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GENERALIZED CHARACTERISTIC SINGULAR
INTEGRAL EQUATION WITH HILBERT KERNEL

Abstract. In this paper an explicit solution of a generalized singular integral equation with
a Hilbert kernel depending on indices of characteristic operators is presented.
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1. INTRODUCTION

In the theory of singular integral equations [1,5-7], solutions of the following equations
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are very well known, whenever the functions a(s), b(s) and the unknown
function ¢ (s) are 2m-periodic real Holder continuous and satisfy the condition
a?(s) +b*(s) > 0.

We will find explicit formulae for the solution of the following equation
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which we will call a generalized characteristic equation. In this equation coefficients
ag (s), a1 (s), az (s), b1 (s), ba (s), f (s) are 2m-periodic real Holder continuous func-
tions. We look for a solution ¢ (s) of (3) in the same class of functions in which the
coefficients are. We assume that the coeflicients satisfy the following conditions

ap (s) = a1 (s)az (s) — b1 (s)ba(s), (4)

a2 (s)+b2(s) >0, a(s)+b3(s)>0. (5)

2. SOLUTION OF THE EQUATION

One can check (cf. [4]) that equation (3) can be transformed into the following system
of two characteristic equations:
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By the general theory of systems of singular integral equations [3,6,10], particularly
with a Hilbert kernel [8,9], the index & of system (9) equals the index of the linear
conjugate problem of the form

Ot (1) =G () (s)+i(A(s) —iB(s)) " F(s), (10)



Generalized characteristic singular integral equation with Hilbert kernel 289

where »
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G(s)=(A(s) —iB(s) "' (A(s) +iB(s)) =
a1 (s)+ibi(s)
_ ( ai(s)—ibi(s)v’ 0 ) >
2ib1 (s) az(s)+iba(s) ’
(a1(s)—ib1(s))(az(s)—ib2(s))’  az(s)—iba(s)
i.e.,
k =Inddet G (s) = 2k + 2kKa,
where

k1 =1Ind (a1 (s) +ib1 (8)), ke =1Ind (a2 (s)+ib2(s)),

K1, ke are indices [3,6] of characteristic equations (6) and (7). Moreover, the compo-
nent indices [10] of system (9) equal the component indices of problem (10). Some
complicated transformations are required to find the indices [2]. In our case it makes
no sense, since we can solve (3) in a simple way. We find 1 (s) from (7), and then we
find the unknown solution ¢ (s) of (3) from (6).

First, let us consider the case of positive indices of characteristic equations (6)
and (7), i.e., kK1 > 0, k3 > 0. Using the formula given in [7], a solution of (7) takes
the form

ay (s) Fs)+ b1 (s) Zy (s) f (o) o—s

§) = 55— cot do+
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where v, = oz,(cl) + iﬁ,(cl), k=0,...,k1, are arbitrary complex constants, and

afjj cosay + ﬁﬁ}j sinay = 0. (12)

Next, from equation (6) we get

2m
a9 (S) ZQ (S) 1 / bg (O’) g —S
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where g, = oz,(f) + iﬁ,iz), k=0,1,..., Ko, are arbitrary complex constants, and

a,(fz) cos ag + ﬁg) sin g = 0. (14)
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In formulae (11) and (13), there is ap = 5 Ozﬂ arg(

ak (o
arg(ay (s) + ibg (s)) < 27, Z (s) = (ar (s) —ibg (s)) X ( ) (k
is a canonical function of the linear conjugation problem

X = %X; (t),t = e, s € [0,2n], satisfying symmetry condi-

tions X;7(2) = X, (2), 2] < 1, X, (2) = X (%), ]2] > 1. Since condition

(8) has hold, then substituting the right side of (13) into (8) we obtain relation

a,(i) sin ap — ﬂm) cos g = 0, and taking into account (14) we get a( ) = Sf?) =0.
Substituting the right side of (11) into (13), we arrive at

) bi (0))do, 0 <
= ) where X}, (z)
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Hence the following theorem holds.

Theorem 1. Let the functions appearing in equation (3), i.e., ag(s), a1 (s), as (s),
b1 (s), ba (s), f(s), be 2m-periodic real Hélder continuous functions, and let conditions
(4) and (5) be satisfied. If k1 > 0, Ko > 0, then the 2m-periodic real Holder continuous
solution ¢ (s) of equation (3), satisfying condition (8) is given by formula (15), the
right side of which includes 2k1 + 2k2 — 1 arbitrary real constants.
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Let us now consider the case ko < 0 < k1. Then equation (6) to be solvable, the
following conditions must be satisfied [6, 7]

2
b (0) _ _
/Z2 D0 (@) coskodr =0, k= 0.1....[w] =1 (16)
0
2m b ( )
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/ Z (J)w (o)sinkodo =0, k yee ey | K2 , (17)
0
2 b
/ 2(9) () sim (|#] o — ) dor = 0, (18)
Z3(0)
and go = ... = ¢u, = 0. Substituting (11) into (16), (17), (18) and into the condition

of solvablhty (8), we get the following system of equations
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M= ZS e PO anew

System of equations (19) includes 2x; unknowns, as the unknowns a( ) and B,(Qll) are
connected trough condition (12). In this case the right side of (15) 1nc1udes 261 — 1
arbitrary real constants, where r is the rank of the matrix of system (19). Since
system (19) is a system of 2 |k2|+ 1 equations with 2x; unknowns, then it is necessary
and sufficient to assume that |k2| < 1. Hence we get the following

Theorem 2. Let the conditions of Theorem 1 be satisfied and let ko < 0 < K,
|k2| < k1. Then the solution of equation (3) in the considered class of functions is
given by formula (15), the right side of which includes 2k, —1r arbitrary real constants,
where T is the rank of the matriz of system (19).

The case of |ka| > k1 needs additional considerations.
If k1 < 0, kg < 0, then the following equations need to be added to conditions
(16)—(18):

2
1 [ flo)
— kodo =0, k=0,1,... -1 20
27‘(/21(0')008 odo =0, 1k — 1 (20)
0
L[ Sl
o
— sinkodo =0, k=1,2,... -1 21
27’(’/Z1 (U) Sl Koao ) P a|’€1| ) ( )
0
1 2
271_/;1((00)) sin (|x|o —aq)do =0 (22)
0
and it is necessary to assume yp = ... =", =¢o = ... = (s, = 0. System (19) takes
the form
R(cosko)=0, k=0,...|ke|—1,
R(sinko) = k= ..‘lﬁg‘—l, (23)
(sm(\ﬁg\o—ag ):

)
R (cos (|ke|o — a2)) =
In this case we get the following

Theorem 3. Let the conditions of Theorem 1 be satisfied and let k1 < 0, ko < 0. Then
for solvability of equation (3) it is necessary that the function f (s) satisfies 2 k1| +
2|ka| + 1 conditions (20)—(23). A solution of equation (3) in the considered class of
functions is given by formula (15), withyg=... =V, =@ = ... = @ry—1 = 0.

Let us now consider the case of k1 = 0 < ko. If cosay # 0, then

2m

04(()1) _ tanay / f (o) do. (24)
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(cf. [7]), but if cos a3 = 0, then the following condition needs to be satisfied

27
/(o)
do = 0. 25
|55 (25)
0
In this case the solution of (3) is given by (15), with v; = ... = 7., = 0, and condition

(14) must hold.

Now we consider the case of ko < 0 = k1. Here we repeat the previous consid-
erations to find ~p. Moreover, conditions (19) must hold with agl) = ﬁj(l) = 0, for
7>0.

Let us consider the case of k1 = k3 = 0. We find the real part of the constant ~yq

as in the previous case; moreover in solution (15) we assume ;3 = ... = 7v,, = qo =
g1 =...=(x,—1 = 0. From the condition of solvability (8) we get
200 (0)
2 (O g
————=do =0, 26
0/ o (26)

where 9 (s) is given by formula (11).

In the case of kg = 0 < Ky, it is necessary to assume that condition (26) is satisfied.
We also assume gg = q1 = ... = gx,—1 = 0 and (12).

The last case we consider is that of k1 < 0 = k. It is necessary to require that
conditions (20)—(22) are satisfied, and it is enough to repeat the considerations for
the previous two cases, when kg = 0.

Example. Let us consider the equation

2
2 _
cossp(s) + Co;ﬂ_ i /sinogo (o) cot 7 5 do —
. (27)
9 _
— Sl; 5 /cosago(a)cot 7 sda:coss, s € [0,2n].
7r
0
In this case,
r1 = Ind (cos2s +isin2s) =2, ko =Ind (coss —isins) = —1.

The system of algebraic equations corresponding to system (19) has the form

- - =0,
1.4
—50" =0, (28)
1
770‘(()1) =0,
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and its rank r is equal to 3. By Theorem 2, a solution of the equation (27) is given
by the followng formula

1 1 1
¢ (o) = cos scos3s — icos4s+ 500525+C’ <2cosssinssin25+ 2c0s4scos?s> ,

where C' is an arbitrary real constant.
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