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DEFORMATION MINIMAL BENDING
OF COMPACT MANIFOLDS:

CASE OF SIMPLE CLOSED CURVES

Abstract. The problem of minimal distortion bending of smooth compact embedded con-
nected Riemannian n-manifolds M and N without boundary is made precise by defining a
deformation energy functional Φ on the set of diffeomorphisms Diff(M, N). We derive the
Euler-Lagrange equation for Φ and determine smooth minimizers of Φ in case M and N are
simple closed curves.
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1. INTRODUCTION

Two diffeomorphic compact embedded hypersurfaces admit infinitely many diffeo-
morphisms, which we view as prescriptions for bending one hypersurface into the
other. We ask which diffeomorphic bendings have minimal distortion with respect to
a natural bending energy functional that will be precisely defined. We determine the
Euler-Lagrange equation for the general case of hypersurfaces in Euclidean spaces and
solve the problem for one-dimensional manifolds embedded in the plane. The existence
of minima for the general case is a difficult open problem. An equivalent problem for a
functional that measures the total energy of deformation due to stretching was solved
in [2]. Some related discussions on the minimization problem are presented in [4,7–9].

2. MINIMAL DISTORTION DIFFEOMORPHISMS

Let M and N denote compact, connected and oriented n-manifolds without boundary
that are embedded in Rn+1 and equip them with the natural Riemannian metrics
gM and gN inherited from the usual metric of Rn+1. These Riemannian manifolds
(M, gM ) and (N, gN ) have the volume forms ωM and ωN induced by their Riemannian
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metrics. We assume that M and N are diffeomorphic, denote the class of (C∞)
diffeomorphisms from M to N by Diff(M,N), the (total space of the) tangent bundle
of M by TM , the cotangent bundle by TM∗, and the sections of an arbitrary vector
bundle V by Γ(V ). For h ∈ Diff(M,N), we use the standard notation h∗ for the
pull-back map associated with h and h∗ for its push-forward map.

Definition 2.1. The strain tensor S ∈ Γ(TM∗ ⊗ TM∗) corresponding to h ∈
Diff(M,N) is defined to be

S = h∗gN − gM (1)

(cf. [5, 7]).

Recall the natural bijection between covectors in T ∗M and vectors in TM (see
[3]): To each covector αp ∈ TpM

∗ assign the vector α#
p ∈ TpM that is implicitly

defined by the relation
αp = (gM )p(α#

p , ·).

Using this correspondence, we introduce the Riemannian metric g∗M on TM∗ by

g∗M (α, β) = gM (α#, β#),

where the base points are suppressed.
There is a natural Riemannian metric G on TM∗ ⊗ TM∗ given by G = g∗M ⊗ g∗M .

To compute this metric in local coordinates, let (U, φ) be a local coordinate system
on M . Using the coordinates of Rn, the map φ : U → Rn can be expressed in the
form

φ(p) =
(
x1(p), . . . , xn(p)

)
.

As usual,
(
x1(p), . . . , xn(p)

)
are the local coordinates of p ∈ M and the n-tuple

of functions (x1, x2, . . . , xn) is the local coordinate system with respect to (U, φ).
Because φ is a homeomorphism from U onto φ(U), we identify p ∈ U and φ(p) ∈ Rn

via φ. Let us define
(

∂
∂xi

)
p

= ∂φ−1

∂xi

(
φ(p)

)
. The set of vectors

(
( ∂

∂x1 )p, . . . , ( ∂
∂xn )p

)
forms a basis of the tangent space TpM . Its dual basis

(
(dx1)p, . . . , (dxn)p

)
is a basis

of TpM
∗, i.e.,

(dxi)p

(( ∂

∂xj

)
p

)
= δi

j , 1 ≤ i, j ≤ n.

Using the Einstein summation convention, a tensor B ∈ Γ(TM∗ ⊗ TM∗) has local
coordinate representation B = bijdx

i ⊗ dxj , where bij = B(∂/∂xi, ∂/∂xj). The local
coordinate representation of the Riemannian metric G is

G(B,B) = bijbklg
∗
M (dxi, dxk)g∗M (dxj , dxl) = bijbkl[gM ]ik[gM ]jl, (2)

where [gM ]ij is the (i, j) entry of the inverse matrix of
(
[gM ]ij

)
.

Definition 2.2. The deformation energy functional Φ : Diff(M,N) → R+ is defined
to be

Φ(h) =
∫

M

G(h∗gN − gM , h∗gN − gM )ωM . (3)
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The following invariance property of the functional Φ is obvious because the isome-
tries of Rn+1 are compositions of translations and rotations, which produce no defor-
mations.

Lemma 2.3. If k ∈ Diff(N) is an isometry of N (i.e., k∗gN = gN ), then Φ(k ◦ h) =
Φ(h).

3. THE FIRST VARIATION

We will compute the Euler-Lagrange equation for the deformation energy func-
tional Φ. To do this, we will consider smooth variations.

Definition 3.1. A C∞ function F (t, p) = ht(p) defined on (−ε, ε) ×M is called a
smooth variation of a diffeomorphism h ∈ Diff(M,N) if

1. ht ∈ Diff(M,N) for all t ∈ (−ε, ε) and
2. h0 = h.

The tangent space Th Diff(M,N) is identified with the set Γ(h−1TN) of all the
smooth sections of the induced bundle h−1TN with fiber Th(p)N over the point p
of the manifold M (cf. [6]). Indeed, each smooth variation F : (−ε, ε) ×M → N
corresponds to a curve t 7→ F (t, p) = ht(p) in Diff(M,N).

Definition 3.2. Let F : (−ε, ε)×M → N be a smooth variation of a diffeomorphism
h ∈ Diff(M,N). The variational vector field V ∈ Γ(h−1TN) is defined by

V (p) =
d

dt
ht

∣∣∣∣
t=0

(p) =
∂

∂t
F (0, p)

for p ∈M .

Since the tangent space Th Diff(M,N) consists of all the variational vector fields
of the diffeomorphism h, it follows that Th Diff(M,N) is a subset of Γ(h−1TN).
On the other hand, suppose that a vector field V ∈ Γ(h−1TN) is given. We can
easily construct a variation of h with the variational vector field V . Indeed, let
ψt be the flow of the vector field X = V ◦ h−1 ∈ Γ(TN). The smooth variation
F (t, p) = ψt ◦ h(p) of the diffeomorphism h ∈ Diff(M,N) has the variational vector
field V (p) = d

dt (ψt ◦ h)(p) = X ◦ h(p) = V (p) as required. Hence,

Th Diff(M,N) = Γ(h−1TN).

We will consider all variations of h ∈ Diff(M,N) of the form F (t, p) = h ◦ φt(p),
where φt is the flow of a vector field X ∈ Γ(TM). The variational vector field
corresponding to the variation F is V = h∗X. Since h is a diffeomorphism, it is easy
to see that the variational vector fields of the variations of the form h ◦ψt exhaust all
possible variational vector fields.
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Let us restrict the domain of the functional Φ to Diff(M,N). The diffeomorphism
h is a critical point of Φ if

d

dt
Φ(h ◦ φt)|t=0 = DΦ(h)h∗Y =

∫
M

G(h∗gN − gM , LY h
∗gN ) = 0 (4)

for all Y ∈ Γ(TM), where LY denotes the Lie derivative in the direction Y .
Let β ∈ Γ(TM∗⊗TM∗) have the local representation βijdx

i⊗dxj . We will use the
following formula for the components of the Lie derivative LXβ of β in the direction
of the vector field X:

[LXβ]ij = Xk ∂βij

∂xk
+ βkj

∂Xk

∂xi
+ βik

∂Xk

∂xj
. (5)

4. SOLUTION FOR ONE DIMENSIONAL MANIFOLDS

In this section M and N are smooth simple closed curves in R2. Their arclengths
are denoted L(M) and L(N) respectively, and they are supposed to have base points
p ∈M and q ∈ N . We will determine the minimum of the functional

Φ(h) =
∫

M

G
(
h∗gN − gM , h∗gN − gM

)
ωM (6)

over the admissible set

A = {h ∈ Diff(M,N) : h(p) = q}. (7)

There exist unique arc length parametrizations γ : [0, L(M)] → M and ξ :
[0, L(N)] → N of M and N respectively, which correspond to the positive ori-
entations of the curves M and N in the plane, and are such that γ(0) = p,
ξ(0) = q. Notice that [gM ]11(t) = |γ̇(t)|2 = 1 = [gM ]11(t) for t ∈ [0, L(M)] and
[h∗gN ]11(t) = |Dh

(
γ(t)

)
γ̇(t)|2. Using formula (2) for the metric G, we can rewrite

functional (6) in local coordinates:

Φ(h) =
∫ L(M)

0

(∣∣Dh(γ(t))γ̇(t)∣∣2 − 1
)2

dt. (8)

Let us denote the local representation of a diffeomorphism h ∈ Diff(M,N) by u =
ξ−1 ◦ h ◦ γ. The function u is a diffeomorphism on the open interval

(
0, L(M)

)
and

can be continuously extended onto the closed interval [0, L(M)] as follows. If h is
orientation preserving, we can extend u to a continuous function on [0, L(M)] by
defining u(0) = 0 and u(L(M)) = L(N). In this case u̇ > 0. If h is orientation
reversing, we define u(0) = L(N) and u(L(M)) = 0.

Since ∣∣∣ d
dt

(h ◦ γ)(t)
∣∣∣2 =

∣∣∣ d
dt

(ξ ◦ u)(t)
∣∣∣2 = u̇2(t)

∣∣∣ξ̇(u(t))∣∣∣2 = u̇2(t)
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for t ∈
(
0, L(M)

)
, the original problem of the minimization of functional (6) can be

reduced to the minimization of the functional

Ψ(u) =
∫ L(M)

0

(u̇2 − 1)2dt (9)

over the admissible sets

B =
{
u ∈ C2

(
[0, L(M)], [0, L(N)]

)
: u(0) = 0, u(L(M)) = L(N)

}
and

C =
{
u ∈ C2

(
[0, L(M)], [0, L(N)]

)
: u(0) = L(N), u(L(M)) = 0

}
.

The minima will be shown to correspond to diffeomorphisms in Diff(M,N).

Lemma 4.1. Suppose that L(N) ≥ L(M).

(i) The function v(t) = L(N)/L(M)t, where t ∈ [0, L(M)], is the unique minimum
of the functional Ψ over the admissible set B.

(ii) The function w(t) = −L(N)/L(M)t + L(N), where t ∈ [0, L(M)], is the unique
minimum of the functional Ψ over the admissible set C.

Proof. Since the proofs of (i) and (ii) are almost identical, we will only present the
proof of statement (i).

The Euler-Lagrange equation for functional (9) is

4ü(3u̇2 − 1) = 0. (10)

The only solution of the above equation that belongs to the admissible set B is
v(t) = L(N)

L(M) t, where t ∈ [0, L(M)]. Note that v corresponds to a diffeomorphism
in Diff(M,N).

We will show that the critical point v minimizes the functional Ψ; that is,

Ψ(u) ≥ Ψ(v) =
(L(N)2 − L(M)2)2

L(M)3
(11)

for all u ∈ B. Using Hölder’s inequality

L(N) = u(L(M)) =
∫ L(M)

0

u̇(s) ds ≤
[
L(M)

∫ L(M)

0

u̇2(s) ds
]1/2

,

we have that
L(N)2

L(M)
≤

∫ L(M)

0

u̇2(s) ds.

Thus, in view of the hypothesis that L(N) ≥ L(M),∫ L(M)

0

(u̇2(s)− 1) ds =
∫ L(M)

0

u̇2(s) ds− L(M) ≥ L(N)2 − L(M)2

L(M)
≥ 0. (12)
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After squaring both sides of inequality (12), we obtain the inequality( ∫ L(M)

0

(u̇2(s)− 1) ds
)2

≥ (L(N)2 − L(M)2)2

L(M)2
. (13)

Applying Hölder’s inequality to Φ(u) and taking into account inequality (13), we
obtain inequality (11). Hence, the function v(t) = L(N)/L(M)t, where t ∈ [0, L(M)],
minimizes the functional Ψ over the admissible set B.

Remark 4.2. Let us write the Euler-Lagrange equation (4) for the one-dimensional
case and compare it with equation (10).

Recall that
[gM ]11(t) = 1, [h∗gN ]11(t) = u̇(t)2

and use formula (5) to compute

[LY h
∗gN ]11(t) = 2u̇(t)

(
ü(t)y(t) + ẏ(t)u̇(t)

)
= 2u̇(t)

d

dt

(
u̇(t)y(t)

)
,

where y(t) is the local coordinate of the vector field Y = y ∂
∂t , i.e., y is a smooth periodic

function on [0, L(M)], which can be taken to be in C∞c ([0, L(M)]). Using the previ-
ous computation and formulas (2) and (4), we obtain the following Euler-Lagrange
equation: ∫ L(M)

0

(u̇2 − 1)u̇
d

dt
(u̇y) dt = −

∫ L(M)

0

d

dt

(
(u̇2 − 1)u̇

)
u̇y dt = 0

for all y ∈ C∞c ([0, L(M)]). The latter equation yields

d

dt

(
(u̇2 − 1)u̇

)
u̇ = u̇ü(3u̇2 − 1) = 0, (14)

which has the same solutions in the admissible sets B and C as equation (10) does.

Proposition 4.3. Suppose that M and N are smooth simple closed curves in R2

with arc lengths L(M) and L(N) and base points p ∈M and q ∈ N ; γ and ξ are arc
length parametrizations of M and N with γ(0) = p and ξ(0) = q that induce positive
orientations; and the functions v and w are as in Lemma 4.1. If L(N) ≥ L(M), then
the functional Φ(h) defined in display (6) has exactly two minimizers in the admissible
set

A = {h ∈ Diff(M,N) : h(p) = q} :

the orientation preserving minimizer

h1 = ξ ◦ v ◦ γ−1

and the orientation reversing minimizer

h2 = ξ ◦ w ◦ γ−1

(where we consider γ as a function defined on
[
0, L(M)

)
so that γ−1(p) = 0). More-

over, the minimal value of the functional Φ is
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Φmin =
(L(N)2 − L(M)2)2

L(M)3
. (15)

Example 4.4. For R > 0, the radial map h : R2 → R2 is defined to be h(z) = Rz.
If M is a simple closed curve, N := h(M) and R > 1, then h is a minimum of Φ on
Diff(M,N). To see this fact, let γ(t) =

(
x(t), y(t)

)
, t ∈ [0, L(M)], be an arc length

parametrization of M . It is easy to see that ξ(t) = R
(
x(t/R), y(t/R)

)
, t ∈ [0, RL(M)]

parametrizes N = h(M) by its arc length. By Proposition 4.3, the minimizer h1 is

h1(z) = ξ
(
v ◦ γ−1(z)

)
= ξ

(
Rγ−1(z)

)
= ξ(Rt) = Rγ(t) = Rz

for all z ∈M . Hence, h1 is the radial map.

Lemma 4.5. If L(N) < L(M), then the functional Ψ has no minimum in the ad-
missible set B.

Proof. Let φ : [0, L(M)] → R be a continuous piecewise linear function such that
φ(0) = 0, φ(L(M)) = L(N), and φ̇(t) = ±1 whenever t ∈ (0, L(M)) and the derivative
is defined. The graph of φ looks like a zig-zag. It is easy to see that φ is an element of
the Sobolev space W 1,4(0, L(M)) (one weak derivative in the Lebesgue space L4). By
the standard properties of W 1,4(0, L(M)) with its usual norm ‖ · ‖1,4, there exists a
sequence of smooth functions φk ∈ C∞[0, L(M)] (each of which satisfies the boundary
conditions φk(0) = 0 and φk(L(M)) = L(N)) such that ‖φk − φ‖1,4 → 0 as k → ∞.
Moreover, there is some constant C > 0 such that

∫ L(M)

0
(φ̇2

k−φ̇2)2 dx ≤ C‖φk−φ‖21,4.
It is easy to see that

|Φ(φk)− Φ(φ)| ≤ C1‖φk − φ‖1,4

for some constant C1 > 0. Taking into account the equality Ψ(φ) = 0, we conclude
that Ψ(φk) → 0 as k →∞. Thus, {φk}∞k=1 is a minimizing sequence for the functional
Ψ in the admissible set B. On the other hand, there is no function f ∈ B such that
Ψ(f) = 0 = infg∈B Ψ(g). Therefore, if L(N) < L(M), the functional Φ has no
minimum in the admissible set B.

Corollary 4.6. If L(N) < L(M), then the functional Φ has no minimum in the
admissible set

Q = {h ∈ C2(M,N) : h is orientation preserving and h(p) = q}.

Let us interpret the result of Lemma 4.5. Let h=ξ◦φ◦γ−1, where φ : [0, L(M)]→R
is defined in the proof of Lemma 4.5 and γ, ξ are arc length (positive orientation)
parametrizations of the curves M and N viewed as periodic functions on R. In
case L(N) < L(M), the action of the function h on the curve M can be described
as follows. The curve M is cut into segments {Mi}k

i=1, k ∈ N, such that φ̇ has a
constant value (1 or (−1)) on γ−1(Mi). Each segment Mi is wrapped around the
curve N counterclockwise or clockwise depending on whether φ̇ equals 1 or (−1) on
γ−1(Mi) respectively. Since L(N) is less than L(M), some points of N will be covered
by segments of M several times. During this process, the segments of the curve M
need not be stretched. Hence, as measured by the functional Φ, no strain is produced,
i.e. Φ(h) = 0.
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The statement of Corollary 4.6 leaves open an interesting question: Does the
functional Φ have a minimum in the admissible set A? Some results in this direction
are presented in the next section.

5. SECOND VARIATION

We will derive a necessary condition for a diffeomorphism h ∈ Diff(M,N) to be
a minimum of the functional Φ. Let ht = h ◦ φt be a family of diffeomorphisms
in Diff(M,N), where φt is the flow of a vector field Y ∈ Γ(TM). Using the Lie
derivative formula (see [1]), we derive the equations d

dt (h
∗
t gN ) = φ∗tLY h

∗gN and
d
dt (φ

∗
tLY h

∗gN ) = φ∗tLY LY h
∗gN . If there exists δ > 0 such that Φ(ht) > Φ(h) for all

|t| < δ and for all variations ht of h, then h is called a relative minimum of h. If
h ∈ Diff(M,N) is a relative minimum of Φ, then d2

dt2 Φ(ht)|t=0 > 0.
Using the previous computations of Lie derivatives, the second variation of Φ is

1
2
d2

dt2
Φ(ht)|t=0 =

∫
M

G(LY h
∗gN , LY h

∗gN )ωM+

+
∫

M

G(LY LY h
∗gN , h

∗gN − gM )ωM .

(16)

Lemma 5.1. Let M and N be simple closed curves parametrized by functions γ and
ξ satisfying all the properties stated in Lemma 4.3. If h ∈ Diff(M,N) minimizes the
functional Φ in the admissible set A, then the local representation u = ξ−1 ◦ h ◦ γ of
h satisfies the inequality

u̇2(t) ≥ 1
3

(17)

for all t ∈
(
0, L(M)

)
.

Proof. Using formula (5), we compute

[LY h
∗gN ]11 = 2(u̇üy + u̇2ẏ)

and
[LY LY h

∗gN ]11 = 2(ü2y2 + u̇
...
u y2 + 5u̇ ü ẏ y + u̇2ÿ y + 2u̇2ẏ2).

Substituting the latter expressions into formula (16), we obtain the necessary condi-
tion

W := 4

L(M)∫
0

u̇4 ẏ2 dt+ 4

L(M)∫
0

u̇2(u̇2 − 1) ẏ2 dt+ 2

L(M)∫
0

u̇2(u̇2 − 1) y ÿ dt+ . . . ≥ 0,

where the integrands of the omitted terms all contain the factor y. After integration
by parts, we obtain the inequality

W =
∫ L(M)

0

(
4u̇4 + 4u̇2(u̇2 − 1)− 2u̇2(u̇2 − 1)

)
ẏ2 dt+ . . . ≥ 0. (18)
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Define y(t) = ερ
(

t
ε

)
ζ(t), where ρ(t) is a periodic “zig-zag” function defined by the

expressions

ρ(t) =
{

t, if 0 ≤ t < 1/2,
1− t, if 1/2 ≤ t < 1, (19)

and ρ(t + 1) = ρ(t), ζ ∈ C∞c
(
0, L(M)

)
. Notice that ρ̇2 = 1 almost everywhere on R

and ẏ2 = ζ2 + O(ε) when ε → 0. Substitute y into inequality (18) and pass to the
limit as ε → 0. All the omitted terms in the expression for W tend to zero, because
they contain y as a factor. Hence, we obtain the inequality

W =
∫ L(M)

0

(
4u̇4 + 2u̇2(u̇2 − 1)

)
ζ2 dt ≥ 0,

which (after a standard bump function argument) reduces to the inequality

u̇2 ≥ 1/3 (20)

as required.

Proposition 5.2. If M and N are simple closed curves such that their corresponding
arc lengths L(M) and L(N) satisfy the inequality L(N)

L(M) <
1√
3
, then the functional Φ

has no minimum in the admissible set A.

Proof. If h ∈ Diff(M,N) is a minimum of the functional Φ, then h satisfies the
Euler-Lagrange equation (4). Let γ and ξ be parametrizations of the curves M and N
with all the properties stated in Corollary 4.3. By Remark 4.2, the local representation
u = ξ−1 ◦ h ◦ γ of h satisfies the ordinary differential equation (14) on (0, L(M)). In
addition, umust satisfy the boundary conditions u(0) = 0, u(L(M)) = L(N) or u(0) =
L(N), u(L(M)) = 0. Hence, either u(t) = L(N)/L(M)t or u(t) = −L(N)/L(M)t +
L(N). Since h minimizes Φ, by Lemma 5.1 u̇2 ≥ 1/3, or, equivalently, L(N)/L(M) ≥
1√
3
. This contradicts the assumption of the theorem.
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