, D has to have at least one vertex in each of the |C| disjoint sets $\{u\} \cup B_u$, $u \in C$ (by $A_1(x)$ and $A_2(x)$). Hence the set $D \cap B$ contains at least $|C'|$ vertices, one vertex in each B_u with $u \in C'$. If $|D \cap B| > |C'|$, then $\gamma_a(G) = |D| > |C^{'}| + |C^{''}| = |C| = |V(G)| - \tilde{\Delta}(G) - 1.$ So, let $|D \cap B| = |C^{'}|$. By $A_3(x)$, $D \cap B$ does not dominate $B' = B - \bigcup_{u \in C''} B_u$ and thus, to dominate B' , $x \in D$. It follows that $|C^{'}|+|C^{''}| < |D|$, i.e., $|V(G)|-\Delta(G) \leq |D| = \gamma_a(G) \leq |V(G)|-\Delta(G)$.

Theorem 5. Let G be a connected triangle-free graph. Then $\gamma_a(G) = |V(G)| - \Delta(G)$ if and only if $\gamma(G) = |V(G)| - \Delta(G)$.

Proof. Necessity: If $\gamma_a(G) = 1$, then the result is obvious. So, let $2 \leq \gamma_a(G)$ $|V(G)| - \Delta(G)$ and let $x \in V(G)$ be of maximum degree. By $A_1(x)$, C is independent and since G is triangle-free, $B = N(x, G)$ is also independent. Hence G is bipartite with bipartition $A \cup B$, where $A = \{x\} \cup C$ and $B = N(x, G)$. Since A is an independent dominating set of cardinality $|A| = |V(G)| - \Delta(G) = \gamma_a(G)$, then $|A| \leq |B|$. Moreover, $|B| = \Delta(G)$, by the choice of x. By $A_2(x)$, $deg(u, G) \leq 2$ for each $u \in B$. Suppose $deg(u, G) = 2$ for each $u \in B$. Then $deg(x, G) \geq 2$, $R = \emptyset$ and if some vertex u of $A - \{x\} = C$ has degree 1, then $\gamma_a(G) < |V(G)| - \Delta(G)$ because of Theorem 3 (iii), a contradiction. Now, by Theorem 2, $\gamma(G) = |V(G)| - \Delta(G)$. Sufficiency: Obvious. \Box

REFERENCES

- [1] C. Berge, *Theory of graphs and its application*, Methuen, London, 1962.
- [2] Y. Chen, Y. Zhang, K. Zhang, Is $\gamma_a(G) \leq \delta$ for graphs which have diameter two?, Journal of Systems Science and Complexity 16 (2003) 2, 195–198.
- [3] T.C.E. Cheng, Y. Chen, C.T. Ng, A note on acyclic domination number in graphs of diameter two, Discrete Mathematics 154 (2006), 1019-1022.
- [4] G.S. Domke, J.E. Dunbar, L.R. Markus, *Gallai-type theorems and domination parame*ters, Discrete Mathematics 167/168 (1997), 237–248.
- [5] O. Favaron, C.M. Mynhardt, On equality in an upper bound for domination parameters of graphs, J. Graph Theory 24 (1997) 3, 221–231.
- [6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in graphs, Marcel Dekker, Inc., New York, NY, 1998.
- [7] S. Hedetniemi, S.T. Hedetniemi, D. Rall, Acyclic domination, Discrete Mathematics 222 (2000), 151–165.
- [8] V.D. Samodivkin, *Minimal acyclic dominating sets and cut-vertices*, Mathematica Bohemica 120 (2005) 81–88.
- [9] V.D. Samodivkin, Changing and unchanging acyclic domination: edge addition, Australasian Journal of Combinatorics 38 (2007), 309–316.

Vladimir Samodivkin vlsam fte@uacg.bg

University of Architecture Civil Engineering and Geodesy Department of Mathematics Hristo Smirnenski 1 Blv., 1046 Sofia, Bulgaria

Received: June 11, 2007. Accepted: January 15, 2008.