Chong Li, Józef Myjak

POROUS SETS FOR MUTUALLY NEAREST POINTS IN BANACH SPACES

Abstract. Let $\mathfrak{B}(X)$ denote the family of all nonempty closed bounded subsets of a real Banach space X, endowed with the Hausdorff metric. For $E, F \in \mathfrak{B}(X)$ we set $\lambda_{EF} = \inf \{ \|z - x\| : x \in E, z \in F \}$. Let \mathfrak{D} denote the closure (under the maximum distance) of the set of all $(E, F) \in \mathfrak{B}(X) \times \mathfrak{B}(X)$ such that $\lambda_{EF} > 0$. It is proved that the set of all $(E, F) \in \mathfrak{D}$ for which the minimization problem $\min_{x \in E, z \in F} \|x - z\|$ fails to be well posed in a σ -porous subset of \mathfrak{D} .

Keywords: minimization problem, well-posedness, H_{ρ} -topology, σ -porous set.

Mathematics Subject Classification: Primary 41A65, 54E52; Secondary 46B20.

1. INTRODUCTION

Let X be a real Banach space. By $\mathfrak{B}(X)$ we denote the family of all nonempty closed bounded subsets of X. For $E, F \in \mathfrak{B}(X)$ we set

$$\lambda_{EF} := \inf \{ \|z - x\| : x \in E, z \in F \}.$$

We consider the minimization problem, denoted by $\min(E, F)$, of finding a pair (x_0, z_0) with $x_0 \in E, z_0 \in F$ such that $||x_0 - z_0|| = \lambda_{EF}$. Such a pair is called a solution of the minimization problem $\min(E, F)$. Moreover, any sequence $\{(x_n, z_n)\}$ with $x_n \in E, z_n \in F$ such that $\lim_{n\to\infty} ||x_n - z_n|| = \lambda_{EF}$ is called a *minimizing* sequence for the problem $\min(E, F)$. A minimization problem is said to be *well-posed* if it has a unique solution and every minimizing sequence converges strongly to this solution.

Recall that the Hausdorff distance on the space $\mathfrak{B}(X)$ is defined by

$$h(A,B) = \max\left\{\sup_{a\in A} \inf_{b\in B} \|a-b\|, \sup_{b\in B} \inf_{a\in A} \|a-b\|\right\}, \quad A,B\in\mathfrak{B}(X).$$

73

It is well known that $\mathfrak{B}(X)$ endowed with the Hausdorff distance is a complete metric space.

Define $\mathfrak{C}(X) = \{A \in \mathfrak{B}(X) : A \text{ is convex}\}$. For a given set G, let $\mathfrak{C}_G(X)$ stand for the closure of the set $\{A \in \mathfrak{C}(X) : \lambda_{AG} > 0\}$. It is proved in [3] that if Xis a uniformly convex Banach space, then the set of all $A \in \mathfrak{C}_G(X)$ such that the minimization problem $\min(A, G)$ is well-posed is a dense G_{δ} -subset of $\mathfrak{C}_G(X)$. This result has been extended to the framework of strongly convex and/or strictly convex Banach spaces in [7-12]. For further related results see [5, 6, 14-16].

Let $\mathfrak{B}(X) \times \mathfrak{B}(X)$ denote the Cartesian product endowed with the distance

 $d((A, B), (E, F)) = \max\{h(A, E), h(B, F)\} \text{ for } A, B, E, F \in \mathcal{B}(X).$

Let \mathfrak{D} denote the closure of the set of all $(E, F) \in \mathcal{B}(X) \times \mathfrak{B}(X)$ such that $\lambda_{EF} > 0$. In this note, we will show that the set of all $(E, F) \in \mathfrak{D}$ such that the minimization problem $\min(E, F)$ is well-posed is a dense G_{δ} -subset of \mathfrak{D} . In particular, we also show that the set of all $(E, F) \in \mathfrak{D}$ such that the minimization problem $\min(E, F)$ fails to be well-posed is a σ -porous subset of \mathfrak{D} .

2. AUXILIARY RESULTS

For a subset A of X, \overline{A} stands for the closure of A, diam A for the diameter of A, $\overline{\operatorname{co}}A$ for the closed convex hull of A, and d(x, A) for the distance from x to A. We use S(x, r) to denote the closed ball with center x and radius r in X, in particular, S stands for S(0, 1).

Let $E, F \in \mathfrak{B}(X)$ and $\sigma > 0$. Define

$$L_{E,F}(\sigma) := \{ x \in E : d(x,F) \le \lambda_{EF} + \sigma \}$$

$$(2.1)$$

It is clear that $L_{E,F}(\sigma_1) \subseteq L_{E,F}(\sigma_2)$ if $\sigma_1 \leq \sigma_2$. The following propositions can be found in [3, 4].

Proposition 2.1. Let $E, F \in \mathcal{B}(X)$. Then the problem $\min(E, F)$ is well-posed if and only if

 $\inf_{\sigma>0} \operatorname{diam} L_{E,F}(\sigma) = 0 \quad and \quad \inf_{\sigma>0} \operatorname{diam} L_{F,E}(\sigma) = 0.$

Proposition 2.2. Let $A, B, E, F \in \mathfrak{B}(X)$ and $z \in X$. Then:

- (i) $|d(z, E) d(z, F)| \le h(E, F);$
- (ii) $\lambda_{EF} \leq d(z, E) + d(z, F);$

(iii) $|\lambda_{AB} - \lambda_{EF}| \leq 2d((A, B), (E, F)).$

Define the function Λ on \mathfrak{D} by the formula

$$\Lambda(E,F) = \inf_{\sigma>0} \operatorname{diam} L_{E,F}(\sigma), \quad \text{for} \quad (E,F) \in \mathfrak{D}.$$

Proposition 2.3. Λ is upper semi-continuous on \mathfrak{D} .

Proof. Let $(E_0, F_0) \in \mathcal{D}$. Let $\sigma > 0$ and $\delta > 0$. We will show that

$$L_{E,F}(\sigma) \subseteq L_{E_0,F_0}(\sigma + 4\delta) + \delta S \tag{2.2}$$

holds for all $(E, F) \in \mathcal{D}$ with $d((E, F), (E_0, F_0)) < \delta$. Indeed let $y \in L_{E,F}(\sigma)$. Since $h(E, E_0) < \delta$, there exists $x \in E_0$ such that $||x - y|| < \delta$. Hence, by Proposition 2.2 and relation (2.1) there is

$$d(x, F_0) \le d(x, F) + h(F, F_0) \le d(y, F) + ||x - y|| + h(F, F_0) \le d(y, F) + 2\delta \le \lambda_{EF} + \sigma + 2\delta \le \lambda_{E_0F_0} + \sigma + 4\delta,$$

which shows that $x \in L_{E_0,F_0}(\sigma + 4\delta)$. Hence (2.2) holds. Let $\varepsilon > 0$. Choose $\tau > 0$ such that

diam
$$L_{E_0,F_0}(\tau) < \Lambda(E_0,F_0) + \frac{\varepsilon}{2}$$
. (2.3)

Taking $\sigma > 0$ and $\delta > 0$ such that $\sigma + 4\delta < \tau$ and $\delta < \varepsilon/4$, by (2.2) and (2.3), we obtain

$$\Lambda(E,F) \le \operatorname{diam} L_{E,F}(\sigma) \le \operatorname{diam} L_{E_0,F_0}(\sigma+4\delta) + 2\delta < \Lambda(E_0,F_0) + \varepsilon$$

for all $(E, F) \in \mathfrak{D}$ with $d((E, F), (E_0, F_0)) < \delta$. This shows that Λ is upper semi-continuous at (E_0, F_0) .

The following lemma (see [4]) is essential in our proofs.

Lemma 2.1. Let $\varepsilon > 0$, $\rho > 0$ and let $E \in \mathfrak{C}(X)$. Let $\delta_0 = (\rho/2) \min\{1, \varepsilon\}$. Then for each $u \in X$ with $d(u, E) \ge \rho$ and each $0 < \delta \le \delta_0$, there is

diam
$$C_{E,u}(\delta) < (\operatorname{diam} E + \delta)\varepsilon_{\varepsilon}$$

where

$$C_{E,u}(\delta) = \overline{\operatorname{co}}(E \cup \{u\}) \setminus (E + (d(u, E) - \delta)S).$$

3. A GENERIC RESULT FOR MUTUALLY NEAREST POINTS

Let \mathfrak{D}_0 denote the set of all $(E, F) \in \mathfrak{D}$ such that the minimization problem $\min(E, F)$ is well-posed. By virtue of Proposition 2.1,

$$\mathfrak{D}_0 = \bigcap_{k \in \mathbb{N}} \mathfrak{D}_k, \tag{3.1}$$

where

$$\mathfrak{D}_k := \Big\{ (E,F) \in \mathfrak{D} : \Lambda(E,F) < \frac{1}{k}, \Lambda(F,E) < \frac{1}{k} \Big\}.$$

Theorem 3.1. \mathfrak{D}_0 is a dense G_{δ} subset of \mathfrak{D} .

Proof. By (3.1), it suffices to verify that each \mathfrak{D}_k $(k \in \mathbb{N})$ is open and dense in \mathcal{D} . The openness of \mathcal{D}_k is a direct consequence of Proposition 2.3. It remains to show that for every $k \in \mathbb{N}$ the set \mathfrak{D}_k is dense in \mathfrak{D} . To this end, let $(E, F) \in \mathfrak{D}$. Without loss of generality, we may assume that $\lambda_{EF} > 0$. Let $k \in \mathbb{N}$ and $0 < r < \lambda_{EF}/4$. By Lemma 2.1, there exists $0 < \delta < r/2$ such that, for all $u \in X$ with $d(u, E) \ge r/2$ and all $v \in X$ with $d(v, F) \ge r/2$, there holds

diam
$$C_{E,u}(\delta) < \frac{1}{k}$$
 and diam $C_{F,v}(\delta) < \frac{1}{k}$.

Pick $\hat{x} \in E$ and $\hat{y} \in F$ such that

$$\|\hat{x} - \hat{y}\| < \lambda_{EF} + \delta/2.$$

Note that $\|\hat{x} - \hat{y}\| \ge \lambda_{EF} \ge 4r$. Choose such two points u and v in the interval $[\hat{x}, \hat{y}]$ that $\|\hat{x} - u\| = \|\hat{y} - v\| = r$ and define

$$\widetilde{E} = \overline{co} \left(E \cup \{u\} \right), \quad \widetilde{F} = \overline{co} \left(F \cup \{v\} \right)$$

Obviously $h(\widetilde{E}, E) \leq r$, $h(\widetilde{F}, F) \leq r$ and $\lambda_{\widetilde{E}\widetilde{F}} \geq \lambda_{EF} - 2r > 0$. Hence $(\widetilde{E}, \widetilde{F}) \in \mathfrak{D}$. To complete the proof it suffices to show that $(\widetilde{E}, \widetilde{F}) \in \mathfrak{D}_k$ for every $k \in \mathbb{N}$. Note that

$$||u - \hat{y}|| = ||\hat{x} - \hat{y}|| - ||u - \hat{x}|| \le \lambda_{EF} + \frac{\delta}{2} - r$$

and

$$d(u,F) \leq \|u - \hat{y}\| \leq \lambda_{EF} + \frac{\delta}{2} - r.$$

From Proposition 2.2, the last inequality and the choice of δ , we conclude

$$d(u,E) \ge \lambda_{EF} - d(u,F) \ge r - \frac{\delta}{2} \ge \frac{3r}{4}.$$
(3.2)

On the other hand, since $u \in \widetilde{E}$ and $v \in \widetilde{F}$, then

$$\lambda_{\widetilde{E}\widetilde{F}} = \|u - v\| \le \|\hat{x} - \hat{y}\| - 2r \le \lambda_{EF} + \frac{\delta}{2} - 2r.$$
(3.3)

We claim that

$$L_{\widetilde{E}\widetilde{F}}(\delta/2) \subseteq C_{E,u}(\delta). \tag{3.4}$$

Indeed, let $y \in L_{\widetilde{E}\widetilde{F}}(\delta/2) = \overline{co}(E \cup \{u\})$. By (2.1) and (3.3), there holds

$$d(y,\widetilde{F}) \le \lambda_{\widetilde{E}\widetilde{F}} + \frac{\delta}{2} \le \lambda_{EF} + \delta - 2r.$$
(3.5)

Then, by Proposition 2.2, relation (3.5), and the inequality $d(u, E) \leq ||u - \hat{x}|| = r$, there follows

$$\begin{aligned} d(y,E) &\geq \lambda_{E\widetilde{F}} - d(y,F) \geq \lambda_{E\widetilde{F}} - (\lambda_{EF} + \delta - 2r) \geq \\ &\geq \lambda_{EF} - r - (\lambda_{EF} + \delta - 2r) = r - \delta \geq d(u,E) - \delta, \end{aligned}$$

This means that (3.4) holds. From (3.4) and Lemma 2.1 it follows that

$$\Lambda(\widetilde{E},\widetilde{F}) \leq \operatorname{diam} C_{E,u}(\delta) < \frac{1}{k}.$$

Similarly, one can show that

$$\Lambda(\widetilde{F},\widetilde{E}) \leq \operatorname{diam} C_{F,v}(\delta) < \frac{1}{k}.$$

This means that $(\widetilde{E}, \widetilde{F}) \in \mathfrak{D}_k$, which completes the proof.

4. A POROSITY RESULT

Definition 4.1. A subset Y in a metric space (X, d) is said to be porous in X if there are $0 < t \leq 1$ and $r_0 > 0$ such that for every $x \in X$ and $r \in (0, r_0]$ there is a point $y \in X$ such that $S(y,tr) \subseteq S(x,r) \cap (X \setminus Y)$. A subset Y is said to be σ -porous in X if it is a countable union of sets which are porous in X.

Note that an equivalent definition of a porous set can be obtained by replacing "for every $x \in X$ " with "for every $x \in Y$ " (see [1, 3]).

For $(E,F) \in \mathfrak{D}_0$, let $(u_E, u_F) \in E \times F$ denote the unique solution of the minimization problem $\min(E, F)$. Let

$$u_{\alpha,E} = (1-\alpha)u_E + \alpha u_F$$
, and $E_{\alpha} = \overline{co} \left(E \cup \{u_{\alpha,E}\} \right)$, $\alpha \in [0,1]$.

Furthermore, for r > 0, set

$$\mathcal{O}(F,r) = \left\{ E \in \mathcal{B}(X) : h(E,F) < r \right\}.$$

Define

$$\widetilde{\mathfrak{D}} = \bigcap_{k \in \mathbb{N}} \bigcup_{(E,F) \in \mathfrak{D}_0} \bigcup_{0 \le \alpha \le 1/4} \Big(\mathcal{O}\big(E_\alpha, \gamma_{E_\alpha}(1/k)\big) \times \mathcal{O}\big(F_\alpha, \gamma_{F_\alpha}(1/k)\big) \Big),$$

where

$$\gamma_{E_{\alpha}}(\varepsilon) = \min \left\{ d(u_{\alpha,E}, E), 1 \right\} \varepsilon, \quad \gamma_{F_{\alpha}}(\varepsilon) = \min \left\{ d(u_{\alpha,F}, F), 1 \right\} \varepsilon.$$

Lemma 4.1. $\widetilde{\mathfrak{D}} \subset \mathfrak{D}_0$.

Proof. Let $(E, F) \in \widetilde{\mathcal{D}}$. By Proposition 2.2, we only need to show that

$$\Lambda(E,F) = \lim_{\delta \to 0+} \operatorname{diam} L_{E,F}(\delta) = 0 \quad \text{and} \quad \Lambda(F,E) = \lim_{\delta \to 0+} \operatorname{diam} L_{F,E}(\delta) = 0.$$
(4.1)

By the definition of $\widetilde{\mathfrak{D}}$, for each $k \in \mathbb{N}$, there exist $(E^k, F^k) \in \mathfrak{D}_0$ and $0 \le \alpha_k \le 1/4$ $f(E,E^k) < \gamma_{E^k}$ (1/k) and $h(F,F^k) < \gamma_{E^k}$ (1/k). such that

$$h(E, E_{\alpha_k}^k) \le \gamma_{E_{\alpha_k}^k}(1/k) \quad \text{and} \quad h(F, F_{\alpha_k}^k) \le \gamma_{F_{\alpha_k}^k}(1/k).$$

$$(4.2)$$

Without loss of generality, we may assume that $\lambda_{E^kF^k} > 0$ and $\alpha_k > 0$ for each $k \in \mathbb{N}$. For convenience, we write

$$r_k = \lambda_{E^k F^k}$$
 and $\delta_k = \gamma_{E^k_{\alpha_k}}(1/k) = \gamma_{F^k_{\alpha_k}}(1/k).$

Then, it is easy to see that, for each $k \in \mathbb{N}$,

$$\delta_k \le \alpha_k r_k / k,$$

$$\lambda_{E^k_{\alpha_k} F^k_{\alpha_k}} = (1 - 2\alpha_k) r_k,$$
(4.3)

$$\lambda_{E^k F^k_{\alpha_k}} = \lambda_{F^k E^k_{\alpha_k}} = (1 - \alpha_k) r_k, \tag{4.4}$$

$$d(u_{\alpha_k,E^k},E^k) = d(u_{\alpha_k,F^k},F^k) = \alpha_k r_k.$$

$$(4.5)$$

We claim that, for each $\delta > 0$,

$$L_{E_{\alpha_k}^k, F_{\alpha_k}^k}(\delta/2) \subseteq C_{E^k, u_{\alpha_k, E^k}}(\delta) \quad \text{for } k \in \mathbb{N}.$$

$$(4.6)$$

To see this, let $k \in \mathbb{N}$, $\delta > 0$ and $y \in L_{E_{\alpha_k}^k, F_{\alpha_k}^k}(\delta/2)$. Obviously, $y \in \overline{co}(E^k \cup \{u_{\alpha_k, E^k}\})$. By (2.1) and (4.3), there is

$$d(y, F_{\alpha_k}^k) \le \lambda_{E_{\alpha_k}^k F_{\alpha_k}^k} + \frac{\delta}{2} = (1 - 2\alpha_k)r_k + \frac{\delta}{2}.$$
 (4.7)

Consequently, by Proposition 2.2, relation (4.4), (4.7) and (4.5) we obtain

$$d(y, E^{k}) \ge \lambda_{E^{k}F_{\alpha_{k}}^{k}} - d(y, F_{\alpha_{k}}^{k}) \ge (1 - \alpha_{k})r_{k} - (1 - 2\alpha_{k})r_{k} - \delta/2 = \alpha_{k}r_{k} - \delta/2 = d(u_{\alpha_{k}, E^{k}}, E^{k}) - \delta/2 > d(u_{\alpha_{k}, E^{k}}, E^{k}) - \delta.$$

Hence $y \in C_{E^k, u_{\alpha_k, E^k}}(\delta)$. Since

$$d((E,F), (E_{\alpha_k}^k, F_{\alpha_k}^k)) < \delta_k,$$

from (2.2) it follows that

$$L_{E,F}(\delta_k) \subseteq L_{E_{\alpha_k}^k}, F_{\alpha_k}^k(5\delta_k) + \delta_k S.$$

By the last inclusion and (4.6) we obtain

$$\Lambda(E,F) \leq \operatorname{diam} L_{E,F}(\delta_k) \leq \operatorname{diam} L_{E_{\alpha_k}^k,F_{\alpha_k}^k}(5\delta_k) + 2\delta_k \leq \\ \leq \operatorname{diam} C_{E^k,u_{\alpha_k}}(10\delta_k) + 2\delta_k$$

$$(4.8)$$

for each $k \in \mathbb{N}$. Recall that

$$d(u_{\alpha_k,E^k},E^k) = \alpha_k r_k$$
 and $\delta_k \le \frac{\alpha_k r_k}{k}$ for each $k > 1$.

Then using Lemma 2.1 we conclude that

$$\operatorname{diam} C_{E^k, u_{\alpha_k}}(10\delta_k) \le \frac{2}{k} (\operatorname{diam} E^k + 10\alpha_k r_k),$$

and hence, by (4.8),

$$\Lambda(E,F) \le \frac{2}{k} (\operatorname{diam} E^k + 10\alpha_k r_k) + 2\delta_k \le \frac{2}{k} (\operatorname{diam} E^k + 11\alpha_k r_k).$$
(4.9)

Note that

$$h(E, E^k) \le h(E, E^k_{\alpha_k}) \le \gamma_{E^k_{\alpha_k}}(1/k) \le 1.$$

Analogously $h(F, F^k) \leq 1$. Thus $h(E^k, F^k) \leq h(E, F) + 2$. It follows that sequences $\{\text{diam} E^k\}$ and $\{r_k\}$ are bounded. Hence (4.9) implies that $\Lambda(E, F) = 0$. Similarly, we can verify that $\Lambda(F, E) = 0$. Hence (4.1) holds and the proof of Lemma 4.1 is complete.

Theorem 4.1. The set $\mathfrak{D} \setminus \mathfrak{D}_0$ is σ -porous in \mathfrak{D} .

Proof. For $k, l \in \mathbb{N}$, define

$$\widetilde{\mathfrak{D}}_{k} = \mathfrak{D} \setminus \bigcup_{(E,F)\in\mathfrak{D}_{0}} \bigcup_{0 \le \alpha \le 1/4} \left(\mathcal{O}(E_{\alpha}, \gamma_{E_{\alpha}}(1/k)) \times \mathcal{O}(F_{\alpha}, \gamma_{F_{\alpha}}(1/k)) \right)$$

and

$$\widetilde{\mathcal{D}}_k^l = \Big\{ (E, F) \in \widetilde{\mathcal{D}}_k : \frac{1}{l} < \lambda_{EF} < l \Big\}.$$

Observe that

$$\mathfrak{D}\setminus\mathcal{D}_0\subseteq\mathfrak{D}\setminus\widetilde{\mathcal{D}}=igcup_{k\in\mathbb{N}}igcup_{l\in\mathbb{N}}\widetilde{\mathcal{D}}_k^l.$$

It suffices to verify that, $\widetilde{\mathfrak{D}}_k^l$ is porous in \mathfrak{D} for each $k, l \in \mathbb{N}$. To this end, let $k, l \in \mathbb{N}$ be arbitrary. Define $r_0 = 1/(2l)$ and $\alpha = 1/(4k)$. Let $(E, F) \in \widetilde{\mathfrak{D}}_k^l$ and $0 < r \le r_0$. Then, by Theorem 2.1, there exists $(\bar{E}, \bar{F}) \in \mathfrak{D}_0$ such that

$$h(E,\bar{E}) < \frac{r}{4}, \qquad h(F,\bar{F}) < \frac{r}{4}$$

and

$$\frac{1}{l} < \lambda_{\bar{E}\bar{F}} < l.$$

Set $\bar{u}_{1/2} = (u_{\bar{E}} + u_{\bar{F}})/2$. Then

$$\begin{split} h(E_{1/2},E) &\geq h(E_{1/2},E) - h(E,E) \geq \\ &\geq \sup_{y \in \bar{E}_{1/2}} d(y,\bar{E}) - r/4 \geq \\ &\geq d(\bar{u}_{1/2},\bar{E}) - r/4 = \\ &= (1/2)\lambda_{\bar{E}\bar{F}} - r/4 \geq 3r/4. \end{split}$$

Similarly, one can prove that

$$h(\bar{F}_{1/2}, F) \ge 3r/4.$$

From the previous two inequalities it follows that there exist $0 < t_1, t_2 \leq 1/2$ such that $h(\bar{E}_{t_1}, E) = 3r/4$ and $h(\bar{F}_{t_2}, F) = 3r/4$, where $\bar{E}_{t_1} = \overline{co}(\bar{E} \cup u_{t_1,\bar{E}})$ and $\bar{F}_{t_2} = \overline{co}(\bar{F} \cup u_{t_2,\bar{F}})$. Observe that

$$\mathcal{O}(\bar{E}_{t_1}, \alpha r) \subseteq \mathcal{O}(E, r) \quad \text{and} \quad \mathcal{O}(\bar{F}_{t_2}, \alpha r) \subseteq \mathcal{O}(F, r).$$
 (4.10)

Indeed, for each $A \in \mathcal{O}(\bar{E}_{t_1}, \alpha r)$

$$h(A, E) \le h(A, \bar{E}_{t_1}) + h(\bar{E}_{t_1}, E) \le \alpha r + 3r/4 \le r.$$

Hence the first inequality of (4.10) is proved. The second one can be proved analogously.

Now we claim that

$$\alpha r \leq \gamma_{\bar{E}_{t_1}}(1/k) \quad \text{and} \quad \alpha r \leq \gamma_{\bar{F}_{t_2}}(1/k).$$

$$(4.11)$$

Indeed, note that

$$h(\bar{E}_{t_1}, \bar{E}) \ge h(\bar{E}_{t_1}, E) - h(E, \bar{E}) \ge r/2.$$

Therefore,

$$\alpha r \le 2\alpha h(\bar{E}_{t_1}, \bar{E}) \le h(\bar{E}_{t_1}, \bar{E})/k = d(u_{t_1, \bar{E}}, \bar{E})/k.$$

Since obviously $\alpha r \leq 1/k$, the first inequality of (4.11) is proved. The second one can be proved analogously.

From (4.11) it follows that

$$\mathcal{O}(E_{t_1},\alpha r) \times \mathcal{O}(F_{t_2},\alpha r) \subseteq \mathcal{O}(E_{t_1},\gamma_{\bar{E}_{t_1}}(1/k)) \times \mathcal{O}(F_{t_2},\gamma_{\bar{F}_{t_2}}(1/k)).$$

This implies that

$$\mathcal{O}(\bar{E}_{t_1}, \alpha r) \times \mathcal{O}(\bar{F}_{t_2}, \alpha r) \subseteq \mathfrak{D} \setminus \widetilde{\mathfrak{D}}_k^l.$$

From this last inclusion and relation (4.10) it immediately follows that the set $\widetilde{\mathfrak{D}}_k^l$ is porous in \mathfrak{D} .

Acknowledgements

Supported in part by the National Natural Science Foundations of China (Grant No. 10271025).

REFERENCES

 F.S. De Blasi, J. Myjak, Sur la porosité des ensemble des contractions sans point fixe, C.R. Acad. Sci. Paris 308 (1989), 51–54.

- [2] F.S. De Blasi, J. Myjak, P.L. Papini, Starshaped sets and best approximation, Arch. Math. 56 (1991), 41–48.
- [3] F.S. De Blasi, J. Myjak, P.L. Papini, Porous sets in best approximation theory, J. London Math. Soc. 44 (1991), 135–142.
- [4] F.S. De Blasi, J. Myjak, P.L. Papini, On mutually nearest and mutually furthest points of sets in Banach spaces, J. Approx. Theory 70 (1992), 142–155.
- [5] J.M. Borwein, S. Fitzpatrick, Existence of nearest points in Banach spaces, Can. J. Math. 41 (1989), 702–720.
- [6] S.V. Konjagin, On approximation properties of closed sets in Banach spaces and characterization of strongly convex spaces, Soviet Math. Dokl. 21 (1980), 418–422.
- [7] C. Li, On mutually nearest and mutually furthest points in reflexive Banach spaces, J. Approx. Theory, 103 (2000), 1–17.
- [8] C. Li, On well-posedness of best simultaneous approximation problems in Banach spaces, Science in China (Ser A), 44 (2001), 1558–1570.
- [9] C. Li, J. Myjak, On mutually nearest points of unbounded sets in Banach spaces, J. Nonlinear Convex Anal. 8 (2007), 165–177.
- [10] C. Li, R.X. Ni, On well-posed mutually nearest and mutually furthest point problems in Banach spaces, Acta Math. Sinica, New Ser. 20 (2004), 147–156.
- [11] C. Li, H.K. Xu, On almost well-posed mutually nearest and mutually furthest points problems, Numer. Funct. Anal. Optim. 23 (2002), 323–331.
- [12] C. Li, H.K. Xu, Porosity of mutually nearest and mutually furthest points in Banach spaces, J Approx. Theory 125 (2003), 10–25.
- [13] S. Reich, A.J. Zaslavski, Well-posedness and porosity in best approximation problems, Topol. Methods Nonlinear Anal. 18 (2001), 395–408.
- [14] S. Reich, A.J. Zaslavski, A porosity results in best approximation theory, J. Nonlinear Convex Anal. 4 (2003), 165–173.
- [15] S. Reich, A.J. Zaslavski, Well-posedness of generalized best approximation problems, Nonlinear Funct. Anal. Appl. 7 (2002), 115–128.
- [16] S. Reich, A.J. Zaslavski, Porous sets and generalized best approximation problems, Nonlinear Anal. Forum 9 (2004), 135–152.

Chong Li cli@zju.edu.cn

Zhejiang University Department of Mathematics Hangzhou 310027, P. R. China Józef Myjak myjak@univaq.it

AGH University of Science and Technology Faculty of Applied Mathematics al. Mickiewicza 30, 30-059 Cracow

Received: April 2, 2007. Revised: June 9, 2007. Accepted: June 12, 2007.