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POROUS SETS FOR MUTUALLY NEAREST POINTS
IN BANACH SPACES

Abstract. Let B(X) denote the family of all nonempty closed bounded subsets of a real
Banach space X, endowed with the Hausdorff metric. For E,F € B(X) we set Agr =
inf {||z — 2| : 2 € E,z € F}. Let D denote the closure (under the maximum distance) of
the set of all (E,F) € B(X) x B(X) such that Agr > 0. It is proved that the set of all
(B, F) € © for which the minimization problem mingcg, -cr ||z — 2| fails to be well posed
in a o-porous subset of ©.
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1. INTRODUCTION

Let X be a real Banach space. By B(X) we denote the family of all nonempty closed
bounded subsets of X. For E, F' € B(X) we set

Appi=inf{||z—z||:z € E,z € F}.

We consider the minimization problem, denoted by min(F, F'), of finding a pair

(z0,20) with zg € E, 2y € F such that ||zg — 20]| = Agr. Such a pair is called a
solution of the minimization problem min(E, F'). Moreover, any sequence {(x,,2,)}
with z, € E,z, € F such that lim, . ||, — zn|| = Agr is called a minimizing

sequence for the problem min(FE, F'). A minimization problem is said to be well-posed
if it has a unique solution and every minimizing sequence converges strongly to this
solution.

Recall that the Hausdorff distance on the space B(X) is defined by

h(A,B) = inf ||a — b inf ||la —b A, B e B(X).
(4.) = max {sup inf fla b1, sup inf o =01}, 4.5 € B(X)
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It is well known that 2B(X) endowed with the Hausdorff distance is a complete metric
space.

Define €(X) = {A € B(X) : Ais convex}. For a given set G, let €;(X) stand
for the closure of the set {4 € €(X) : Aag > 0}. It is proved in [3] that if X
is a uniformly convex Banach space, then the set of all A € €(X) such that the
minimization problem min(A, G) is well-posed is a dense Gs-subset of €5 (X). This
result has been extended to the framework of strongly convex and/or strictly convex
Banach spaces in [7-12]. For further related results see [5, 6, 14-16].

Let B(X) x B(X) denote the Cartesian product endowed with the distance

d((A, B), (E, F)) = max{h(A, E), (B, F)} for A, B,E,F ¢ B(X).

Let © denote the closure of the set of all (E, F) € B(X) x B(X) such that Agp > 0.
In this note, we will show that the set of all (E, F') € ® such that the minimization
problem min(E, F)) is well-posed is a dense Gs-subset of ©. In particular, we also
show that the set of all (E, F) € © such that the minimization problem min(E, F')
fails to be well-posed is a o-porous subset of D.

2. AUXILIARY RESULTS

For a subset A of X, A stands for the closure of A, diam A for the diameter of A,
coA for the closed convex hull of A, and d(z, A) for the distance from z to A. We
use S(z,r) to denote the closed ball with center x and radius r in X, in particular, S
stands for S(0,1).

Let E, F € B(X) and ¢ > 0. Define

Lgp(o) ={ze€E:dx F)<Agrp+o} (2.1)

It is clear that Ly p(01) C Lg p(02) if 01 < o2. The following propositions can be
found in [3, 4].

Proposition 2.1. Let E, F € B(X). Then the problem min(E, F) is well-posed if
and only if

;2% diamLg p(c) =0 and ;I;% diamLp g(o) = 0.

Proposition 2.2. Let A, B, E, F € B(X) and z € X. Then:
(i) |d(z, E) — d(z, F)| < h(E, F);

Define the function A on ® by the formula

AEF) = ig%diamLE,F(U), for (E,F)e®.
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Proposition 2.3. A is upper semi-continuous on ®.

Proof. Let (Ep, Fy) € D. Let 0 > 0 and § > 0. We will show that
LE7F(O') QLE01F0(0+45)+5S (22)

holds for all (E, F) € D with d((E, F), (Eo, Fy)) < 6. Indeed let y € Ly p(0). Since
h(E, Ey) < 6, there exists x € Ey such that ||z — y|| < 6. Hence, by Proposition 2.2
and relation (2.1) there is

(z, F) + h(F, Fo) < d(y, F) + [lz — y| + h(F, Fo) <

d(z, Fpy) < d(z,F
dy, F)+25 < Agr+0+25 < Ag,r, + 0+ 40,

<
<

which shows that x € Lg, g, (0 + 46). Hence (2.2) holds. Let ¢ > 0. Choose 7 > 0
such that .
diamLEO}FO (T) < A(lz‘o7 Fo) + 5 (23)

Taking ¢ > 0 and § > 0 such that ¢ +40 < 7 and 6 < /4, by (2.2) and (2.3), we
obtain

A(E,F) <diam Lg (o) < diam Lg, g, (0 4+ 40) + 20 < A(Ey, Fy) + ¢

for all (E,F) € © with d((E,F),(Eo,Fy)) < 6. This shows that A is upper
semi-continuous at (Fy, Fp). O

The following lemma (see [4]) is essential in our proofs.

Lemma 2.1. Lete >0, p >0 and let E € €(X). Let 6o = (p/2) min{1,e}. Then for
each v € X with d(u, E) > p and each 0 < § < dg, there is

diam Cg () < (diam E + 0)e,

where

Cgu(0) = (EU{u})\ (E+ (d(u,E) —9)S).

3. A GENERIC RESULT FOR MUTUALLY NEAREST POINTS

Let @ denote the set of all (E, F') € D such that the minimization problem min(E, F')
is well-posed. By virtue of Proposition 2.1,

Do =)D (3.1)

keN

where 1 1
D), = {(E,F) €D: MEF) <, MEE) < g}-

Theorem 3.1. D is a dense G5 subset of ©.
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Proof. By (3.1), it suffices to verify that each Dy (k € N) is open and dense in D.
The openness of Dy, is a direct consequence of Proposition 2.3. It remains to show
that for every k € N the set ©, is dense in ©. To this end, let (E, F') € ®. Without
loss of generality, we may assume that Agp > 0. Let k € Nand 0 < r < Agp/4. By
Lemma 2.1, there exists 0 < § < r/2 such that, for all u € X with d(u, E) > r/2 and
all v € X with d(v, F') > r/2, there holds

diam Cg ,,(0) < and diam Cp,(0) <

El e
EN

Pick £ € E and ¢ € F such that
12 = 9ll < App +0/2.

Note that ||Z — || > Agr > 4r. Choose such two points u and v in the interval [z, §]
that ||# — ul| = [|[§ — v|| = r and define

E=tw(BU{u}), F=t(FU{v}).

Obviously h(E,E) < r, h(F,F) <r and A = Apr — 2r > 0. Hence (E,F)eD.
To complete the proof it suffices to show that (E, F') € @y for every k € N. Note that

. N . 1)
lu =gl = Iz =g = llu = 2| < Aprp + 5 =7
and 5
A, F) < lu=gll < Agr+5 -
From Proposition 2.2, the last inequality and the choice of §, we conclude
)
d(u, E) > )\Ep—d(u,F)Zr—§ > % (3.2)
On the other hand, since u € Eandv e ﬁ7 then
PN )
Agp = lu—v|| <z —g]| —2r < )\EF+§—2T. (3.3)
We claim that
L§7(8/2) € Cpu(6)- (3.4)

Indeed, let y € Lz5(6/2) = co(E U {u}). By (2.1) and (3.3), there holds
d(y, F) < Aﬁ+g < App+6—2r. (3.5)

Then, by Proposition 2.2, relation (3.5), and the inequality d(u, E) < |lu — Z| = r,
there follows
Ay, E) > Ay —d(y, F) > gz — (Mg +06 —2r) >
>Agr—17—(Agp+d—2r) =r—3§>d(u,E) -4,
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This means that (3.4) holds. From (3.4) and Lemma 2.1 it follows that

A(E, F) < diam Cp_, (6) <

e

Similarly, one can show that

A(F, E) < diam Cp,(6) <

| =

This means that (E7 ﬁ) € ®y,, which completes the proof.

4. A POROSITY RESULT

Definition 4.1. A subset Y in a metric space (X,d) is said to be porous in X if
there are 0 < t < 1 and ro > 0 such that for every x € X and r € (0,r¢] there is a
point y € X such that S(y,tr) C S(x,r)N(X\Y). A subsetY is said to be o-porous

in X if it is a countable union of sets which are porous in X.

Note that an equivalent definition of a porous set can be obtained by replacing

“for every x € X7 with “for every € Y7 (see [1, 3]).

For (E,F) € Dy, let (ug,ur) € E x F denote the unique solution of the mini-

mization problem min(FE, F). Let
Ua,p = (1 —a)up +aup, and E,=¢0(EU{uar}), a€cl0,1].
Furthermore, for r > 0, set
O(F,r)={E € B(X): h(E,F) <r}.
Define

5= U U (0@ rm0/m) x O(Farr. (1/K)),

kEN (E,F)eDy 0<a<1/4
where
Vg, (€) = min {d(ua,g, E),1}e, 7r,(¢) =min {d(uq,r, F),1}e.

Lemma 4.1. D C ®y.
Proof. Let (E,F) € D. By Proposition 2.2, we only need to show that

A(E,F) = lim diamLp,p() =0 and A(F,E)= lim diamLpp(6)=0. (4.1)

By the definition of 5, for each k € N, there exist (E*, FF) € Dy and 0 < o, < 1/4

such that
WE,Ey,) < g (1/k) and A(F,F3) < vex (1/k).

(4.2)
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Without loss of generality, we may assume that Agrpr > 0 and oy > 0 for each k € N.
For convenience, we write

ry = Agepr  and 5k:7E§k(1/k):’yF§k(1/k).

Then, it is easy to see that, for each k € N,

O < agri/k,
/\Eng«'fk = (1 — 2ag)7k, (4.3)
)\EkFgfk = )\FkEgk = (1 — ag)ry, (4.4)
A(Ue, v, EY) = d(ug, pr, F*) = axry. (4.5)
We claim that, for each § > 0,
LEfik’Fc’fk (6/2) C OEkyuakka (0) for ke N. (4.6)

To see this, let k € N, 6 > 0and y € LErlik*FJfk (6/2). Obviously, y € co(E¥U{uq, g }).
By (2.1) and (4.3), there is

1) é
d(y, Fi,) < Mg m + 5 = 1= 2a)r + 5. (4.7)

Consequently, by Proposition 2.2, relation (4.4), (4.7) and (4.5) we obtain
d(y, B*) > Aprpy — d(y, FY) = (1—ap)re — (1 —2ap)re —6/2 =
= Tk — (5/2 = d(’U/ak’Ek,Ek) - 5/2 > d(’uakyEk,Ek) — 0.

Hence y € CEk’uakyEk (0). Since

d((E7F)7(Ek Fk )) < 5ka

AR’ Ak

from (2.2) it follows that
Lp r(dr) C Lk rk (50%) + rS.
By the last inclusion and (4.6) we obtain

A(E,F) S diamLE,F((;k) S diam LE‘l;k’F‘ick (55k) + 25k S
< diam Cge (100g) + 265

k

for each k € N. Recall that

Ok for each &k > 1.

d(uak,EkaEk) =agry and O <
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Then using Lemma 2.1 we conclude that

2
diam Cpr ,,, (108)) < E(diam E* +10a7),

and hence, by (4.8),

A(E, F) < =(diamE* + 10ay7y,) + 26, < %(diamEk + 1lagry). (4.9)

o

Note that
h(E,E*) < ME, E},) < gy (1/k) < 1.

Analogously h(F, F*) < 1. Thus h(E*, F*) < h(E,F) + 2. Tt follows that sequences
{diamE*} and {ry} are bounded. Hence (4.9) implies that A(E,F) = 0. Similarly,
we can verify that A(F,E) = 0. Hence (4.1) holds and the proof of Lemma 4.1 is
complete. O

Theorem 4.1. The set D \ Dg is o-porous in D.
Proof. For k, | € N, define

%=\ U U (O(Ea,yEa(l/k))xO(Fa,vpa(l/k)))

(E,F)€D( 0<a<l/4

and 1
DL = {(E,F) €Dy: 7 <or < l}.

Observe that B B
D\D, CD\D= | J | JD}
keNIEN
It suffices to verify that, 352 is porous in ® for each k,l € N. To this end, let k,l € N
be arbitrary. Define 1 = 1/(2]) and o = 1/(4k). Let (E,F) € ’}52 and 0 < r < 7g.
Then, by Theorem 2.1, there exists (E, F) € Dg such that

h(E,E) < -, h(F,F) <

=3
e~ =3

and
- < )‘E‘F <.

Set 1y /o = (up + ug)/2. Then

h(E1/27E) h(E1/27E) - h(E, E) 2

sup d(y, E) —r/4>
y€E1 /s
> d(tyyp, B) —r/4 =

= (1/2))‘EF_‘ —7“/4 > 37“/4.

2
>
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Similarly, one can prove that
h(F1/2, F) > 3r/4.

From the previous two inequalities it follows that there exist 0 < #1,t2 <1 / 2 such
that h(Ey,, E) = 3r/4 and h(F,, F) = 3r/4, where Ey, = ¢o(E Uwuy, p) and Fy, =
co(F'Uuy, p). Observe that

O(E;,,ar) CO(E,r) and O(F,,ar) C O(F,r). (4.10)
Indeed, for each A € O(Ey,, ar)
h(A,E) < h(A,Ey,) + h(E:,,E) <ar+3r/4 <.

Hence the first inequality of (4.10) is proved. The second one can be proved analo-
gously.
Now we claim that

ar <, (1/k) and ar <vp_(1/k). (4.11)

Indeed, note that
WEy,, E) > h(E,, E) — h(E,E) > r/2.

Therefore,
ar < 2ah(Ey,, E) < h(Ey,, E)/k = d(ut17E,E)/k.

Since obviously ar < 1/k, the first inequality of (4.11) is proved. The second one can
be proved analogously.
From (4.11) it follows that

O(Etuar) 2 O(thar) C O(Etlvfyﬁtl (1/k)) X O(Ftw'YF‘Q (1/k))

This implies that N
(’)(E'tl,ow“) X O(Ft27 ar) CD\ @2

From this last inclusion and relation (4.10) it immediately follows that the set 552 is
porous in D. O
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