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NUMERICAL METHODS FOR HYPERBOLIC
DIFFERENTIAL FUNCTIONAL PROBLEMS

Abstract. The paper deals with the initial boundary value problem for quasilinear first
order partial differential functional systems. A general class of difference methods for the
problem is constructed. Theorems on the error estimate of approximate solutions for dif-
ference functional systems are presented. The convergence results are proved by means of
consistency and stability arguments. A numerical example is given.
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1. INTRODUCTION

For any metric spaces U and V , by C(U, V ) we denote the class of all continuous
functions defined on U and taking values in V . We will use vectorial inequalities
with the understanding that the same inequalities hold between their corresponding
components. Let Mk×n be the set of k × n matrices with real elements. For x =
(x1, . . . , xn) ∈ Rn, p = (p1, . . . , pk) ∈ Rk and X ∈ Mk×n, X = [Xij ]i=1,...,k,j=1,...,n we
put

‖x‖ = |x1|+ . . . + |xn|, ‖p‖ = max { |pi| : 1 ≤ i ≤ k } ,

‖X‖ = max
{ n∑

j=1

|xij | : 1 ≤ i ≤ k
}

.

Let a > 0, τ0 ∈ R+, R+ = [0,+∞), τ = (τ1, . . . , τn) ∈ Rn
+ and b = (b1, . . . , bn) ∈ Rn

be given, where bi > 0 for 1 ≤ i ≤ n. Let c = (c1, . . . , cn) = b + τ . Define the sets

E = [0, a]× (−b, b), D = [−τ0, 0]× [−τ, τ ],

and

E0 = [−τ0, 0]× [−c, c], ∂0E = ([0, a]× [−c, c]) \ E, E∗ = E0 ∪ E ∪ ∂0E.

29
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Given a function z : E∗ → Rk and a point (t, x) ∈ E, we consider the function
z(t,x) : D → Rk defined by

z(t,x)(s, y) = z(t + s, x + y), (s, y) ∈ D.

The function z(t,x) is the restriction of z to the set [t− τ0, t]× [x− τ, x + τ ] and this
restriction is shifted to the set D. For a function w ∈ C(D,Rk) we put

‖w‖D = max { |w(t, x)| : (t, x) ∈ D } .

Assume that

% : E × C(D,R) → Mk×n , % = [ %ij ] i=1,...,k, j=1,...,n ,

f : E × C(D,R) → Rk, f = (f1, . . . , fk),

are given functions in the variables (t, x, w). Given a function ϕ : E0 ∪ ∂0E → Rk, we
consider the quasilinear differential functional system

∂t zi(t, x) =
n∑

j=1

%ij(t, x, z(t,x)) ∂xj
zi(t, x) + fi(t, x, z(t,x)) , i = 1, . . . , k, (1)

with the initial boundary condition

z(t, x) = ϕ(t, x) for (t, x) ∈ E0 ∪ ∂0E. (2)

We consider classical solution of the above problem.
A number of papers concerning difference methods for nonlinear first order dif-

ferential or functional differential equations have been published in recent years
[1,5,8,10,13]. Nonlinear equations and finite systems of equations with initial condi-
tions and mixed problems have been studied in these papers. It is easy to construct
Euler’s type explicit or implicit difference method (for a nonlinear problem) which
satisfies the consistency conditions on all sufficiently regular solutions of a differential
or differential functional equations. The main task of these research is to find a finite
difference approximation which is stable. The method of difference inequalities and
simple theorems on recurrent inequalities are used in the investigation of the stability
of nonlinear difference-functional equations generated by initial or mixed problems.

It is easy to see that convergence results of the papers cited above are not appli-
cable to quasilinear systems (1) with initial boundary condition (2). Until now there
have been no results on the numerical approximations of classical solutions of problem
(1), (2). The aim of the paper is to construct a general class of difference methods
for (1), (2). We prove a theorem on the error estimates of approximate solutions for
quasilinear functional difference equations of the Volterra type with unknown function
in several variables. By an approximate solution, we mean a function satisfying (8),
(9). In Theorem (1) we give an estimate of the difference between the exact and
approximate solution of (6), (7). We will assume that the functions fh and %h in
(5) satisfy nonlinear estimates of the Perron type with respect to functional variables.
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Then the error of an approximate solution is estimated by a solution of an initial prob-
lem for a nonlinear difference equation. We apply this general idea to the investigation
of the stability of difference functional system generated by (1), (2). The functions
fh and %h are superpositions of f and % with suitable interpolating operators. It
is an essential fact in our consideration that we have assumed nonlinear estimates of
the Perron type for given functions with respect to the functional variables. These
assumptions imply the uniqueness of a classical solution of problem (1), (2). In the
paper, we use these general ideas for difference equations which were introduced in
[2, 11,12].

Differential equations with a deviated argument and integral differential problems
can be obtained from (1), (2) by a specification of the given operators. Existence
results are given in [6].

2. DIFFERENCE FUNCTIONAL EQUATIONS

Let N and Z be the sets of natural numbers and integers, respectively. For x, x̄ ∈ Rn,
x = (x1, . . . , xn), x̄ = (x̄1, . . . , x̄n), we write x ∗ x̄ = (x1x̄1, . . . , xnx̄n). We define
a mesh on the set E∗ in the following way. Suppose that h = (h0, h

′) where h′ =
(h1, . . . , hn) stand for steps of the mesh. Denote by ∆ the set of all h = (h0, h

′) such
that there exist Ñ0 ∈ Z and N = (N1, . . . , Nn) ∈ Zn with the properties: N0h0 = τ0

and N ∗ h′ = τ . We assume that ∆ 6= ∅ and that there exists a sequence {h(j)},
h(j) ∈ ∆ such that lim

j→∞
h(j) = 0. For h ∈ ∆, we put ‖h‖ = h0 + h1 + . . . + hn. We

define nodal points as follows:

t(r) = rh0, x(m) = m ∗ h′, x(m) =
(
x

(m1)
1 , . . . , x(mn)

n

)
,

where (r, m) ∈ Z1+n. There exists N0 ∈ N such that N0h0 ≤ a < (N0 + 1)h0. Let

R1+n
h =

{
(t(r), x(m)) : (r, m) ∈ Z1+n

}
and

Dh = D ∩R1+n
h , Eh = E ∩R1+n

h ,

∂0Eh = ∂0E ∩R1+n
h , E0·h = E0 ∩R1+n

h , E∗
h = Eh ∪ E0·h ∪ ∂0Eh.

For a function z : E∗
h → Rk, we write z(r,m) = z(t(r), x(m)). For the above z and for a

point (t(r), x(m)) ∈ Eh, we define the function z[r,m] : Dh → Rk by the formula:

z[r,m](s, y) = z(t(r) + s, x(m) + y), (s, y) ∈ Dh.

The function z[r,m] is the restriction of z to the set(
[t(r) − τ0, t

(r)]× [x(m) − τ, x(m) + τ ]
)
∩R1+n

h

and this restriction is shifted to the set Dh. For a function w : Dh → Rk, we put

‖w‖h = max{ ‖w(r,m)‖ : (t(r), x(m)) ∈ Dh }.
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Let ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn with 1 standing on j-th place. For a function
z = (z1, . . . , zk), : E∗

h → Rk, we define difference operators δ0, δ = ( δ1, . . . , δn ) as
follows

δ0z
(r,m)
i =

1
h 0

[ z(r+1,m)
i −Az

(r,m)
i ], 1 ≤ i ≤ k (3)

where

Az
(r,m)
i =

1
2n

n∑
j=1

(
z
(r,m+ej)
i + z

(r,m−ej)
i

)
,

δjz
(r,m)
i =

1
2hj

[z(r,m+ej)
i − z

(r,m−ej)
i ], 1 ≤ i ≤ k, 1 ≤ j ≤ n (4)

and
δ0z

(r,m) = (δ0z
(r,m)
1 , . . . , δ0z

(r,m)
k ).

Let
E′

h =
{

(t(r), x(m)) ∈ Eh : (t(r) + h0, x
(m)) ∈ Eh

}
and now by F(Dh, Rk) we denote the set of all functions w : Dh → Rk. Suppose that

%h : E′
h × F(Dh, Rk) → Mk×n, %h = [ %h·ij ] i=1,...,k, j=1,...,n,

fh : E′
h × F(Dh, Rk) → Rk, fh = (fh·1, . . . , fh·k),

ϕh : E0·h ∪ ∂0Eh → Rk, ϕh = (ϕh·1, . . . , ϕh·k),

are given functions. Let the operator Fh be defined by

Fh[z](r,m) =(Fh·1[z](r,m), . . . , Fh·k[z](r,m)),

Fh·i[z](r,m) =
n∑

j=1

%h·ij( t(r), x(m), z[r,m]) δjz
(r,m)
i +fh·i( t(r), x(m), z[r,m]), 1≤ i≤k.

(5)

We will approximate solutions of problem (1), (2) by means of solutions of the differ-
ence equation

δ0 z(r,m) = Fh[z](r,m) (6)

with the initial boundary condition

z(r,m) = ϕ
(r,m)
h on E0·h ∪ ∂0Eh. (7)

There exists exactly one solution uh : E∗ → Rk of problem (6), (7). We need to know
what is the relation between the solution uh of (6), (7) and a function vh : Eh → Rk

satisfying the condition

‖δ0v
(r,m)
h − Fh[vh](r,m)‖ ≤ α(h) on E′

h (8)

and
‖v(r,m)

h − ϕ
(r,m)
h ‖ ≤ α0(h) on E0·h ∪ ∂0Eh (9)
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where
α, α0 : ∆ → R+ and lim

h→0
α0(h) = 0, lim

h→0
α(h) = 0.

The function vh satisfying the above relation is considered as an approximate solution
of problem (6), (7). We will need the following assumptions.

Assumption H [σ]. Suppose that

1) the function σ : [0, a]×R+ → R+ is continuous;
2) σ(t, 0) = 0 for t ∈ [0, a];
3) σ is nondecreasing with respect to both variables;
4) for any c̃ > 1, the Cauchy problem

y′(t) = c̃ σ(t, y(t)), y(0) = 0 (10)

has the only solution y(t) = 0 for t ∈ [0, a].

Assumption H [ %h, fh]. Suppose that

%h : E′
h × F(Dh, Rk) → Mk×n and fh : E′

h × F(Dh, Rk) → Rk

and there is a function σ : [0, a] × R+ → R+ satisfying Assumption H [σ] and such
that

‖ %h(t(r), x(m), w)− %h(t(r), x(m), w̄)‖ ≤ σ(t(r), ‖w − w̄‖h),

‖ fh(t(r), x(m), w)− fh(t(r), x(m), w̄)‖ ≤ σ(t(r), ‖w − w̄‖h)

on E′
h × F(Dh, Rk) → Rk.

Theorem 1. Suppose that Assumption H[%h, fh] is satisfied and

1) h ∈ ∆ and

1
n
− h0

hj
| %h·ij(t, x, w)| ≥ 0 on E′

h × F(Dh, Rk), 1 ≤ j ≤ n, 1 ≤ i ≤ k; (11)

2) uh : E∗
h → Rk is the solution of problem (6), (7);

3) vh : E∗
h → Rk satisfies relations (8), (9);

4) there is c0 ∈ R+ such that

‖ δjv
(r,m)
h ‖ ≤ c0 on Eh for 1 ≤ j ≤ n.

Under these assumptions, there is η : ∆ → R+ such that

‖u
(r,m)
h − v

(r,m)
h ‖ ≤ η(h) on Eh and lim

h→0
η(h) = 0. (12)

Proof. Let

Γh : E′
h → Rk, Γh = (Γh·1, . . . ,Γh·k),

Γ0·h : E0·h ∪ ∂0Eh → Rk, Γ0·h = (Γ0·h1, . . . ,Γ0·hk)
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be functions defined by the relations

δ0 v
(r,m)
h = Fh[vh](r,m) + Γ(r,m)

h on E′
h (13)

and

v
(r,m)
h = ϕ

(r,m)
h + Γ(r,m)

0·h on E0·h ∪ ∂0Eh. (14)

Then
‖Γ(r,m)

h ‖ ≤ α(h) on E′
h,

‖Γ(r,m)
0·h ‖ ≤ α0(h) on E0·h ∪ ∂0Eh

(15)

and
lim
h→0

α0(h) = 0, lim
h→0

α(h) = 0. (16)

The function wh = uh − vh, wh = (wh·1, . . . , wh·k), satisfies the difference functional
system

δ0 w
(r,m)
h·i =

n∑
j=1

%h·ij
(
t(r), x(m), (uh)[r,m]

)
δjw

(r,m)
h·i +

+
n∑

j=1

[
%h·ij

(
t(r), x(m), (uh)[r,m]

)
− %h·ij

(
t(r), x(m), (vh)[r,m]

) ]
δjv

(r,m)
h·i +

+fh·i
(
t(r), x(m), (uh)[r,m]

)
− fh·i

(
t(r), x(m), (vh)[r,m]

)
− (17)

−Γ(r,m)
h·i , 1 ≤ i ≤ k.

Write
P (r,m)[z] = ( t(r), x(m), z[r,m] ) (18)

and Λh = (Λh·1, . . . ,Λh·k) where

Λ(r,m)
h·i =

n∑
j=1

[
%h·ij( P (r,m)[uh] )− %h·ij( P (r,m)[vh] )

]
δjv

(r,m)
h·i +

+ fh·i( P (r,m)[uh] )− fh·i(P (r,m)[vh] )− Γ(r,m)
h·i .

(19)

From (17), it follows that the function wh satisfies the recursive equations

w
(r+1,m)
h·i =

1
2

n∑
j=1

w
(r,m+ej)
h·i

[ 1
n

+
h0

hj
%h·ij( P (r,m)[uh] )

]
+

+
1
2

n∑
j=1

w
(r,m−ej)
h·i

[ 1
n
− h0

hj
%h·ij( P (r,m)[uh] )

]
+ h0Λ

(r,m)
h·i .

(20)

Write

ω
(r)
h = ωh(t(r)) =

= max
{
‖w(j,m)

h ‖ : (t(j), x(m)) ∈ E∗
h ∩

(
[−τ0, t

(r)]×Rn
) }

, 0 ≤ r ≤ N0.
(21)
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The term Λh can be estimated as follows

‖Λ(r,m)
h ‖ ≤ σ(t(r), ω(r)

h )(1 + c0) + α(h) on E′
h. (22)

From (9), (20) and (22), we conclude that the function ωh satisfies the recursive
inequality

ω
(r+1)
h ≤ ω

(r)
h + c̃ h0 σ(t(r), ω(r)

h ) + h0α(h), 0 ≤ r ≤ N0 − 1, (23)

with c̃ = (1 + c0) and
ω

(0)
h ≤ α0(h). (24)

Consider the differential equation

η′(t) = c̃ σ(t, η(t)) + α(h) (25)

with the initial condition
η(0) = α0(h) (26)

and its solution ηh. From (16) and Assumption H[%], it follows that

lim
h→0

ηh(·) = 0.

Then, because ηh is a convex function:

η
(r+1)
h ≥ η

(r)
h + h0 c̃ σ(t, η(r)

h ) + h0α(h).

Using induction we prove that

ω
(r)
h ≤ η

(r)
h , 0 ≤ r ≤ N0.

This gives (12) with η(h) = ηh(a) and Theorem 1 is proved.

Now we consider difference functional problem (6), (7) where Fh is given by (5)
and the difference operators δ0, δ = (δ1, . . . , δn) are calculated in the following way:

δ0z
(r,m)
i =

1
h0

[z(r+1,m)
i − z

(r,m)
i ], (27)

δjz
(r,m)
i =

1
hj

[z(r,m+ej)
i − z

(r,m)
i ] if %h·ij( t(r), x(m), z[r,m]) ≥ 0, (28)

δjz
(r,m)
i =

1
hj

[z(r,m)
i − z

(r,m−ej)
i ] if %h·ij( t(r), x(m), z[r,m]) < 0, (29)

where 1 ≤ i ≤ k.
It is easily seen that problem (6), (7) with difference operators defined by (27)–(29)
has exactly one solution uh : E∗

h → Rk.
Now we give an estimate of the difference between the exact and approximate

solution of the above problem.
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Theorem 2. Suppose that Assumption H[%h, fh] is satisfied and

1) h ∈ ∆ and

1− h0

n∑
j=1

1
hj
| %h·ij(t, x, w)| ≥ 0 on E′

h × F(Dh, Rk), 1 ≤ i ≤ k; (30)

2) uh :E∗
h→Rk is the solution of the problem (6), (7) with δ0 and δ given by (27)–(29);

3) vh : E∗
h → Rk satisfies relations (8), (9);

4) there is c0 ∈ R+ such that

‖ δjv
(r,m)
h ‖ ≤ c0 on Eh, 1 ≤ j ≤ n.

Under these assumptions, there is η : ∆ → R+ such that

‖u
(r,m)
h − v

(r,m)
h ‖ ≤ η(h) on Eh and lim

h→0
η(h) = 0. (31)

Proof. Let Γh : E′
h → R and Γ0·h : E0·h ∪ ∂0Eh → R be the functions defined by (13)

and (14) with δ0 and δ given by (28), (29). Then estimate (15) is satisfied and the
function wh = uh − vh satisfies the difference functional system

w
(r+1,m)
h·i = w

(r,m)
h·i + h0

n∑
j=1

%h·ij( P (r,m)[uh] ) δjw
(r,m)
h·i +

+ h0

n∑
j=1

[
%h·ij( P (r,m)[uh] )− %h·ij( P (r,m)[vh] )

]
δjv

(r,m)
h·i +

+ h0

[
fh·i( P (r,m)[uh] )− fh·i(P (r,m)[vh] )

]
− h0Γ

(r,m)
h·i ,

where (t(r), x(m)) ∈ E′
h, 1 ≤ i ≤ k and P (r,m)[z] is given by (18). Write

I
(r,m)
i·+ = { j : 1 ≤ j ≤ n, %h·ij(P (r,m)[uh] ) ≥ 0 },

I
(r,m)
i·− = {1, . . . , n} \ I

(r,m)
i·+

and suppose that Λh is defined by (19). Then we have

w
(r+1,m)
h·i = h0 Λ(r,m)

h +

+ w
(r,m)
h·i

[
1− h0

∑
j∈I

(r,m)
i·+

1
hj

%h·ij( P (r,m)[uh] )+

+ h0

∑
j∈I

(r,m)
i·−

1
hj

%h·ij( P (r,m)[uh] )
]
+

+ h0

∑
j∈I

(r,m)
i·+

1
hj

%h·ij( P (r,m)[uh] )w(r,m+ej)
h·i −

− h0

∑
j∈I

(r,m)
i·−

1
hj

%h·ij( P (r,m)[uh] )w(r,m−ej)
h·i , (t(r), x(m)) ∈ E′

h.
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From (15), (22), (30), it follows that the function ωh defined by (21) satisfies recursive
inequality (23) and initial estimate (24) holds. Then we get the estimate

ωh
(r) ≤ ηh(a)

where ηh is the solution of (25), (26). This gives (31) with η(h) = ηh(a) and Theorem 2
is proved.

Remark 1. The stability of difference equations generated by hyperbolic systems of
conservation laws is strictly connected with the Courant-Friedrichs-Levy (CFL) con-
dition ([3], Chapter III). Inequalities (11) and (30) can be considered as the CFL
conditions for system (6) with difference operators given by (3), (4) and (27)–(29),
respectively.

3. DIFFERENCE METHODS FOR MIXED PROBLEM

We will need the following operator Th : F(Dh, Rk) → C(D,Rk) . Let

S+ = { ξ = (ξ1, . . . , ξn) : ξj ∈ {0, 1}, for 0 ≤ j ≤ n }.
Suppose that w ∈ F(Dh, Rk). For every (t, x) ∈ D, there is (t(r), x(m)) ∈ Dh such that
( t(r+1), x(m+1)) ∈ Dh , where m + 1 = (m1 + 1, . . . ,mn + 1) and t(r) ≤ t ≤ t(r+1) ,
x(m) ≤ x ≤ x(m+1) . Then we put(

Th w
)
(t, x) =

t− t(r)

h0

∑
ξ∈S+

w(r+1,m+ξ)
(x− x(m)

h′

)ξ(
1− x− x(m)

h′

)1−ξ

+

+
(
1− t− t(r)

h0

) ∑
ξ∈S+

w(r,m+ξ)
(x− x(m)

h′

)ξ(
1− x− x(m)

h′

)1−ξ

,

where (x− x(m)

h′

)ξ

=
n∏

j=1

(
xj − x

(mj)
j

hj

)ξj

,

(
1− x− x(m)

h′

)1−ξ

=
n∏

j=1

(
1−

xj − x
(mj)
j

hj

)1−ξj

,

and we put 00 = 1 in the above formulas.

Lemma 3. Suppose that the function w : D → Rk is of class C2 and denote by wh

the restriction of w to the set Dh. Let C̃ ∈ R+ be such a constant that

‖ ∂ttw(t, x)‖, ‖ ∂txj w(t, x)‖, ‖ ∂xjxl
w(t, x)‖ ≤ C̃ on D

where j, l = 1, . . . , n. Then

‖Thwh − w ‖D ≤ C̃
[
h2

0 + 2h0

n∑
j=1

hj +
n∑

j,l=1

hjhl

]
.

The proof of lemma (3) is given in [6, Chapter 5].
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Lemma 4. Suppose that the function w = (w1, . . . , wk) : D → Rk is of class C1 and
wh = (wh·1, . . . , wh·k) is the restriction of w to the set Dh. Let c0 be such a constant
that

‖ ∂tw(t, x)‖ ≤ c0, ‖ ∂xj
w(t, x)‖ ≤ c0 for 1 ≤ j ≤ n, (t, x) ∈ D (32)

Then
‖Thwh − w ‖D ≤ c0‖h‖. (33)

Proof. Let (t, x) ∈ D, then there is (t(r), x(m)) ∈ Dh such that (t(r+1), x(m+1)) ∈ D
and t(r) ≤ t ≤ t(r+1) , x(m) ≤ x ≤ x(m+1) . It follows that there are θi, θ̃i ∈ D, 1 ≤
i ≤ k such that

wi(t, x)− Thwh·i(t, x) = wi(t, x)− t− t(r)

h0

∑
ξ∈S+

[
wi(t, x) + ∂twi(θi)(t(r+1) − t)+

+
n∑

j=1

∂xj
wi(θi)(x

(mj+ξj)
j − xj)

]
×

×
(x− x(m)

h′

)ξ(
1− x− x(m)

h′

)1−ξ

−

−
(
1− t− t(r)

h0

) ∑
ξ∈S+

[
wi(t, x)− ∂twi(θ̃i)(t(r+1) − t)+

+
n∑

j=1

∂xj
wi(θ̃i)(x

(mj+ξj)
j − xj)

]
×

×
(x− x(m)

h′

)ξ(
1− x− x(m)

h′

)1−ξ

, 1 ≤ i ≤ k.

For x(m) ≤ x ≤ x(m+1) we have∑
ξ∈S+

(x− x(m)

h′

)ξ(
1− x− x(m)

h′

)1−ξ

= 1.

Then from (32) we get (33).

Assumption H[%, f ]. Suppose that functions % : E × C(D,Rk) → Mk×n and
f : E × C(D,Rk) → Rk are continuous and there is σ : [0, a] × R+ → R+ satisfying
Assumption H [σ] and such that

‖ %(t, x, w)− %(t, x, w̄)‖ ≤ σ(t, ‖w − w̄‖D),

‖ f(t, x, w)− f(t, x, w̄)‖ ≤ σ(t, ‖w − w̄‖D)

on E × C(D,Rk).

Now we consider functional differential problem (1), (2) and the difference equa-
tions

δ0z
(r,m)
i =

n∑
j=1

%ij

(
t(r), x(m), Thz[i,m]

)
δjz

(r,m) + fi

(
t(r), x(m), Thz[i,m]

)
(34)
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for 1 ≤ i ≤ k with initial boundary condition (7). We will prove the convergence and
give an error estimate for the method (34), (7), with the difference operators δ0 and
δ defined first by (3), (4) and then by (27)–(29).

3.1. δ0, δ DEFINED BY (3), (4)

Theorem 5. Suppose that Assumption H[%, f ] is satisfied and

1) h ∈ ∆ and

1
n
− h0

hj
| %ij(t, x, w)| ≥ 0 on E × C(D,Rk) for 1 ≤ j ≤ n, 1 ≤ i ≤ k

and there is M = (M1, . . . ,Mn) ∈ Rn
+ such that h′ ≤ Mh0;

2) uh : E∗
h → Rk is a solution of problem (34), (7);

3) v : E∗ → Rk is a solution of (1), (2) and vh is the restriction of v to E∗
h;

4) v is of class C1 and c0 ∈ R+ is such a constant that

‖ ∂xj v(t, x) ‖ ≤ c0 on E, 1 ≤ j ≤ n;

5) there is α0 : ∆ → R+ such that

‖ϕ
(r,m)
h − ϕ(r,m) ‖ ≤ α0(h) on E0·h ∪ ∂0Eh,

lim
h→0

α0(h) = 0.
(35)

Then there is η : ∆ → R+ such that

‖u
(r,m)
h − v

(r,m)
h ‖ ≤ η(h) on Eh and lim

h→0
η(h) = 0. (36)

Proof. We use Theorem 1 to prove the above assertion. Write

Γ(r,m)
h·i = δ0v

(r,m)
h·i −

n∑
j=1

%ij

(
t(r), x(m), Th(vh)[r,m]

)
δjv

(r,m)
h·i −

− fi

(
t(r), x(m), Th(vh)[r,m]

)
.

(37)

We see at once that

Γ(r,m)
h·i = δ0v

(r,m)
h·i − ∂tv

(r,m)
i +

+
n∑

j=1

[
%ij

(
t(r), x(m), v(t(r),x(m))

)
− %ij

(
t(r), x(m), Th(vh)[r,m]

)]
δjv

(r,m)
h·i +

+
n∑

j=1

%ij

(
t(r), x(m), v(t(r),x(m))

)[
∂xj v

(r,m)
i − δjv

(r,m)
h·i

]
+

+ fi

(
t(r), x(m), v(t(r),x(m))

)
− fi

(
t(r), x(m), Th(vh)[r,m]

)
.
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It is easily seen that there is α : ∆ → R+ such that

‖Γ(r,m)
h ‖ ≤ α(h) on E′

h and lim
h→0

α(h) = 0.

From Theorem 1, it follows that there exists a function η : ∆ → R satisfying (36).
This completes the proof of the theorem.

Now we give an error estimate for method (34), (7).

Lemma 6. Suppose that

1) the functions % : E×C(D,Rk) → Mk×n and f : E×C(D,Rk) → Rk are continuous
and there is L > 0 such that

‖ %(t, x, w)− %(t, x, w̄)‖ ≤ L‖w − w̄‖D,

‖ f(t, x, w)− f(t, x, w̄)‖ ≤ L‖w − w̄‖D

on E × C(D,Rk);
2) assumptions 1), 2), 3), 5) of Theorem 5 are satisfied;
3) v : E∗ → Rk is a solution of (1), (2) and v is of class C2 on E∗;
4) c0, C, d ∈ R+ are such constants that

‖ ∂ttv(t, x)‖, ‖ ∂txj
v(t, x)‖, ‖ ∂xjxl

v(t, x)‖ ≤ C on D, 1 ≤ j, l ≤ n,

‖%j(t, x, v(t,x))‖ ≤ d on E for 1 ≤ j ≤ n

and
‖ ∂xj

v(t, x)‖ ≤ c0 on E, 1 ≤ j ≤ n.

Then
‖u

(r,m)
h − v

(r,m)
h ‖ ≤ η(h) on Eh, (38)

where

η(h) = α0(h)eL(1+c0) a + (Ah0 + Bh2
0)

eL(1+c0) a − 1
L(1 + c0)

. (39)

and

A =
1
2
C

[
1 +

1
n

n∑
j=1

M2
j + d

n∑
j=1

Mj

]
,

B = L(1 + c0)C
[
1 + 2

n∑
j=1

Mj +
∑
j,l=1

MjMl

]
.

(40)

Proof. In a general case, we have estimate (38) with η(h) = ηh(a) and ηh : [0, a] → R+

is a solution of (25), (26) where c̃ = (1 + c0), σ(t, p) = Lp and α : ∆ → R+ is such a
function that

δ0v
(r,m)
h = Fh[vh](r,m) + Γ(r,m)

h on E′
h,
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and
‖Γ(r,m)

h ‖ ≤ α(h) on E′
h.

An easy computation shows that

‖∂tv
(r,m) − δ0v

(r,m)
h ‖ ≤ h0

2
C

(
1 +

1
n

n∑
j=1

M2
j

)
and

‖∂xj
v(r,m) − δjv

(r,m)
h ‖ ≤ h0

2
CMj for 1 ≤ j ≤ n.

According to the above estimates and Lemma (3), there is

‖Γ(r,m)
h ‖ ≤ Ah0 + Bh2

0 on E′
h

Then

η(h) = −Ah0 + Bh2
0

L(1 + c0)
+

(
α0(h) +

Ah0 + Bh2
0

L(1 + c0)

)
eL(1+c0) a.

and assertion (38) follows.

3.2. δ0, δ DEFINED BY (27)–(29)

Now we consider functional differential problem (1), (2) and the difference functional
problem consisting of (34) and initial boundary condition (7). This time, δ0 and
δ = (δ1, . . . , δn) are defined by (27)–(29).

Theorem 7. Suppose that Assumption H[%, f ] is satisfied and

1) h ∈ ∆ and

1− h0

n∑
j=1

1
hj
| %ij(t, x, w)| ≥ 0 on E × C(D,Rk)

and there is M = (M1, . . . ,Mn) ∈ Rn
+ such that h′ ≤ Mh0;

2) the function uh : E∗
h → R is a solution of the problem (34), (7) with δ0 and δ given

by (27)–(29);
3) v : E∗ → Rk is a solution of (1), (2);
4) the function v|E is of class C1 and c0 ∈ R+ is such a constant that

‖ ∂tv(t, x) ‖ , ‖ ∂xj v(t, x) ‖ ≤ c0 on E, 1 ≤ j ≤ n;

5) there is α0 : ∆ → R+ such that condition (35) is satisfied.

Then there is η : ∆ → R+ such that

‖u
(r,m)
h − v

(r,m)
h ‖ ≤ η(h) on Eh and lim

h→0
η(h) = 0. (41)
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Proof. We use Theorem 2 to prove the above assertion. Let Γ: E′
h → Rk be a function

given by (37) with δ defined by (28), (29). From Assumption H[%, f ] and Lemma (4),
it follows that there is a function α : ∆ → R+ such that

‖Γ(i,m)
h ‖ ≤ α(h) on E′

h and lim
h→0

α(h) = 0.

Then the assumptions of Theorem 2 are satisfied and assertion (41) follows from
(31).

Now we give an error estimate for method (34), (7) and δ0, δ = (δ1, . . . , δn) defined
by (27)–(29).

Lemma 8. Suppose that

1) the function % : E×C(D,Rk) → Mk×n and f : E×C(D,Rk) → Rk are continuous
and there is L > 0 such that

‖ %(t, x, w)− %(t, x, w̄)‖ ≤ L‖w − w̄‖D,

‖ f(t, x, w)− f(t, x, w̄)‖ ≤ L‖w − w̄‖D

on E × C(D,Rk);
2) assumptions 1), 2), 3), 5) of Theorem 7 are satisfied;
3) v : E∗ → Rk is a solution of (1), (2) and v is of class C2 on E∗;
4) c0, C, d ∈ R+ are such constants that

‖ ∂ttv(t, x)‖, ‖ ∂txj
v(t, x)‖, ‖ ∂xjxl

v(t, x)‖ ≤ C on D, 1 ≤ j, l ≤ n,

‖%j(t, x, v(t,x))‖ ≤ d on E for 1 ≤ j ≤ n

and
‖ ∂xj

v(t, x)‖ ≤ c0 on E, 1 ≤ j ≤ n.

Then
‖u

(r,m)
h − v

(r,m)
h ‖ ≤ η(h) on Eh, (42)

where η(h) is given by (39) with

A =
1
2
C

[
1 + d

n∑
j=1

Mj

]
and B is defined in (40).

The proof of Lemma 8 is similar to that of Lemma 6. Details are omitted.
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4. NUMERICAL EXAMPLE

For n = 2, we put

E = [0, 1]× [−1, 1]× [−1, 1],

D = {0} ×
[
−1

2
,
1
2

]
×

[
−1

2
,
1
2

]
,

D0 =
[
−1

2
,
1
2

]
×

[
−1

2
,
1
2

]
.

Denote by x = (x1, x2) and by z the unknown function in the variables (t, x), and
consider the differential integral equation

∂tz(t, x) =−

[∫
D0

z(t, x + s) ds− z(t, x) +
1
6
(1 + t)

]
∂x1z(t, x)+

+

[∫
D0

z(t, x + s) ds− 4z(t,
x

2
)− 1

6
(1 + t)

]
∂x2z(t, x)+

+ 3
∫

D0

z(t, x + s) ds− 3
2
z(t, x)− 6z(t,

x

2
)− 1

2
(1 + t) + x2

1 + x2
2,

(43)

with the initial boundary condition

z(t, x) = (1 + t)(x2
1 + x2

2) for (t, x) ∈ E0 ∪ ∂0E (44)

where

E0 = {0} × [−2, 2]× [−2, 2],

∂0E = [0, 1]×
[(

[−2, 2]× [−2, 2]
)
\

(
[−2, 2]× [−2, 2]

)]
.

The difference method for the problem is of the form

δtz
(r,i,j) =−

[
I

(r,i,j)
h − z(r,i,j) +

1
6
(1 + t(r))

]
δ1z

(r,i,j)+

+
[
I

(r,i,j)
h − 4z(r,i,j) − 1

6
(1 + t(r))

]
δ2z

(r,i,j)+

+ 3I
(r,i,j)
h − 3

2
z(r,i,j) − 6Thz[r,i, j

2 ] −
1
2
(1 + t(r)) + (x(i)

1 )2 + (x(j)
2 )2

(45)

and

z(r,i,j) = (1 + t(r))( (x(i)
1 )2 + (x(j)

2 )2 ) for (t(r), x(i)
1 , x

(j)
2 ) ∈ E0 ∪ ∂0E, (46)

where δ0z
(r,i,j), δ1z

(r,i,j) and δ2z
(r,i,j) are defined by (27)–(29) and

I
(r,i,j)
h =

∫
D0

Thz[r,i,j](p, s) dp ds

with Th defined in Section 3 and h = (h0, h1, h2).
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The function v(t, x) = (1+t)(x2
1 +x2

2) is the solution of (43), (44). Let uh : E∗
h →

R be the solution of (45), (46) and ε = |uh − v|. The values ε(0.3, x), ε(0.5, x),
ε(0.7, x), ε(0.9, x) and uh(0.3, x), uh(0.5, x), uh(0.7, x), uh(0.9, x) are listed in Tables
1 and 2 for h0 = 0.0005, h1 = 0.005 and h2 = 0.005.

Table 1

t(r) = 0.3 t(r) = 0.5
x(j) y(k) uh εh uh εh

−0.5 −0.5 0.6507 7.106 10−4 0.7505 5.483 10−4

−0.5 0.0 0.3267 1.732 10−3 0.3774 2.394 10−3

−0.5 0.5 0.6499 7.457 10−5 0.7500 4.606 10−5

0.0 −0.5 0.3254 3.673 10−4 0.3753 2.756 10−4

0.0 0.0 −0.0001 6.930 10−5 −0.0001 1.421 10−4

0.0 0.5 0.3218 3.161 10−3 0.3704 4.589 10−3

0.5 −0.5 0.6500 2.407 10−5 0.7500 2.869 10−5

0.5 0.0 0.3227 2.278 10−3 0.3713 3.699 10−3

0.5 0.5 0.6433 6.728 10−3 0.7399 1.006 10−2

Table 2

t(r) = 0.7 t(r) = 0.9
x(j) y(k) uh εh uh εh

−0.5 −0.5 0.8500 3.074 10−5 0.9492 7.995 10−4

−0.5 0.0 0.4278 2.799 10−3 0.4781 3.064 10−3

−0.5 0.5 0.8501 5.237 10−5 0.9503 2.964 10−4

0.0 −0.5 0.4250 2.427 10−5 0.4745 5.080 10−4

0.0 0.0 −0.0002 2.094 10−4 −0.0003 2.707 10−4

0.0 0.5 0.4194 5.636 10−3 0.4686 6.433 10−3

0.5 −0.5 0.8500 1.112 10−5 0.9500 2.752 10−5

0.5 0.0 0.4200 4.957 10−3 0.4690 6.004 10−3

0.5 0.5 0.8375 1.248 10−2 0.9359 1.412 10−2
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Let εmax be the largest and εmean the mean value of all ε for a given t(r) (Tab. 3).

Table 3

t(r) εmax εmean

0.1 6.284 10−3 6.246 10−4

0.2 1.101 10−2 1.153 10−3

0.3 1.437 10−2 1.602 10−3

0.4 1.671 10−2 1.986 10−3

0.5 1.843 10−2 2.324 10−3

0.6 1.983 10−2 2.632 10−3

0.7 2.115 10−2 2.926 10−3

0.8 2.329 10−2 3.369 10−3

0.9 2.416 10−2 3.523 10−3

1.0 2.667 10−2 3.847 10−3

The computation was performed on a PC computer.
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