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POROUS SETS FOR MUTUALLY NEAREST POINTS
IN BANACH SPACES

Abstract. Let B(X) denote the family of all nonempty closed bounded subsets of a real
Banach space X, endowed with the Hausdorff metric. For E, F ∈ B(X) we set λEF =
inf

˘
‖z − x‖ : x ∈ E, z ∈ F

¯
. Let D denote the closure (under the maximum distance) of

the set of all (E, F ) ∈ B(X) × B(X) such that λEF > 0. It is proved that the set of all
(E, F ) ∈ D for which the minimization problem minx∈E, z∈F ‖x − z‖ fails to be well posed
in a σ-porous subset of D.
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1. INTRODUCTION

Let X be a real Banach space. By B(X) we denote the family of all nonempty closed
bounded subsets of X. For E,F ∈ B(X) we set

λEF := inf
{
‖z − x‖ : x ∈ E, z ∈ F

}
.

We consider the minimization problem, denoted by min(E,F ), of finding a pair
(x0, z0) with x0 ∈ E, z0 ∈ F such that ‖x0 − z0‖ = λEF . Such a pair is called a
solution of the minimization problem min(E,F ). Moreover, any sequence {(xn, zn)}
with xn ∈ E, zn ∈ F such that limn→∞ ‖xn − zn‖ = λEF is called a minimizing
sequence for the problem min(E,F ). A minimization problem is said to be well-posed
if it has a unique solution and every minimizing sequence converges strongly to this
solution.

Recall that the Hausdorff distance on the space B(X) is defined by

h(A,B) = max
{

sup
a∈A

inf
b∈B

‖a− b‖, sup
b∈B

inf
a∈A

‖a− b‖
}

, A, B ∈ B(X).
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It is well known that B(X) endowed with the Hausdorff distance is a complete metric
space.

Define C(X) =
{
A ∈ B(X) : A is convex

}
. For a given set G, let CG(X) stand

for the closure of the set
{
A ∈ C(X) : λAG > 0

}
. It is proved in [3] that if X

is a uniformly convex Banach space, then the set of all A ∈ CG(X) such that the
minimization problem min(A,G) is well-posed is a dense Gδ-subset of CG(X). This
result has been extended to the framework of strongly convex and/or strictly convex
Banach spaces in [7-12]. For further related results see [5, 6, 14-16].

Let B(X)×B(X) denote the Cartesian product endowed with the distance

d((A,B), (E,F )) = max{h(A,E), h(B,F )} for A,B,E, F ∈ B(X).

Let D denote the closure of the set of all (E,F ) ∈ B(X)×B(X) such that λEF > 0.
In this note, we will show that the set of all (E,F ) ∈ D such that the minimization
problem min(E,F ) is well-posed is a dense Gδ-subset of D. In particular, we also
show that the set of all (E,F ) ∈ D such that the minimization problem min(E,F )
fails to be well-posed is a σ-porous subset of D.

2. AUXILIARY RESULTS

For a subset A of X, A stands for the closure of A, diam A for the diameter of A,
coA for the closed convex hull of A, and d(x,A) for the distance from x to A. We
use S(x, r) to denote the closed ball with center x and radius r in X, in particular, S
stands for S(0, 1).

Let E, F ∈ B(X) and σ > 0. Define

LE,F (σ) := {x ∈ E : d(x, F ) ≤ λEF + σ} (2.1)

It is clear that LE,F (σ1) ⊆ LE,F (σ2) if σ1 ≤ σ2. The following propositions can be
found in [3, 4].

Proposition 2.1. Let E, F ∈ B(X). Then the problem min(E,F ) is well-posed if
and only if

inf
σ>0

diamLE,F (σ) = 0 and inf
σ>0

diamLF,E(σ) = 0.

Proposition 2.2. Let A, B, E, F ∈ B(X) and z ∈ X. Then:

(i) |d(z,E)− d(z, F )| ≤ h(E,F );

(ii) λEF ≤ d(z,E) + d(z, F );

(iii) |λAB − λEF | ≤ 2d
(
(A,B), (E,F )

)
.

Define the function Λ on D by the formula

Λ(E,F ) = inf
σ>0

diam LE,F (σ), for (E,F ) ∈ D.
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Proposition 2.3. Λ is upper semi-continuous on D.

Proof. Let (E0, F0) ∈ D. Let σ > 0 and δ > 0. We will show that

LE,F (σ) ⊆ LE0,F0(σ + 4δ) + δS (2.2)

holds for all (E,F ) ∈ D with d
(
(E,F ), (E0, F0)

)
< δ. Indeed let y ∈ LE,F (σ). Since

h(E,E0) < δ, there exists x ∈ E0 such that ‖x − y‖ < δ. Hence, by Proposition 2.2
and relation (2.1) there is

d(x, F0) ≤ d(x, F ) + h(F, F0) ≤ d(y, F ) + ‖x− y‖+ h(F, F0) ≤
≤ d(y, F ) + 2δ ≤ λEF + σ + 2δ ≤ λE0F0 + σ + 4δ,

which shows that x ∈ LE0,F0(σ + 4δ). Hence (2.2) holds. Let ε > 0. Choose τ > 0
such that

diam LE0,F0(τ) < Λ(E0, F0) +
ε

2
. (2.3)

Taking σ > 0 and δ > 0 such that σ + 4δ < τ and δ < ε/4, by (2.2) and (2.3), we
obtain

Λ(E,F ) ≤ diam LE,F (σ) ≤ diam LE0,F0(σ + 4δ) + 2δ < Λ(E0, F0) + ε

for all (E,F ) ∈ D with d
(
(E,F ), (E0, F0)

)
< δ. This shows that Λ is upper

semi-continuous at (E0, F0).

The following lemma (see [4]) is essential in our proofs.

Lemma 2.1. Let ε > 0, ρ > 0 and let E ∈ C(X). Let δ0 = (ρ/2) min{1, ε}. Then for
each u ∈ X with d(u, E) ≥ ρ and each 0 < δ ≤ δ0, there is

diam CE,u(δ) < (diam E + δ)ε,

where
CE,u(δ) = co(E ∪ {u}) \ (E + (d(u, E)− δ)S).

3. A GENERIC RESULT FOR MUTUALLY NEAREST POINTS

Let D0 denote the set of all (E,F ) ∈ D such that the minimization problem min(E,F )
is well-posed. By virtue of Proposition 2.1,

D0 =
⋂
k∈N

Dk, (3.1)

where
Dk :=

{
(E,F ) ∈ D : Λ(E,F ) <

1
k

, Λ(F,E) <
1
k

}
.

Theorem 3.1. D0 is a dense Gδ subset of D.
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Proof. By (3.1), it suffices to verify that each Dk (k ∈ N) is open and dense in D.
The openness of Dk is a direct consequence of Proposition 2.3. It remains to show
that for every k ∈ N the set Dk is dense in D. To this end, let (E,F ) ∈ D. Without
loss of generality, we may assume that λEF > 0. Let k ∈ N and 0 < r < λEF /4. By
Lemma 2.1, there exists 0 < δ < r/2 such that, for all u ∈ X with d(u, E) ≥ r/2 and
all v ∈ X with d(v, F ) ≥ r/2, there holds

diam CE,u(δ) <
1
k

and diam CF,v(δ) <
1
k

.

Pick x̂ ∈ E and ŷ ∈ F such that

‖x̂− ŷ‖ < λEF + δ/2.

Note that ‖x̂− ŷ‖ ≥ λEF ≥ 4r. Choose such two points u and v in the interval [x̂, ŷ]
that ‖x̂− u‖ = ‖ŷ − v‖ = r and define

Ẽ = co
(
E ∪ {u}

)
, F̃ = co

(
F ∪ {v}

)
.

Obviously h(Ẽ, E) ≤ r, h(F̃ , F ) ≤ r and λ eE eF ≥ λEF − 2r > 0. Hence (Ẽ, F̃ ) ∈ D.
To complete the proof it suffices to show that (Ẽ, F̃ ) ∈ Dk for every k ∈ N. Note that

‖u− ŷ‖ = ‖x̂− ŷ‖ − ‖u− x̂‖ ≤ λEF +
δ

2
− r

and
d(u, F ) ≤ ‖u− ŷ‖ ≤ λEF +

δ

2
− r.

From Proposition 2.2, the last inequality and the choice of δ, we conclude

d(u, E) ≥ λEF − d(u, F ) ≥ r − δ

2
≥ 3r

4
. (3.2)

On the other hand, since u ∈ Ẽ and v ∈ F̃ , then

λ eE eF = ‖u− v‖ ≤ ‖x̂− ŷ‖ − 2r ≤ λEF +
δ

2
− 2r. (3.3)

We claim that
L eE eF (

δ/2
)
⊆ CE,u(δ). (3.4)

Indeed, let y ∈ L eE eF (δ/2) = co(E ∪ {u}). By (2.1) and (3.3), there holds

d(y, F̃ ) ≤ λ eE eF +
δ

2
≤ λEF + δ − 2r. (3.5)

Then, by Proposition 2.2, relation (3.5), and the inequality d(u, E) ≤ ‖u − x̂‖ = r,
there follows

d(y, E) ≥ λE eF − d(y, F̃ ) ≥ λE eF − (λEF + δ − 2r) ≥
≥ λEF − r − (λEF + δ − 2r) = r − δ ≥ d(u, E)− δ,
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This means that (3.4) holds. From (3.4) and Lemma 2.1 it follows that

Λ(Ẽ, F̃ ) ≤ diam CE,u(δ) <
1
k

.

Similarly, one can show that

Λ(F̃ , Ẽ) ≤ diam CF,v(δ) <
1
k

.

This means that (Ẽ, F̃ ) ∈ Dk, which completes the proof.

4. A POROSITY RESULT

Definition 4.1. A subset Y in a metric space (X, d) is said to be porous in X if
there are 0 < t ≤ 1 and r0 > 0 such that for every x ∈ X and r ∈ (0, r0] there is a
point y ∈ X such that S(y, tr) ⊆ S(x, r)∩ (X \ Y ). A subset Y is said to be σ-porous
in X if it is a countable union of sets which are porous in X.

Note that an equivalent definition of a porous set can be obtained by replacing
“for every x ∈ X” with “for every x ∈ Y ” (see [1, 3]).

For (E,F ) ∈ D0, let (uE , uF ) ∈ E × F denote the unique solution of the mini-
mization problem min(E,F ). Let

uα,E = (1− α)uE + αuF , and Eα = co
(
E ∪ {uα,E}

)
, α ∈ [0, 1].

Furthermore, for r > 0, set

O(F, r) =
{
E ∈ B(X) : h(E,F ) < r

}
.

Define

D̃ =
⋂
k∈N

⋃
(E,F )∈D0

⋃
0≤α≤1/4

(
O

(
Eα, γEα

(1/k)
)
×O

(
Fα, γFα

(1/k)
))

,

where

γEα
(ε) = min

{
d(uα,E , E), 1

}
ε, γFα

(ε) = min
{
d(uα,F , F ), 1

}
ε.

Lemma 4.1. D̃ ⊆ D0.

Proof. Let (E,F ) ∈ D̃. By Proposition 2.2, we only need to show that

Λ(E,F ) = lim
δ→0+

diamLE,F (δ) = 0 and Λ(F,E) = lim
δ→0+

diamLF,E(δ) = 0. (4.1)

By the definition of D̃, for each k ∈ N, there exist (Ek, F k) ∈ D0 and 0 ≤ αk ≤ 1/4
such that

h(E,Ek
αk

) ≤ γEk
αk

(1/k) and h(F, F k
αk

) ≤ γF k
αk

(1/k). (4.2)
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Without loss of generality, we may assume that λEkF k > 0 and αk > 0 for each k ∈ N.
For convenience, we write

rk = λEkF k and δk = γEk
αk

(1/k) = γF k
αk

(1/k).

Then, it is easy to see that, for each k ∈ N,

δk ≤ αkrk/k,

λEk
αk

F k
αk

= (1− 2αk)rk, (4.3)

λEkF k
αk

= λF kEk
αk

= (1− αk)rk, (4.4)

d(uαk,Ek , Ek) = d(uαk,F k , F k) = αkrk. (4.5)

We claim that, for each δ > 0,

LEk
αk

,F k
αk

(δ/2) ⊆ CEk,u
αk,Ek

(δ) for k ∈ N. (4.6)

To see this, let k ∈ N, δ > 0 and y ∈ LEk
αk

,F k
αk

(δ/2). Obviously, y ∈ co(Ek∪{uαk,Ek}).
By (2.1) and (4.3), there is

d(y, F k
αk

) ≤ λEk
αk

F k
αk

+
δ

2
= (1− 2αk)rk +

δ

2
. (4.7)

Consequently, by Proposition 2.2, relation (4.4), (4.7) and (4.5) we obtain

d(y, Ek) ≥ λEkF k
αk
− d(y, F k

αk
) ≥ (1− αk)rk − (1− 2αk)rk − δ/2 =

= αkrk − δ/2 = d(uαk,Ek , Ek)− δ/2 > d(uαk,Ek , Ek)− δ.

Hence y ∈ CEk,u
αk,Ek

(δ). Since

d((E,F ), (Ek
αk

, F k
αk

)) < δk,

from (2.2) it follows that

LE,F (δk) ⊆ LEk
αk

,F k
αk

(5δk) + δkS.

By the last inclusion and (4.6) we obtain

Λ(E,F ) ≤ diam LE,F (δk) ≤ diam LEk
αk

,F k
αk

(5δk) + 2δk ≤

≤ diam CEk,uαk
(10δk) + 2δk

(4.8)

for each k ∈ N. Recall that

d(uαk,Ek , Ek) = αkrk and δk ≤
αkrk

k
for each k > 1.
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Then using Lemma 2.1 we conclude that

diam CEk,uαk
(10δk) ≤ 2

k
(diam Ek + 10αkrk),

and hence, by (4.8),

Λ(E,F ) ≤ 2
k

(diamEk + 10αkrk) + 2δk ≤
2
k

(diamEk + 11αkrk). (4.9)

Note that
h(E,Ek) ≤ h(E,Ek

αk
) ≤ γEk

αk
(1/k) ≤ 1.

Analogously h(F, F k) ≤ 1. Thus h(Ek, F k) ≤ h(E,F ) + 2. It follows that sequences
{diamEk} and {rk} are bounded. Hence (4.9) implies that Λ(E,F ) = 0. Similarly,
we can verify that Λ(F,E) = 0. Hence (4.1) holds and the proof of Lemma 4.1 is
complete.

Theorem 4.1. The set D \D0 is σ-porous in D.

Proof. For k, l ∈ N, define

D̃k = D \
⋃

(E,F )∈D0

⋃
0≤α≤1/4

(
O

(
Eα, γEα(1/k)

)
×O

(
Fα, γFα(1/k)

))
and

D̃l
k =

{
(E,F ) ∈ D̃k :

1
l

< λEF < l
}

.

Observe that
D \ D0 ⊆ D \ D̃ =

⋃
k∈N

⋃
l∈N

D̃l
k.

It suffices to verify that, D̃l
k is porous in D for each k, l ∈ N. To this end, let k, l ∈ N

be arbitrary. Define r0 = 1/(2l) and α = 1/(4k). Let (E,F ) ∈ D̃l
k and 0 < r ≤ r0.

Then, by Theorem 2.1, there exists (Ē, F̄ ) ∈ D0 such that

h(E, Ē) <
r

4
, h(F, F̄ ) <

r

4

and
1
l

< λĒF̄ < l.

Set ū1/2 = (uĒ + uF̄ )/2. Then

h(Ē1/2, E) ≥ h(Ē1/2, Ē)− h(Ē, E) ≥
≥ sup

y∈Ē1/2

d(y, Ē)− r/4 ≥

≥ d(ū1/2, Ē)− r/4 =
= (1/2)λĒF̄ − r/4 ≥ 3r/4.



80 Chong Li, Józef Myjak

Similarly, one can prove that

h(F̄1/2, F ) ≥ 3r/4.

From the previous two inequalities it follows that there exist 0 < t1, t2 ≤ 1/2 such
that h(Ēt1 , E) = 3r/4 and h(F̄t2 , F ) = 3r/4, where Ēt1 = co(Ē ∪ ut1,Ē) and F̄t2 =
co(F̄ ∪ ut2,F̄ ). Observe that

O(Ēt1 , αr) ⊆ O(E, r) and O(F̄t2 , αr) ⊆ O(F, r). (4.10)

Indeed, for each A ∈ O(Ēt1 , αr)

h(A,E) ≤ h(A, Ēt1) + h(Ēt1 , E) ≤ αr + 3r/4 ≤ r.

Hence the first inequality of (4.10) is proved. The second one can be proved analo-
gously.

Now we claim that

αr ≤ γĒt1
(1/k) and αr ≤ γF̄t2

(1/k). (4.11)

Indeed, note that
h(Ēt1 , Ē) ≥ h(Ēt1 , E)− h(E, Ē) ≥ r/2.

Therefore,
αr ≤ 2αh(Ēt1 , Ē) ≤ h(Ēt1 , Ē)/k = d(ut1,Ē , Ē)/k.

Since obviously αr ≤ 1/k, the first inequality of (4.11) is proved. The second one can
be proved analogously.

From (4.11) it follows that

O(Ēt1 , αr)×O(F̄t2 , αr) ⊆ O(Ēt1 , γĒt1
(1/k))×O(F̄t2 , γF̄t2

(1/k)).

This implies that
O(Ēt1 , αr)×O(F̄t2 , αr) ⊆ D \ D̃l

k.

From this last inclusion and relation (4.10) it immediately follows that the set D̃l
k is

porous in D.
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