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EXPONENTIAL TYPE VECTORS
IN WIENER ALGEBRAS ON A BANACH BALL

Abstract. We consider Wiener type algebras on an open Banach ball. In particular,
we prove that such algebras consist of functions analytic in this ball. We also consider
a property of one-parameter groups generated by an isometric group acting on a Banach
ball. We establish that the subspace of exponential type vectors of its generators form a
dense subalgebra in a Wiener algebra and a generator is a derivation on this subspace.
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1. INTRODUCTION

As it is well known [8], Nelson’s classical theorem implies the following assertion: if
a closed linear operator iA on a Hilbert space generates the unitary group eitA, then
the set of its analytic vectors is dense. Let

(
X, ‖ . ‖

)
be a Banach space over the field

of complex numbers C,
A : D(A) ⊂ X → X

a closed unbounded linear operator with a dense domain D(A) and {Ak : k = 2, 3, . . .}
powers of A with domains

D(Ak) :=
{

x ∈ D(Ak−1) : Ax ∈ D(Ak−1)
}

.

An element
x ∈ D(A∞) :=

⋂
k≥1

D(Ak)

is called a vector of finite exponential type of the operator A if

lim
k→∞

∥∥Akx
∥∥1/k

< ∞.
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The set of all vectors of finite exponential type will be denoted by E(A). In his work
[9] Ya. Radyno proved the density of the exponential type vectors for generators of
strongly continuous one-parameter operator groups in a Banach space. It is easy to
see that the set of the exponential type vectors is an essentially smaller subset of
the set of analytic vectors; therefore, we can treat the last fact as a generalization of
Nelson’s theorem on a wide class of groups defined in Banach spaces (not necessarily
Hilbert spaces).

In the present paper, we consider the exponential type vectors for some class of
one-parameter operator groups defined on Wiener type algebras of bounded analytic
functions in an infinite dimensional Banach ball.

It should be noted that the definition of the Wiener type algebra of analytic
functions in a Banach ball introduced in this paper follows the pattern set in [4].
In [4], the authors introduced a definition of the Wiener type algebra of analytic
functions in a Hilbert ball.

An idea of a construction of such spaces uses the fact that the dual space to the
symmetric Banach space n-tensor product endowed with a cross-norm is isometric to
a subspace of n-homogeneous polynomials on a Banach space. Considering a special
cross-norm, known as Hilbertian cross-norm, the authors have obtained a natural
Hilbert structure on the tensor product of the Hilbert spaces. After symmetrization
of such tensor product, they have obtained a predual space to a Hilbert space of
continuous polynomials. We can note that the direct `1-sum of symmetric Hilbertian
tensor products plays an important role in quantum mechanics, where it forms a dense
subspace in the well-known symmetric Fock space or a so-called Boson space [8].

In the present paper, we generalize, first, the construction of Wiener type algebras
of bounded analytic functions in the case of Banach spaces and, second, the Ya.
Radyno’s theorem on the density of the exponential type vectors for generators of some
strongly continuous operator groups acting on such Wiener type algebras. Clearly,
results obtained here may also be treated as a generalization of the above mentioned
Nelson theorem on the case of Boson spaces.

In Section 3, we explain that a notion of an algebra in the definition is used
correctly and we check up that the functions considered are actually analytic. Let
us recall that a complex-valued function on an open subset of a Banach space X is
analytic if it is locally bounded and its restriction to every complex one-dimensional
affine subspace of X is analytic. In other words, f is analytic on D if f is locally
bounded and if for every x0 ∈ D and direction x ∈ X, the function λ → f(x0 + λx)
depends analytically on λ for λ near 0. From the corresponding facts in one complex
variable it follows that sums, products, and uniform limits of analytic functions are
analytic [5].

In Sections 4 and 5, on a Wiener type algebra, we define a group as a change of
variables. We investigate some properties of such group. In particular, we prove that
the subspace of exponential type vectors of the generator of this group is dense, which
is, in a way, a generalization of Nelson’s theorem for such groups. In this respect, we
used results of [1].
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2. PRELIMINARIES

Let (X, ‖ · ‖) be a complex Banach space, B = {x ∈ X : ‖x‖ < 1} the open unit ball
and X ′ the normed dual space of X. The algebraic tensor product

X⊗n := X ⊗ . . .⊗X

consists of finite sums u =
∑
j

x1j ⊗ · · · ⊗ xnj , where xij ∈ X, with the usual rules for

algebraic manipulation. The dual of X⊗n is the space of all n-linear functionals on
X × . . . ×X, where the linear functional F̃ corresponding to the n-linear functional
F is given by

F̃

( ∑
j

x1j ⊗ · · · ⊗ xnj

)
=

∑
j

F (x1j , · · · , xnj).

There are a number of useful norms that can be introduced into the algebraic
tensor power X⊗n. The projective tensor product norm is given by

‖u‖π = inf
∑

j

‖x1j‖ · · · ‖xnj‖,

where the infimum is taken over all representations of u as a finite sum u =
∑

j x1j ⊗
· · · ⊗ xnj . This is evidently the largest norm with the property

‖x1 ⊗ · · · ⊗ xn‖π ≤ ‖x1‖ · · · ‖xn‖

for all x1, . . . , xn ∈ X. We denote the completion of X⊗n with respect to this norm
by X⊗n

π and refer to it as the projective tensor power.
According to [5], the projective tensor product norm satisfies the cross-property,

i.e.,
‖x1 ⊗ · · · ⊗ xn‖π = ‖x1‖ · · · ‖xn‖

for all x1, . . . , xn ∈ X and the dual of X⊗n
π is isometrically isomorphic to the space

of continuous n-linear functionals on X × . . .×X.
In the sequel, Grothendieck’s following assertion [6] will frequently be used: for

each element u ∈ X⊗n
π there exists xij ∈ X such that

u =
∑

j

x1j ⊗ · · · ⊗ xnj ,

where the series
∑

j x1j⊗· · ·⊗xnj absolutely converges, i.e.,
∑

j ‖x1j‖ · · · ‖xnj‖ < ∞.
Analogically, we complete the projective tensor power X

′⊗n
π of dual spaces. We use

an apostrophe to denote a linear functional and the values of the linear functional
f ′n ∈ X

′⊗n
π are denoted by 〈u | f ′n〉 for all u ∈ X⊗n

π .
Let Gn be the permutation group of the set {1, . . . , n} and

Sn : x1 ⊗ . . .⊗ xn −→ x1 � . . .� xn :=
1
n!

∑
s∈Gn

xs(1) ⊗ . . .⊗ xs(n)

be a symmetric projection defined on X⊗n
π with the codomain X�n

π .
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Then X⊗n
π = X�n

π ⊕ N (Sn). We use the notation x�n = x � . . . � x ∈ X�n for all
x ∈ X. Note that ‖Sn‖ ≤ 1, since

‖Snu‖π =
∥∥∥Sn

( ∑
j

x1j ⊗ · · · ⊗ xnj

)∥∥∥
π

=
∥∥∥∑

j

Sn(x1j ⊗ · · · ⊗ xnj)
∥∥∥

π
=

=
∥∥∥∑

j

1
n!

∑
s

xs(1)j ⊗ . . .⊗ xs(n)j

∥∥∥
π
≤

∑
j

1
n!

∑
s

‖xs(1)j ⊗ . . .⊗ xs(n)j‖π ≤

≤ inf
∑

j

1
n!

∑
s

‖xs(1)j‖ · · · ‖xs(n)j‖ = inf
∑

j

n!
n!
‖x1j‖ · · · ‖xnj‖ = ‖u‖π

for all u ∈ X⊗n. It is clear that the equality

X
′⊗n
π = X

′�n
π ⊕N (S′n) (1)

holds for the projection S′n : X
′⊗n
π −→ X

′�n
π and

‖S′n‖ ≤ 1.

3. WIENER TYPE ALGEBRAS

Each element f ′n ∈ X
′�n
π corresponds to the unique n-homogeneous continuous poly-

nomial fn such that
fn(x) := 〈x�n | f ′n〉

for all x ∈ X and we denote the vector space of such polynomials by

Pn
π (X) = {fn : f ′n ∈ X

′�n
π }.

In particular, we put P0
π(X) = C and x�0 = 1 ∈ C. So Pn

π (X) = X
′�n
π algebraically.

This is the algebraic isomorphism fn 7−→ f ′n which is realized by the restriction of
functionals belonging to X

′�n
π to the total set {x�n : x ∈ X} in the space X�n

π .
The total property of the set {x�n : x ∈ X} in the space X�n

π follows from the
polarization formula [3], which says that for any Banach space Y and any symmetric
n-linear mapping L ∈ Ls(nX, Y ) there holds

L(x1, . . . , xn) =
1

2nn!

∑
1≤i≤n

∑
εi=±1

ε1 . . . εnL ◦∆n

( n∑
j=1

εjxj

)
, (2)

where ∆n : X 3 x 7→ (x, . . . , x) ∈ Xn is the diagonal mapping. Thus

L(x1, . . . , xn) =
1

2nn!

∑
1≤i≤n

∑
εi=±1

ε1 . . . εnL
( n∑

j=1

εjxj , . . . ,
n∑

j=1

εjxj

)
.
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Let us replace the mapping L with a symmetric tensor product; then we receive

x1 � · · · � xn =
1

2nn!

∑
1≤i≤n

∑
εi=±1

ε1 . . . εn

( n∑
j=1

εjxj � · · · �
n∑

j=1

εjxj

)
=

=
1

2nn!

∑
1≤i≤n

∑
εi=±1

ε1 . . . εn

( n∑
j=1

εjxj

)�n

.

Let us denote yε1,...,εn
:=

∑n
j=1 εjxj . Then we obtain

x1 � · · · � xn =
1

2nn!

∑
1≤i≤n

∑
εi=±1

ε1 . . . εny�n
ε1,...,εn

.

In the sequel, we define the norm

‖fn‖ := ‖f ′n‖π

on Pn
π (X), where the element f ′n belongs to the subspace X

′�n
π . In consequence, we

obtain the isometry of Pn
π (X) and X

′�n
π . The space of all such polynomials is defined

as the complex linear span

span
{
Pn

π (X) : n ∈ Z+

}
:= Pπ(X).

Definition 1. Following [4], we call a Wiener type algebra the `1-sum

Wπ(B) :=
{

f =
∑

n∈Z+

fn : fn ∈ Pn
π (X)

}
with the finite norm ‖f‖ =

∑
n∈Z+

‖fn‖.

The role of B in the above notation will be explained in the next proposition. We
investigate some properties of Wπ(B) and verify that the notion of an algebra in the
definition is used correctly.

Proposition 1. Wπ(B) is a Banach subalgebra with the unit of the algebra of all
bounded analytic functions in B.

Proof. From equality (1) there follows that the space X
′�n
π is complete. Since the

space
Pn

π (X) = X
′�n
π

is complete, their `1-sum is complete, too. Put x = ζa, where ‖a‖ = 1 and |ζ| < 1.
The series

f(x) =
∑

n∈Z+

ζnfn(a)

converges absolutely and uniformly on any closed ball Br = {ζa : |ζ| ≤ r< 1, ‖a‖ = 1},
since ∑

n∈Z+

|ζ|n sup
‖a‖=1

|fn(a)| ≤
∑

n∈Z+

|ζ|n‖fn‖ ≤ ‖f‖.
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Thus the function f is bounded, continuous and analytic in B (cf. [7]). The equality

Sn+mx�(n+m) = x�(n+m)

and the total property of the set

{x�(n+m) : x ∈ X}

in the space X
�(n+m)
π imply that the equalities

(fngm)(x) = fn(x)gm(x) = 〈x�n | f ′n〉〈x�m | g′m〉 = 〈x�(n+m) | f ′n ⊗ g′m〉 =

= 〈Sn+mx�(n+m) | f ′n ⊗ g′m〉 = 〈x�(n+m) | S′n+m(f ′n ⊗ g′m)〉 =

= 〈x�(n+m) | f ′n � g′m〉

uniquely define a functional

f ′n � g′m := S′n+m(f ′n ⊗ g′m) ∈ X
′�(n+m)
π

for any f ′n ∈ X
′�n
π and g′m ∈ X

′�m
π . Therefore, the (n+m)-homogeneous polynomial

fn � gm is well defined and belongs to Pn+m
π (X). Moreover,

‖fngm‖ = ‖f ′n � g′m‖π = ‖S′n+m(f ′n ⊗ g′m)‖π ≤
≤ ‖S′n+m‖‖(f ′n ⊗ g′m)‖π ≤ ‖f ′n ⊗ g′m‖π = ‖f ′n‖π‖g′m‖π = ‖fn‖ ‖gm‖.

It follows that

‖fg‖ =
∥∥∥ ∑

n∈Z+

n∑
k=0

fkgn−k

∥∥∥ ≤ ∑
n∈Z+

n∑
k=0

‖fk‖ ‖gn−k‖ =

=
( ∑

n∈Z+

‖fn‖
)( ∑

m∈Z+

‖gm‖
)

= ‖f‖ ‖g‖,

and, in particular, the product

fg =
∑

n∈Z+

( n∑
k=0

fkgn−k

)
of analytic functions f =

∑
n∈Z+

fn ∈ Wπ(B) and g =
∑

n∈Z+
gn ∈ Wπ(B) also

belongs to Wπ(B). It is easy to see that the scalar unit 1 ∈ P0
π(X) is also the unit of

the algebra Wπ(B).

4. ONE-PARAMETER OPERATOR GROUPS

Let us consider a one-parameter group of linear bounded operators R 3 t 7−→ Ut

acting on the reflexive Banach space X. On the Wiener algebra Wπ(B), we define
the operator

Ûtf(x) := f(Utx),

where f ∈ Wπ(B) and x ∈ B.
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Proposition 2. Let Ut be an isometric group of linear operators on X. Then the
operator-valued function R 3 t 7−→ Ût on the Wiener algebra Wπ(B) is a contraction
group of algebraic automorphisms.

Proof. We denote by U ′
t : X ′ −→ X ′ the corresponding group of adjoint operators.

Put Û�0
t = 1 and

Û�n
t fn(x) := 〈x�n | U

′⊗n
t f ′n〉

for all f ′n ∈ X
′�n
π and x ∈ B, where

U
′⊗n
t := U ′

t ⊗ . . .⊗ U ′
t︸ ︷︷ ︸

n

.

For all x ∈ X and fn ∈ Pn
π (X), the following equalities hold

Û�n
t fn(x) := 〈x�n | U

′⊗n
t f ′n〉 = 〈U⊗n

t x�n | f ′n〉 = 〈(Utx)�n | f ′n〉 = fn(Utx). (3)

They unique by define the group of linear bounded operators on the space of
n-homogeneous polynomials Pn

π (X):

Û�n
0 fn(x) = fn(U0x) = fn(Ix) = fn(x) (4)

and

Û�n
t+sfn(x) = fn(Ut+sx) = fn(UtUsx) = Û�n

t fn(Usx) = Û�n
t Û�n

s fn(x).

Moreover, the property S′nU
′⊗n
t = U

′⊗n
t S′n implies the relations,

‖Û�n
t fn‖ = ‖U

′⊗n
t f ′n‖π = ‖U

′⊗n
t S′nf ′n‖π = ‖S′nU

′⊗n
t f ′n‖π ≤

≤ ‖S′n‖‖U
′⊗n
t ‖‖f ′n‖π = ‖S′n‖‖U ′

t‖n‖f ′n‖π ≤ ‖f ′n‖π = ‖fn‖.
(5)

Applying equality (3), we obtain the relation

Ûtf =
∑

n∈Z+

Û�n
t fn (6)

for any f =
∑

n∈Z+

fn ∈ Wπ(B), since

Ûtf(x) = f(Utx) =
∑

n∈Z+

fn(Utx) =
∑

n∈Z+

Û�n
t fn(x). (7)

Therefore, from (5) there follows

‖Ûtf‖ =
∑

n∈Z+

‖Û�n
t fn‖≤

∑
n∈Z+

‖fn‖ = ‖f‖. (8)
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Hence, ‖Ût‖ ≤ 1 for all t ∈ R. It is clear that

Ût(fg) =
∑

n∈Z+

( n∑
k=0

Û�k
t fkÛ

�(n−k)
t gn−k

)
= (Ûtf)(Ûtg),

since the following equalities hold:

Û�k
t fk(x)Û�(n−k)

t gn−k(x) = 〈x�k | U
′⊗k
t f ′k〉〈x�(n−k) | U

′⊗(n−k)
t g′n−k〉 =

= 〈x�n | U
′⊗k
t f ′k ⊗ U

′⊗(n−k)
t g′n−k〉 =

= 〈Snx�n | U
′⊗k
t f ′k ⊗ U

′⊗(n−k)
t g′n−k〉 =

= 〈x�n | S′n(U
′⊗k
t f ′k ⊗ U

′⊗(n−k)
t g′n−k)〉 =

= 〈x�n | U
′⊗n
t (f ′k � g′n−k)〉 =

= Û�n
t 〈x�n | f ′k � g′n−k〉 =

= Û�n
t fk(x)gn−k(x).

Let the unbounded linear operator A with a dense domain D(A) ⊂ X be the
generator of the group Ut. Denote by A′ the generator of the adjoint group U ′

t with
a domain D(A′) ⊂ X ′. On the algebraic tensor power D(A′)⊗n, which is a dense
subspace of X

′⊗n, the following operators are well defined

A′j := I ′ ⊗ . . .⊗ I ′ ⊗A′︸ ︷︷ ︸
j

⊗ I ′ ⊗ . . .⊗ I ′︸ ︷︷ ︸
n−j

,

for j ≥ 1 and A′0 := I ′, where I ′ is the identical operator on X ′. Let D(A′)⊗n be
the domain and D(A′)�n the codomain of the projection S′n. By Â we denote the
generator of Ût on the Wiener algebra Wπ(B); let

D(Â) :=
{

f ∈ Wπ(B) : lim
t→0

Ûtf − f

t
exists

}
be its domain.

Proposition 3. Let Ut be an isometric group of linear operators in X. Then, on the
subspace of elements f =

∑
n∈Z+

fn ∈ Wπ(B) such that f ′n ∈ D(A′)�n for all n ∈ N,

the generator Â of the group Ût takes the form

Âf(x) =
∑

n∈Z+

〈
x�n

∣∣∣ n∑
j=0

A′jf
′
n

〉
for any x ∈ B.

Proof. As it is known [10], the equalities

d

dt
U ′

ty = A′U ′
ty = U ′

tA
′y
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hold for all y ∈ D(A′). This, in particular, implies that A′ : D(A′) −→ D(A′), i.e., that
the domain of the generator is A′-invariant. Due to this property, for any yj ∈ D(A′),
(j = 1, . . . , n), the generator satisfies the equalities

d

dt
(U ′

ty1 ⊗ . . .⊗ U ′
tyn) =

n∑
j=1

U ′
ty1 ⊗ . . .⊗ d

dt
U ′

tyj ⊗ . . .⊗ U ′
tyn =

=
n∑

j=1

U ′
ty1 ⊗ . . .⊗A′U ′

tyj ⊗ . . .⊗ U ′
tyn =

=
( n∑

j=1

A′j

)
(U ′

ty1 ⊗ . . .⊗ U ′
tyn) =

= U
′⊗n
t

( n∑
j=1

y1 ⊗ . . .⊗A′yj ⊗ . . .⊗ yn

)
=

=
( n∑

j=1

A′j

)
U

′⊗n
t (y1 ⊗ . . .⊗ yn).

The linear span of elements y1 ⊗ . . .⊗ yn coincides with D(A′)⊗n. So,

d

dt
U

′⊗n
t f ′n =

( n∑
j=1

A′j

)
U

′⊗n
t f ′n,

thus
d

dt
U

′⊗n
t f ′n |t=0=

( n∑
j=1

A′j

)
f ′n

for all f ′n ∈ D(A′)⊗n. As S′nU
′⊗n
t = U

′⊗n
t S′n, we obtain

d

dt
U

′⊗n
t f ′n |t=0=

( n∑
j=1

A′j

)
f ′n

for all f ′n ∈ D(A′)�n and n ∈ Z+. Finally, applying (6), we obtain

d

dt
Ûtf(x) |t=0 =

d

dt

∑
n∈Z+

Û�n
t fn(x) |t=0=

∑
n∈Z+

d

dt
Û�n

t fn(x) |t=0=

=
∑

n∈Z+

〈
x�n | d

dt
U

′⊗n
t f ′n |t=0

〉
=

∑
n∈Z+

〈
x�n |

n∑
j=0

A′jf
′
n

〉
= Âf(x)

for any f =
∑

n∈Z+

fn ∈ Wπ(B) and x ∈ B.
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5. EXPONENTIAL TYPE VECTORS

It is known [2,9] that if T is an unbounded linear operator on a Banach space Y with
a domain D(T ), {Tn : n ∈ N} are integer powers of T with domain

D(Tn) :=
{
y ∈ D(Tn−1) : Ty ∈ D(Tn−1)

}
,

D(T∞) :=
⋂
n≥1

D(Tn),

and T 0 = I is the identity operator on Y , then an element y ∈ D(T∞) is called a
vector of exponential type ν of the operator T if there exists a constant c = c(y) such
that

‖Tny‖ ≤ νnc

for all n ∈ Z+. We denote the set of all vectors of exponential type ν of T by Eν(T ).
Then, as it is known [1],

E(T ) :=
⋃
ν>0

Eν(T ).

It is clear that the subspaces Eν(T ) and E(T ) are T -invariant [1].
Let E(A′) be the subspace of exponential type vectors for A′ and E(Â) an analogical

subspace for Â. Denote by E(A′)⊗n the domain and by E(A′)�n the codomain of the
projection S′n.

Theorem 1. Let X be a reflexive space and Ut an isometric (C0)-group in X. Then
1◦ Ût is a contraction (C0)-group;
2◦ the generator Â of Ût is a closed operator with a domain D(Â) dense in Wπ(B);
3◦ the subspace

span{E(A′)�n : n ∈ Z+},

which contains in E(Â), is a dense subalgebra of Wπ(B), Â-invariant and the corre-
sponding restriction Â |E( bA) is a derivation on E(Â).

Proof. Since X is reflexive, the adjoint unbounded linear operator A′ is the generator
of the adjoint group U ′

t and A′ has a dense domain D(A′) ⊂ X ′. As it is known, in
this case, U ′

t is a (C0)-group (see [10, Chapter IX]). This and relation (6) imply

lim
t→0

Ûtf =
∑

n∈Z+

lim
t→0

Û�n
t fn =

∑
n∈Z+

fn = f

for any f =
∑

n∈Z+

fn ∈ Wπ(B). In fact,

lim
t→0

Ûtf(x) = lim
t→0

∑
n∈Z+

Û�n
t fn(x) =

∑
n∈Z+

lim
t→0

Û�n
t fn(x) =

=
∑

n∈Z+

〈x�n | lim
t→0

U
′⊗n
t f ′n〉 =

∑
n∈Z+

〈x�n | f ′n〉 =
∑

n∈Z+

fn(x) = f(x).

Thus 1◦ is proved.
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The Hille-Yosida theorem implies 2◦ immediately.
For a proof of 3◦, let us denote

nA′ :=
n∑

j=1

A′j .

We will verify that the subspace E(A′)⊗n contains to E(nA′). From the definition of
exponential type vectors of A′ it follows that for any yj ∈ E(A′) there exists νj > 0
such that yj ∈ Eνj (A′). Then for each yj ∈ Eνj (A′) there exists a constant cj such
that ‖A′kyj‖ ≤ νk

j cj for all k ∈ Z+. From the identity

nA
′k(y1 ⊗ . . .⊗ yn) =

∑
k1+...+kn=k

k!
k1! . . . kn!

A
′k1y1 ⊗ . . .⊗A

′knyn

we obtain

‖nA
′k(y1 ⊗ . . .⊗ yn)‖π ≤

∑
k1+...+kn=k

k!
k1! . . . kn!

‖A
′k1y1‖ . . . ‖A

′knyn‖ ≤

≤
∏

cj

∑
k1+...+kn=k

k!
k1! . . . kn!

νk1
1 . . . νkn

n = cνk,

where c :=
n∏

j=1

cj and ν :=
n∑

j=1

νj . Therefore, y1 ⊗ . . .⊗ yn ∈ Eν(nA′), i.e.,

Eν1(A′)⊗ . . .⊗ Eνn(A′) ⊂ Eν(nA′),

hence

E(A′)⊗n =
⋃

ν1,...,νn

Eν1(A′)⊗ . . .⊗ Eνn(A′) ⊂
⋃
ν

Eν(nA′) = E(nA′).

Since U ′
t is a contraction (C0)-group [9],

E(A′) = X ′.

As it is known [6], there exists a topological isomorphism

(X
′⊗n
π )′ ' L(X ′ × . . .×X ′; C),

where L(X ′×. . . X ′; C) is the space of continuous n-linear functionals on the Cartesian
product.
Let the functional f ∈

(
X

′⊗n
π

)′ be such that

f(y1, . . . , yn) = 0

for all yj ∈ E(A′), (j = 1, . . . , n). By the previous isomorphism, for any
y1, . . . , yj−1, yj+1, . . . , yn ∈ E(A′), the linear functional

Fyj
: X ′ 3 yj 7−→ f(y1, . . . , yj , . . . , yn)
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belongs to the bidual space X ′′ and satisfies the equality

Fyj (yj) = 0

for all yj ∈ E(A′). By a density of E(A′) in X ′,

Fyj
= 0

for all yj ∈ X ′ and j = 1, . . . , n. Hence, f = 0 and the Hahn-Banach theorem imply
that E(A′)⊗n is dense in X

′⊗n
π . Thus, for all n ∈ Z+ the subspace E(A′)�n is dense

in X
′�n
π , as a codomain of a dense subspace E(A′)⊗n relative to the projection S′n.

In consequence,
span{E(A′)�n : n ∈ Z+}

is dense in Wπ(B). It is clear that if f ′n ∈ E(A′)�n and g′k ∈ E(A′)�k then
S′n+k(f ′n ⊗ g′k) ∈ E(A′)�(n+k), hence the linear span{E(A′)�n : n ∈ Z+} is the sub-
algebra of Wπ(B).

By analyticity of functions f ∈ E(Â) in the ball B, the derivation dxf(y) for all
x, y ∈ B is well defined. It is easy to verify that the generator Â satisfies the equality

(Âf)(x) = dxf(Ax),

where dxf(Ax) is the derivative of f at a point x ∈ E(A) ∩ B for all Ax ∈ E(A). In
fact,

Âf(Utx) = ÂÛtf(x) = Û ′
tf(x) =

d

dt
(Ûtf(x)) =

=
d

dt
(f(Utx)) = dUtxf

( d

dt
Utx

)
= dUtxf(AUtx).

Therefore, Â is a derivation on the subalgebra E(Â).
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