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Abstract. We prove that all assumptions of a Theorem of Forti and Schwaiger (cf. [4]) on
the coherence of stability of the equation of homomorphism with the completeness of the
space of values of all these homomorphisms, are essential. We give some generalizations of
this theorem and certain examples of applications.
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1. INTRODUCTION

Let g : G → V be a homomorphism of a group (G, +) into a vector space (V,+), i.e.,

g(x + y) = g(x) + g(y), x, y ∈ G. (1)

It is well known that completeness is of great importance in the theory of stability of
functional equations, in particular for the stability of equation (1) (cf. Hyers’s result
in [5]). Completeness of the space of values of a homomorphism is to some extent
necessary for the stability of equation of the homomorphism. In paper [4], G.L. Forti
and J. Schwaiger have proved an important result to this effect, using the following
notion of stability:

Definition 1.1. Equation (1) is said to be stable (in this paper: b-stable) if for every
function f : G → V satisfying the inequality

|f(x + y)− f(x)− f(y)| ≤ δ, x, y ∈ G (2)

with some real number δ > 0, there exist a real number ε > 0 and a solution g of
equation (1) such that

|f(x)− g(x)| ≤ ε, x ∈ G. (3)
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Theorem 1.2 ([4]). Assume that

1) (G, +) is an Abelian group,
2) there exists an element of infinite order in G,
3) V is a normed space,
4) equation (1) is stable.

Then the space V is complete.

The main aim of this note is to prove that all assumptions 1)–4) are essential for
Theorem 1.2 to hold true. We shall also deal with other notions of stability of equation
(1) and we give some generalizations of Theorem 1.2 as well as its applications.

2. DEFINITIONS OF STABILITY

Definition 2.1. Equation (1) is said to be Ulam-Hyers stable if for every ε > 0 there
exists a δ > 0 such that for every function f : G → V satisfying (2) there exists a
solution g of (1) such that condition (3) is fulfilled.

Definition 2.2. Equation (1) is called uniformly b-stable if for every δ > 0 there
exists an ε > 0 such that for every function f : G → V satisfying (2) there exists a
solution g of (1) such that condition (3) is fulfilled.

In all that follows expressions “stability” or “equation is stable in any sense” mean:
in the sense of one of Definitions 1.1, 2.1, or 2.2.

We shall also consider two notions of superstability.

Definition 2.3. Equation (1) is called superstable if every function f : G → V
satisfying condition (2) for any δ > 0 is bounded or it is a solution of (1).

Definition 2.4. Let L and R by any mappings of some function space into another
one. The functional equation L(g) = R(g) is said to be uniformly superstable if for
every δ > 0 there exists an ε > 0 such that for every f : G → V if |L(f)−R(f)| ≤ δ,
then |f(x)| ≤ ε for x ∈ G or L(f) = R(f).

Remark 2.5. Uniform superstability implies superstability, but not vice-versa. In-
deed, it suffices to consider the following equation

1
g(x)

= 0 for g : G = {0} → V = R.

Since every function from G into V is bounded, this equation is superstable. However,
it is not uniformly superstable (setting fn(0) = n ∈ N we plainly have | 1

fn(0) | ≤ 1,
but neither is fn a solution of our equation, nor does there exist an ε > 0 for which
|fn(0)| = |n| ≤ ε, n ∈ N).

Since the equation in consideration has no solutions at all, it is also neither
Ulam-Hyers stable nor b-stable (in the sense of Definitions 1.1 and 2.1 adapted to
this equation).
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Remark 2.6. Let G and V satisfy the assumptions of Theorem 1.2. Then Definitions
1.1, 2.1 and 2.2 are equivalent (cf. [8]). Generally they are not equivalent if V is a
metric space ([7], see also Section 4 below). The superstability implies the b-stability
for a normed space V but not conversely (the equation (1) for g : (R,+) → (R,+) is
b-stable and it is not superstable). Hence Theorem 1.2 is also true if “stable” in 4) is
meant in the sense of Definitions 2.1 and 2.2.

Remark 2.7. If the equation of homomorphism (1) is superstable, then it is also
uniformly superstable. Indeed, to see this, assume that the function f : G → V
satisfies (2). Then f either is bounded or is a homomorphism, which is also bounded;
otherwise the function f + a, where a ∈ V and |a| = δ, satisfies (2), it is unbounded
and is not the solution of (1). Thus, f satisfying (2) is always bounded. Since
|f(2x) − 2f(x)| ≤ δ for x ∈ G, then |f(x)| ≤ δ for x ∈ G by Lemma 7.2 below. The
equation (1) is also uniformly superstable (ε = δ).

3. COMMUTATIVITY OF THE GROUP G

J. Lawrence has proved that any torsion-free group (also a non-commutative one) can
be embedded in a group for which the equation (1), where V is a normed space, is
b-stable (cf. [3, p. 149]). For this reason, assumption that G is Abelian is essential
for Theorem 1.2 to hold true.

In the noncommutative case, we obtain the following result.

Theorem 3.1. Let (G, +) be a semigroup cancellative by 2 with the following property:
there exists an element x0 ∈ G such that for every n, m ∈ N0, there is 2nx0 6= 2mx0

for n 6= m. Let (V,+) be a semigroup with a metric ρ such that

ρ(2a, 2b) = 2ρ(a, b), a, b ∈ V.

If the equation
g(2x) = 2g(x), x ∈ G, (4)

where g is a function from G into V , is b-stable (in Definition 1.1 replace (1) by (4)
and take ρ(u, v) in place of |u− v|), then V is complete.

Proof. Assume that equation (4) is b-stable. Take a Cauchy sequence {an} in V . Let
{bn} be a subsequence of {an} such that ρ(bn+1, bn) ≤ 2−n for every n ∈ N. We
define the function f : G → V by

f(2nx0) := 2n−1bn for n ∈ N,

f(x) := b1 for x ∈ G \ {2nx0 : n ∈ N}.

First, note that for every n ∈ N there is

ρ
(
f(2n+1x0), 2f(2nx0)

)
= 2nρ(bn+1, bn) ≤ 1

and consequently

ρ
(
f(2x), 2f(x)

)
≤ 1, x ∈ {2nx0 : n ∈ N}. (5)
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Now, if x ∈ G \ {2nx0 : n ∈ N} and x 6= x0, then 2x belongs to this set as well and

ρ
(
f(2x), 2f(x)

)
= ρ(b1, 2b1). (6)

The equality remains valid for x = x0 (see the definition of f). Conditions (5) and
(6) lead to the conclusion that

ρ
(
f(2x), 2f(x)

)
≤ δ := max{1, ρ(b1, 2b1)}, x ∈ G. (7)

Owing to b-stability of equation (4), there exist a solution g of (4) and an ε > 0 such
that ρ(f(x), g(x)) ≤ ε for every x ∈ G. Hence,

ρ
(
f(2nx0), 2ng(x0)

)
= ρ

(
f(2nx0), g(2nx0)

)
≤ ε, n ∈ N,

which in turn yields
ρ
(
bn, 2g(x0)

)
≤ 2−n+1ε, n ∈ N. (8)

From (8) we deduce that the sequence {bn} tends to 2g(x0). Consequently, the se-
quence {an} is convergent and the space V is complete.

Proposition 3.2. If (G, +) is an Abelian semigroup and (V,+) is a semigroup
uniquely divisible by 2 with a metric ρ such that

2ρ(a, b) ≤ ρ(2a, 2b), a, b ∈ V, (9)

then the stability of equation (4) in any sense implies stability of equation (1) in the
same sense.

Proof. Assume that equation (4) is b-stable. Take a function f : G → V such that
ρ(f(x+y), f(x)+f(y))≤δ for every x, y ∈ G. Then, in particular, ρ(f(2x), 2f(x))≤δ.
Hence, there exist a solution g of (4) and an ε > 0 such that ρ(f(x), g(x)) ≤ ε for
every x ∈ G. The latter inequality leads to

2nρ
(
2−nf(2nx), g(x)

)
≤ ρ

(
f(2nx), g(2nx)

)
≤ ε.

As a consequence, there exists a finite limit of the sequence {2−nf(2nx)} and it is
equal to g(x). Since

2nρ
(
2−nf(2nx+2ny), 2−nf(2nx)+2−nf(2ny)

)
≤ ρ

(
f(2nx+2ny), f(2nx)+f(2ny)

)
≤ δ,

we obtain
ρ
(
2−nf(2nx + 2ny), 2−nf(2nx) + 2−nf(2ny)

)
≤ 2−nδ.

This in turn implies that ρ(g(x + y), g(x) + g(y)) = 0 for every x, y ∈ G, the function
g is a solution of (1) and equation (1) is b-stable. In the case of uniform b-stability
or Ulam-Hyers stability the proof is analogous to the one presented above.

We now formulate a generalization of Theorem 1.2, saying when the stability of
equation (1) implies that of equation (4), which is a counterpart of Proposition 3.2.
First, we introduce necessary notation. Namely, if G is a group, then we write G1 for
the commutator subgroup of G. The symbol G/G1 stands for the quotient group of
G by G1.
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Theorem 3.3. Let V be a normed space and let G be a group such that the quotient
group G/G1 contains an element of infinite order, i.e. there exists an element a ∈ G
with the property that for every n ∈ N the element an does not belong to G1. Then
the following conditions hold true:

(i) if the equation of homomorphism from G to V is stable in any sense, then V is
complete;

(ii) the normed space V is complete if and only if the equation of homomorphism from
G/G1 to G is stable in any sense.

Proof. Since every homomorphism g from G to V is identically equal to zero on G1,
thus G1 is included in the kernel of g. Hence, stability of the equation of homomor-
phism from G to V implies stability of equation of homomorphism from G/G1 to V .
From this and Theorem 1.2, we derive part (i) of Theorem 3.3. Part (ii) of Theorem
3.3 is evident.

Remark 3.4. Let us emphasis that stability of the equation of homomorphism from
G to V does not follow from stability of the equation of homomorphism from G/G1

to V . It suffices to consider a free group G generated by two elements and to take a
Banach space V . Since the group G/G1 is Abelian, the equation of homomorphism
from G/G1 to V is stable. However, in view of results contained in [2], the equation
of homomorphism from G to V is not stable.

Remark 3.5. It may happen that a group G has an element of infinite order, but
simultaneously the group G/G1 does not contain such elements. This follows from a
result, due to J. Lawrence, saying that any group can be embedded into a group whose
every element is a commutator. (The result was communicated to G.L. Forti by F.
Zorzitto in his letter of May 31, 1988.)

Remark 3.6. In paper [4], G.L. Forti and J. Schwaiger noted that their result is valid
for every (not necessarily commutative) group having an element α of infinite order
and isomorphic to a certain subgroup of the tensor product G1⊗G2 of two groups G1

and G2, where Zα ⊂ G1 ⊂ R and Zα is the subgroup generated by α. In this case, if
we take an a ∈ Zα \ {0}, then due to G1 = {0}×G1

2, the element {a}×G ∈ G/G1 is
of infinite order.

4. AN ELEMENT OF INFINITE ORDER IN G

It turns out that assumption 2) cannot be dropped without affecting the validity
of Theorem 1.2. To see this, let us consider the equation of homomorphism from
G = {0} into a normed (not necessarily complete) space V . Such equation is stable
in any sense. Indeed, if the function f : G → V satisfies

|f(0 + 0)− f(0)− f(0)| = |f(0)| ≤ δ,

then the inequality |f(0) − g(x)| ≤ δ holds, with the function g identically equal to
zero being a solution of equation (1).
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We now establish a theorem which is a generalization of the final remark appearing
at the end of note [4] (see p. 220 therein). The justification of that remark in [4] is
incomplete, because the reference to [2, Proposition 1] is incorrect. More precisely, a
vector space Y used in [4] is normed, but Y in [2] is assumed to be a Banach space
(it is denoted by B therein).

Theorem 4.1. Let (G, +) be a group which has no element of infinite order. Assume
that (Y,+) is a groupoid uniquely divisible by 2 with the element 0 such that 2 · 0 = 0
and with a metric ρ such that condition (9) holds. Then for every function f : G→Y
the inequality

ρ
(
f(2x), 2f(x)

)
≤ δ, x, y ∈ G,

implies
ρ
(
f(x), 0

)
≤ δ, x ∈ G.

Moreover, the equation of homomorphism from G to Y is stable in any sense.

Proof. By induction, for every n ∈ N and a ∈ Y we obtain 2nρ(2−na, 0) ≤ ρ(a, 0),
and consequently, ρ(2−na, 0) ≤ 2−nρ(a, 0). Hence, ρ(2−na, 0) → 0 (n → +∞), which
means that 2−na → 0 (n → +∞) for every a ∈ Y . The set {2nx : n ∈ N} is
finite for every x ∈ G, thus 2−nf(2nx) → 0 for n → +∞. Moreover, by induction,
ρ(2−nf(2nx), f(x)) ≤ (1 − 2−n)δ. Hence, ρ(f(x), 0) ≤ δ for every x ∈ G. Since the
function g(x) ≡ 0 is a homomorphism from G to Y , the equation of homomorphism
is stable.

5. THE METRIC SPACE V

As Example 5.1 below shows, Theorem 1.2 (with the completeness as the sequential
one) fails to be true if V is assumed to be a topological space only (see the problem
in p. 150 in [6]). More precisely, the pertinent implication does not hold true:

if G is as in Theorem 1.2, V is a metric vector space and equation (1)
is uniformly b-stable or superstable, then V is complete.

(10)

Example 5.1. Let G be an arbitrary Abelian group, containing an element of infinite
order and let V be a metric vector space which is bounded and not complete (for
instance one can take V = (R,+) with ρ(a, b) = | arctan a− arctan b|). Then equation
of homomorphism (1) is uniformly b-stable and superstable (the function f is bounded
for every f : G → V ) and V is not complete.

For (G, +) = (V,+) = (R,+) and ρ(a, b) = | arctan a − arctan b|, where a, b ∈ V ,
equation (1) is not Ulam-Hyers stable. Indeed, assume that it is. For ε = π

4 there
exists a real number δ > 0 such that for every function f : G → V satisfying the
condition

| arctan f(x + y)− arctan
(
f(x) + f(y)

)
| ≤ δ, x, y ∈ G,

there exists a solution g of equation (1) such that

| arctan f(x)− arctan g(x)| ≤ ε, x ∈ G.
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One can assume that δ < 1/2, in order to define a constant function f : G → V by
the formula

f(x) =
1 + (1− 4δ2)

1
2

2δ
=: a, x ∈ G.

Then a > 1 and for a real number θ such that a ≤ θ ≤ 2a we obtain

| arctan f(x + y)− arctan
(
f(x) + f(y)

)
| = arctan 2a− arctan a =

=
a

1 + θ2
≤ a

1 + a2
= δ, x, y ∈ G.

Therefore, there exists a solution g of equation (1) such that

| arctan f(x)− arctan g(x)| ≤ ε, x ∈ G. (11)

Substituting x = 0 into (11), we easily deduce that arctan a ≤ ε = π
4 . It follows that

a ≤ 1, which is a contradiction.

The above argument reveals that Definitions 1.1 and 2.2 are not equivalent (the
uniform b-stability does not imply that in the sense of Ulam-Hyers).

The following question remains open:

Question. Does implication (10) hold true when equation (1) is stable in the
Ulam-Hyers sense?

Remark 5.2. For a function g : R → R+ (where R+ := {x ∈ R : x > 0}) and the
metric ρ(x, y) = |x− y| defined on R+, the equation g(x + y) = g(x)g(y) is uniformly
b-stable and superstable (see [1], the first paper on superstability), while the space R+

is unbounded and non-complete. This equation is not Ulam-Hyers stable (cf. [8]).

6. NECESSITY OF THE ASSUMPTIONS OF THEOREM 1.2

We are in a position to establish the result announced in the Introduction.

Theorem 6.1. Each of assumptions 1)–4) of Theorem 1.2 is essential.

Proof. From the introductory parts of Sections 2–4 it is seen that assumptions 1), 2)
and 3) are essential indeed. Assumption 4) is evidently essential, because there exist
normed spaces which are not complete.

Remark 6.2. If for a normed space V there exists a group G such that all assumptions
of Theorem 1.2 are satisfied, then V is a Banach space. The converse implication is
also true. It suffices to put (G, +) = (V,+) (torsion free) and apply Theorem of Hyers
(cf. [5]).



90 Zenon Moszner

7. APPLICATIONS OF THEOREM 1.2

It is possible to prove the completeness of a normed space V by choosing a group G
such that the assumptions of Theorem 1.2 are fulfilled.

Example 7.1. Let (V, | · |) be a Banach space and let S be an arbitrary nonempty set.
Denote by V S the set of all functions f : S → V such that sups∈S |fs| < ∞ (where
fs = f(s)). The set V S equipped with the standard addition and multiplication by
scalars and with the norm ‖f‖ = sups∈S |fs| is a complete space. This follows from
the fact that the equation of homomorphism from (G, +) = (V,+) to V S is stable in
any sense.

Indeed, if f : G → V S, then

‖f(x + y)− f(x)− f(y)‖ = sup
s∈S

|fs(x + y)− fs(x)− fs(y)| ≤ δ, x, y ∈ G,

implies that
|fs(x + y)− fs(x)− fs(y)| ≤ δ, x, y ∈ G, s ∈ S.

By Theorem of Hyers (cf. [5]), there exists a homomorphism gs : G → V such that

|fs(x)− gs(x)| ≤ δ, x ∈ G, s ∈ S.

Then the function g = {gs} : G → V S is also a homomorphism and we obtain

‖f(x)− g(x)‖ = sup
s∈S

|fs(x)− gs(x)| ≤ δ, x ∈ G.

In particular, S can be equal to N or to {1, . . . ,m} for m ∈ N. The same proof
may be applied to the space of the convergent sequences (or sequences convergent to
zero) and to the space of functions continuous on a compact set S.

Lemma 7.2. Assume that (G, +) is a groupoid. Let (Y,+) be a groupoid equipped
with a metric ρ satisfying condition (9), and with the element 0 such that 2 · 0 = 0. If
there exists a real number δ > 0 such that for every x ∈ G there is ρ(f(2x), 2f(x)) ≤ δ,
then ρ(f(x), 0) ≤ δ for every x ∈ G or the function f is unbounded.

Proof. Assume that ρ(f(x), 0) > δ for some x ∈ G. Then there exists an α > 0 which
satisfies the equality ρ(f(x), 0) = δ+α. The latter, when combined with the fact that

δ ≥ ρ
(
f(2x), 2f(x)

)
≥ ρ

(
2f(x), 0

)
− ρ

(
f(2x), 0

)
,

gives

ρ
(
f(2x), 0

)
+ δ ≥ ρ

(
2f(x), 0

)
= ρ

(
2f(x), 2 · 0

)
≥ 2ρ

(
f(x), 0

)
= 2δ + 2α.

Consequently, ρ(f(2x), 0) ≥ δ + 2α. By induction, we deduce that ρ(f(2nx), 0) ≥
δ + 2nα for every n ∈ N. Thus, the function f is unbounded.
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Example 7.3. Let (V, | · |) be a Banach space. Denote by V N the normed space of
all sequences x := {xn}+∞n=1 such that

∑+∞
n=1 |xn| < +∞ with the standard addition

and multiplication by scalars and with the norm given by ‖x‖ =
∑+∞

n=1 |xn|. Since the
equation of homomorphism from (G, +) = (V,+) to V N is stable in any sense, the
space V N is complete.

To prove the required stability, take f : G → V N such that

‖f(x + y)− f(x)− f(y)‖ =
+∞∑
n=1

|fn(x + y)− fn(x)− fn(y)| ≤ δ, x, y ∈ G,

where f = {fn}+∞n=1 and fn : G → V . Thus

|fn(x + y)− fn(x)− fn(y)| ≤ δ, x, y ∈ G, n ∈ N.

By Theorem of Hyers ([5]), for every n ∈ N there exists a homomorphism gn : G → V
such that |fn(x) − gn(x)| ≤ δ for every x ∈ G. Plainly, the function g = {gn}+∞n=1 :
G → V N is also a homomorphism. Moreover, for an arbitrary m ∈ N there is

m∑
n=1

|fn(x)− gn(x)| ≤ mδ, x ∈ G,

as well as
+∞∑
n=1

|fn(2x)− 2fn(x)| ≤ δ, x ∈ G.

Hence, setting hn := fn − gn for n ∈ N, we deduce that

+∞∑
n=1

|hn(2x)− 2hn(x)| ≤ δ, x ∈ G.

Fix m ∈ N. Let us consider the normed space V m of all sequences x = (x1, . . . , xm),
where xn ∈ V for n = 1, . . . ,m, equipped with the standard addition and multiplication
by scalars and with the norm given by ‖x‖m =

∑m
n=1 |xn|. It turns out that for the

function
H : G 3 x →

(
h1(x), . . . , hm(x)

)
∈ Nm

and for every x ∈ G, the following inequalities hold true:

‖H(2x)− 2H(x)‖m =
m∑

n=1

|hn(2x)− 2hn(x)| ≤ δ, ‖H(x)‖m ≤ mδ.

Therefore, the function H is bounded. In view of Lemma 7.2, there is ‖H(x)‖m ≤ δ.
The latter inequality yields

∑m
n=1 |hn(x)| ≤ δ for every m ∈ N. As a result, we obtain

+∞∑
n=1

|hn(x)| =
+∞∑
n=1

|fn(x)− gn(x)| ≤ δ, x ∈ G.
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This proof implies that the space V m is complete, too.
An analogous proof works for the normed space consisting of all sequences x :=

{xn}+∞n=1 forming a Banach space V with

‖x‖ = |x1|+
+∞∑
n=1

|xn − xn+1| < ∞.
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