Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove that all assumptions of a Theorem of Forti and Schwaiger (cf. [4]) on the coherence of stability of the equation of homomorphism with the completeness of the space of values of all these homomorphisms, are essential. We give some generalizations of this theorem and certain examples of applications.
Czasopismo
Rocznik
Tom
Strony
83--92
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Pedagogical University of Cracow, Institute of Mathematics, Podchorążych 2, 30-084 Cracow, Poland, zmoszner@ap.krakow.pl
Bibliografia
- [1] J.A. Baker, J. Lawrence, F. Zorzitto, The stability of the equation f(x + y) = f(x)f(y), Proc. Amer. Math. Soc. 74 (1979), 242–246.
- [2] G.L. Forti, The stability of homomorphisms and amenability,with applications to functional equations, Abh. Math. Sem. Univ. Hamburg 57 (1987), 215–226.
- [3] G.L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 143–190.
- [4] G.L. Forti, J. Schwaiger, Stability of homomorphisms and completeness, C. R. Math. Rep. Acad. Sci. Canada 11 (1989), 215–220.
- [5] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222–224.
- [6] D.H. Hyers, T.M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125–153.
- [7] Z. Moszner, Sur la stabilite de l’equation d’homomorphisme, Aequationes Math. 29 (1985), 290–306.
- [8] Z. Moszner, On the stability of functional equations, Aequationes Math. (to appear).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH9-0002-0007