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DEFORMATION MINIMAL BENDING
OF COMPACT MANIFOLDS:
CASE OF SIMPLE CLOSED CURVES

Abstract. The problem of minimal distortion bending of smooth compact embedded con-
nected Riemannian n-manifolds M and N without boundary is made precise by defining a
deformation energy functional ® on the set of diffeomorphisms Diff (M, N). We derive the
Euler-Lagrange equation for ® and determine smooth minimizers of ® in case M and N are
simple closed curves.
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1. INTRODUCTION

Two diffeomorphic compact embedded hypersurfaces admit infinitely many diffeo-
morphisms, which we view as prescriptions for bending one hypersurface into the
other. We ask which diffeomorphic bendings have minimal distortion with respect to
a natural bending energy functional that will be precisely defined. We determine the
Euler-Lagrange equation for the general case of hypersurfaces in Euclidean spaces and
solve the problem for one-dimensional manifolds embedded in the plane. The existence
of minima for the general case is a difficult open problem. An equivalent problem for a
functional that measures the total energy of deformation due to stretching was solved
in [2]. Some related discussions on the minimization problem are presented in [4,7-9].

2. MINIMAL DISTORTION DIFFEOMORPHISMS

Let M and N denote compact, connected and oriented n-manifolds without boundary
that are embedded in R"*! and equip them with the natural Riemannian metrics
gy and gy inherited from the usual metric of R**!. These Riemannian manifolds
(M, gar) and (N, gi) have the volume forms wys and wy induced by their Riemannian
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metrics. We assume that M and N are diffeomorphic, denote the class of (C*°)
diffeomorphisms from M to N by Diff (M, N), the (total space of the) tangent bundle
of M by TM, the cotangent bundle by T'M*, and the sections of an arbitrary vector
bundle V' by I'(V). For h € Diff (M, N), we use the standard notation h* for the
pull-back map associated with h and h, for its push-forward map.

Definition 2.1. The strain tensor S € T(TM* @ TM*) corresponding to h €
Diff (M, N) is defined to be
S=hgy —gu (1)

(cf. [5,7]).

Recall the natural bijection between covectors in T*M and vectors in TM (see
[3]): To each covector a,, € T,M* assign the vector aff € T,M that is implicitly
defined by the relation

ap = (gar)p(0f ).

Using this correspondence, we introduce the Riemannian metric g3, on TM* by
g}k\/[(av ﬁ) = gM(a#a ﬁ#),

where the base points are suppressed.

There is a natural Riemannian metric G on TM* @ TM* given by G = ¢35, ® g7s-
To compute this metric in local coordinates, let (U, ¢) be a local coordinate system
on M. Using the coordinates of R™, the map ¢ : U — R™ can be expressed in the
form

o(p) = (z'(p),...,2"(p)).

As usual, (z'(p),...,2"(p)) are the local coordinates of p € M and the n-tuple

of functions (z',22,...,2™) is the local coordinate system with respect to (U, ).

Because ¢ is a homeomorphism from U onto ¢(U), we identify p € U and ¢(p) € R”

via ¢. Let us define (;L) = aép; (¢(p)). The set of vectors ((%)p, e (%)p)
p

forms a basis of the tangent space T, M. Its dual basis ((da')y, ..., (dz"),) is a basis
of T,M*, i.e.,

; 0 ; .
(d;,;z)p((@)p) =6, 1<ij<n.

Using the Einstein summation convention, a tensor B € I'(TM* ® TM*) has local
coordinate representation B = b;;dx’ ® dx’, where b;; = B(0/0x",0/0x7). The local
coordinate representation of the Riemannian metric G is

G(B, B) = b;jbi gy, (dz’, dz¥) g, (da?, da') = bijbri (g [ga]’", (2)

where [ga/]¥ is the (i, ) entry of the inverse matrix of ([gar]i;).

Definition 2.2. The deformation energy functional ® : Diff (M, N) — R4 is defined
to be

®(h) = /M G(h"gn — gm, 9N — gm) wr- (3)
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The following invariance property of the functional ® is obvious because the isome-
tries of R™t! are compositions of translations and rotations, which produce no defor-
mations.

Lemma 2.3. If k € Diff(N) is an isometry of N (i.e., k*gn = gn), then ®(koh) =
O(h).

3. THE FIRST VARIATION

We will compute the Euler-Lagrange equation for the deformation energy func-
tional ®. To do this, we will consider smooth variations.

Definition 3.1. A C*° function F(t,p) = h:(p) defined on (—e,e) x M is called a
smooth variation of a diffeomorphism h € Diff (M, N) if

1. hy € Diff (M, N) for allt € (—¢,¢) and
2. ho =h.

The tangent space Ty, Diff(M, N) is identified with the set T'(h~!TN) of all the
smooth sections of the induced bundle h~'TN with fiber Thp)IN over the point p
of the manifold M (cf. [6]). Indeed, each smooth variation F' : (—g,6) x M — N
corresponds to a curve t — F'(t,p) = hy(p) in Diff (M, N).

Definition 3.2. Let F : (—g,e) x M — N be a smooth variation of a diffeomorphism
h € Diff (M, N). The variational vector field V € T(h ™ TN) is defined by

B
V(p) = —hy = —F(0,
(p) . (p) 5 (0,p)

forpe M.

Since the tangent space Tp, Diff (M, N) consists of all the variational vector fields
of the diffeomorphism h, it follows that T} Diff (M, N) is a subset of I'(h~'T'N).
On the other hand, suppose that a vector field V € T'(h='TN) is given. We can
easily construct a variation of h with the variational vector field V. Indeed, let
¥ be the flow of the vector field X = V o h™! € I'(T'N). The smooth variation
F(t,p) = 1 o h(p) of the diffeomorphism h € Diff (M, N) has the variational vector
field V(p) = %(wt oh)(p) = X o h(p) = V(p) as required. Hence,

T, Diff (M, N) = T(h"'TN).

We will consider all variations of h € Diff (M, N) of the form F(t,p) = h o ¢+(p),
where ¢, is the flow of a vector field X € I'(T'M). The variational vector field
corresponding to the variation F is V = h,X. Since h is a diffeomorphism, it is easy
to see that the variational vector fields of the variations of the form h o exhaust all
possible variational vector fields.
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Let us restrict the domain of the functional ® to Diff (M, N). The diffeomorphism
h is a critical point of & if

d
G0 o d0lica = DRI = [ Gy — g, Ly'ax) =0 (4)
M
for all Y € T'(T'M), where Ly denotes the Lie derivative in the direction Y.
Let 8 € D(TM*®TM*) have the local representation 3;;dz’®@dx?. We will use the

following formula for the components of the Lie derivative Lx (3 of 3 in the direction
of the vector field X:

08;; ox* ax*
ot i ar T g ©)

[LxA)ij = X*

4. SOLUTION FOR ONE DIMENSIONAL MANIFOLDS

In this section M and N are smooth simple closed curves in R2. Their arclengths
are denoted L(M) and L(N) respectively, and they are supposed to have base points
p € M and g € N. We will determine the minimum of the functional

d(h) = / G(h*gn — gm, W gn — gur)wnr (6)
M
over the admissible set
A={h eDiff(M,N): h(p) = q}. (7)

There exist unique arc length parametrizations v : [0,L(M)] — M and ¢ :
[0,L(N)] — N of M and N respectively, which correspond to the positive ori-
entations of the curves M and N in the plane, and are such that v(0) = p,
£(0) = q. Notice that [ga]11(t) = [F(@®)|*> = 1 = [ga])'(t) for t € [0, L(M)] and
[h*gn]i1(t) = |Dh(~y(t))¥(t)|*. Using formula (2) for the metric G, we can rewrite
functional (6) in local coordinates:

L(M) ,
B(h) = /O (Iph ()30 - 1)2dt. (8)

Let us denote the local representation of a diffeomorphism h € Diff (M, N) by u =
&' oho~. The function u is a diffeomorphism on the open interval (0, L(M)) and
can be continuously extended onto the closed interval [0, L(M)] as follows. If h is
orientation preserving, we can extend w to a continuous function on [0, L(M)] by
defining «(0) = 0 and w(L(M)) = L(N). In this case uw > 0. If h is orientation
reversing, we define u(0) = L(N) and u(L(M)) = 0.

Since

[Sen@] = |Scown] =wfwn)| =0
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for t € (0, L(M)), the original problem of the minimization of functional (6) can be
reduced to the minimization of the functional

L(M)
T (u) :/0 (u* —1)%dt (9)
over the admissible sets
B= {u S C’Q([O,L(M)], [O,L(N)]) cu(0) = 0,u(L(M)) = L(N)}

and
C= {u e C2([0, L(M)], [0, L(N)]) : u(0) = L(N), u(L(M)) = o}.

The minima will be shown to correspond to diffeomorphisms in Diff (M, N).
Lemma 4.1. Suppose that L(N) > L(M).

(i) The function v(t) = L(N)/L(M)t, where t € [0, L(M)], is the unique minimum
of the functional U over the admissible set B.

(ii) The function w(t) = —L(N)/L(M)t + L(N), where t € [0, L(M)], is the unique
minimum of the functional ¥ over the admissible set C.

Proof. Since the proofs of (i) and (ii) are almost identical, we will only present the
proof of statement (i).
The Euler-Lagrange equation for functional (9) is

4ii(3u* — 1) = 0. (10)

The only solution of the above equation that belongs to the admissible set B is

u(t) = %L where t € [0,L(M)]. Note that v corresponds to a diffeomorphism
in Diff(M, N).

We will show that the critical point v minimizes the functional ¥; that is,

for all u € B. Using Holder’s inequality

L(M) L(M)
L(N) = u(L(M)) :/O a(s)ds < [L(M)/O i2(s)ds] "7,

we have that

Thus, in view of the hypothesis that L(N) > L(M),

LoD Loy
/0 (i (3)—1)d8=/0 u(s)ds—L(M)EWEO. (12)
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After squaring both sides of inequality (12), we obtain the inequality

wn 2 (L) - LOIPY?
(/O ((s) ~ 1) ds) > e (13)

Applying Hoélder’s inequality to ®(u) and taking into account inequality (13), we
obtain inequality (11). Hence, the function v(t) = L(N)/L(M)t, where t € [0, L(M)],
minimizes the functional ¥ over the admissible set B. O

Remark 4.2. Let us write the FEuler-Lagrange equation (4) for the one-dimensional
case and compare it with equation (10).

Recall that
[gam]a(t) =1, [h*gn]i(t) = a(t)?

and use formula (5) to compute

[Ly h*gn]aa (t) = 2a() (@(t)y(t) + g(t)a(t)) = 212(7?)% (a(t)y(t)),

where y(t) is the local coordinate of the vector fieldY = y%, i.e., Y 1S a smooth periodic
function on [0, L(M)], which can be taken to be in C°(]0, L(M)]). Using the previ-
ous computation and formulas (2) and (4), we obtain the following Euler-Lagrange
equation:

L(M) L(M)
/ (u? — 1)u£(uy) dt = —/ i((iﬂ — 1)i)iydt =0
0 0

dt dt
for ally € C([0, L(M)]). The latter equation yields
%((af —1)d)a = wi(3%* — 1) = 0, (14)

which has the same solutions in the admissible sets B and C as equation (10) does.

Proposition 4.3. Suppose that M and N are smooth simple closed curves in R?
with arc lengths L(M) and L(N) and base points p € M and g € N; v and & are arc
length parametrizations of M and N with v(0) = p and £(0) = q that induce positive
orientations; and the functions v and w are as in Lemma 4.1. If L(N) > L(M), then
the functional ®(h) defined in display (6) has exactly two minimizers in the admissible
set
A={h eDiff(M,N) : h(p) =q} :
the orientation preserving minimizer
hy =Eovony™!

and the orientation reversing minimizer

hy=gowonr!

(where we consider v as a function defined on [0, L(M)) so that v~*(p) = 0). More-
over, the minimal value of the functional ® is
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o (LN = LMY
Example 4.4. For R > 0, the radial map h : R?> — R? is defined to be h(z) = Rz.
If M is a simple closed curve, N := h(M) and R > 1, then h is a minimum of ® on
Diff (M, N). To see this fact, let y(t) = (x(t),y(t)), t € [0, L(M)], be an arc length
parametrization of M. It is easy to see that £(t) = R(x(t/R),y(t/R)), t € [0, RL(M)]
parametrizes N = h(M) by its arc length. By Proposition 4.3, the minimizer hy is

hi(z) = €(vory1(2)) = E(Ry™(2)) = &(Rt) = Ry(t) = Rz
for all z € M. Hence, hy is the radial map.

Lemma 4.5. If L(N) < L(M), then the functional ¥ has no minimum in the ad-
missible set B.

(15)

Proof. Let ¢ : [0,L(M)] — R be a continuous piecewise linear function such that
$(0) = 0, ¢(L(M)) = L(N), and ¢(t) = +1 whenever t € (0, L(M)) and the derivative
is defined. The graph of ¢ looks like a zig-zag. It is easy to see that ¢ is an element of
the Sobolev space W14(0, L(M)) (one weak derivative in the Lebesgue space L*). By
the standard properties of W4(0, L(M)) with its usual norm | - ||1.4, there exists a
sequence of smooth functions ¢, € C*°[0, L(M)] (each of which satisfies the boundary
conditions ¢ (0) = 0 and ¢, (L(M)) = L(N)) such that ||¢r — ¢|l1,4 — 0 as k — oo.
Moreover, there is some constant C' > 0 such that fOL(M)(éi — )2 dx < C||¢n — 9|3 4-
It is easy to see that

|®(Pr) — P(¢)| < Cil|dk — b1,4

for some constant C; > 0. Taking into account the equality ¥(¢) = 0, we conclude
that U(¢r) — 0 as k — oo. Thus, {¢x}72, is a minimizing sequence for the functional
¥ in the admissible set B. On the other hand, there is no function f € B such that
U(f) = 0 = infgep ¥(g). Therefore, if L(N) < L(M), the functional ® has no
minimum in the admissible set B. O

Corollary 4.6. If L(N) < L(M), then the functional ® has no minimum in the
admissible set

Q = {h € C*(M,N) : h is orientation preserving and h(p) = q}.

Let us interpret the result of Lemma 4.5. Let h=E£opoy~!, where ¢ : [0, L(M)]—R
is defined in the proof of Lemma 4.5 and ~, £ are arc length (positive orientation)
parametrizations of the curves M and N viewed as periodic functions on R. In
case L(N) < L(M), the action of the function h on the curve M can be described
as follows. The curve M is cut into segments {M,}*_ , k € N, such that ¢ has a
constant value (1 or (—1)) on y~'(M;). Each segment M; is wrapped around the
curve N counterclockwise or clockwise depending on whether ¢ equals 1 or (—1) on
v~ Y(M;) respectively. Since L(N) is less than L(M), some points of N will be covered
by segments of M several times. During this process, the segments of the curve M
need not be stretched. Hence, as measured by the functional ®, no strain is produced,
i.e. ®(h)=0.
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The statement of Corollary 4.6 leaves open an interesting question: Does the
functional ® have a minimum in the admissible set A? Some results in this direction
are presented in the next section.

5. SECOND VARIATION

We will derive a necessary condition for a diffeomorphism h € Diff(M, N) to be
a minimum of the functional ®. Let h; = h o ¢; be a family of diffeomorphisms
in Diff(M, N), where ¢; is the flow of a vector field Y € I'(TM). Using the Lie
derivative formula (see [1]), we derive the equations % (hjgy) = ¢;Lyh*gn and
4 (¢;Lyh*gn) = ¢ Ly Ly h*gy. If there exists 6 > 0 such that ®(hy) > ®(h) for all
[t| < ¢ and for all variations h; of h, then h is called a relative minimum of h. If
h € Diff(M, N) is a relative minimum of ®, then j—;@(htﬂt:o > 0.
Using the previous computations of Lie derivatives, the second variation of ® is

1 d?
L () o = / G(Ly g, Ly h* g Joni+
2dt u 1)

+/ G(LyLyh*gn,h*gn — gnr)wis-
M

Lemma 5.1. Let M and N be simple closed curves parametrized by functions v and
& satisfying all the properties stated in Lemma 4.3. If h € Diff (M, N) minimizes the
functional ® in the admissible set A, then the local representation u =& 1 oho~y of
h satisfies the inequality

a*(t) > (17)

W =

for all t € (0, L(M)).
Proof. Using formula (5), we compute
[Ly h*gn)in = 2(iiiy + 4*g)

and
Ly Ly b )i = 20i%y% + i y? + Sivivgy + 0%y + 20%°).

Substituting the latter expressions into formula (16), we obtain the necessary condi-
tion

L(M) L(M) L(M)
W:=4 / ut g dt + 4 / W (u? — 1) g dt + 2 / W = 1) ygdt +...>0,
0 0 0

where the integrands of the omitted terms all contain the factor y. After integration
by parts, we obtain the inequality

L(M)
W= / (4@4 A2 — 1) — 262(a? — 1))92 dt+...>0. (18)
0
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Define y(t) = ep(£){(t), where p(t) is a periodic “zig-zag” function defined by the

expressions :
_ t, if0<t<1/2,
”(t)_{ 1—t, if1/2<t<1, (19)

and p(t + 1) = p(t), ¢ € C°(0,L(M)). Notice that p? = 1 almost everywhere on R
and 9% = (%2 + O(e) when € — 0. Substitute y into inequality (18) and pass to the
limit as € — 0. All the omitted terms in the expression for W tend to zero, because
they contain y as a factor. Hence, we obtain the inequality

L
W = / (4u* + 24° (4 — 1)) ¢* dt > 0,
0

which (after a standard bump function argument) reduces to the inequality
w?>1/3 (20)
as required. O

Proposition 5.2. If M and N are simple closed curves such that their corresponding

arc lengths L(M) and L(N) satisfy the inequality L((N)) < %, then the functional ®

has no minimum in the admissible set A.

Proof. If h € Diff (M, N) is a minimum of the functional ®, then h satisfies the
Euler-Lagrange equation (4). Let v and £ be parametrizations of the curves M and N
with all the properties stated in Corollary 4.3. By Remark 4.2, the local representation
u=¢E 1 ohowy of h satisfies the ordinary differential equation (14) on (0, L(M)). In
addition, u must satisfy the boundary conditions w(0) = 0, w(L(M)) = L(N) or u(0) =

(N),u(L(M)) = 0. Hence, either u(t) = L(N)/L(M)t or u(t) = —L(N)/L(M)t
( ). Since h minimizes ®, by Lemma 5.1 42 > 1/3, or, equlvalently, L(N)/L(M)
. This contradicts the assumption of the theorem.
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