PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A general boundary value problem and its Weyl function

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the abstract boundary value problem defined in terms of the Green identity and introduce the concept of Weyl operator function M(·) that agrees with other definitions found in the current literature. In typical cases of problems arising from the multidimensional partial equations of mathematical physics the function M(·) takes values in the set of unbounded densely defined operators acting on the auxiliary boundary space. Exact formulae are obtained and essential properties of M(·) are studied. In particular, we consider boundary problems defined by various boundary conditions and justify the well known procedure that reduces such problems to the "equation on the boundary" involving the Weyl function, prove an analogue of the Borg-Levinson theorem, and link our results to the classical theory of extensions of symmetric operators.
Rocznik
Strony
305--331
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
Bibliografia
  • [1] M.S. Agranovich, Elliptic Boundary Problems, in Encyclopaedia of Mathematical Sciences, Vol. 79, Partial Differential Equations IX, Springer-Verlag, Berlin Heidelberg New York, 1997.
  • [2] A. Alonso, B. Simon, The Birman-Krein-Vishik theory of selfadjoint extensions of semibounded operators, J. Oper. Theory 4 (1980), 251–270.
  • [3] W. O. Amrein, D.B. Pearson, M-operators: a generalisation of Weyl-Titchmarsh theory, J. Comput. Appl. Math. 171 (2004) 1–26.
  • [4] S. Bergman, M. Schiffer, Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Academic Press, New York, N.Y., 1953.
  • [5] M.S. Birman, M.Z. Solomyak, Spectral theory of selfadjoint operators in Hilbert Space, D. Reidel Publishing Company, Dordrecht, Holland, 1987.
  • [6] M.S. Brodskiĭ, Triangular and Jordan Representations of linear operators, American Mathematical Society, Providence, Rhode Island, 1971.
  • [7] F.E. Browder, On the spectral theory of elliptic diferential operators. I, Math. Annalen 142 (1961), 22–130.
  • [8] V.M. Bruk, A certain class of boundary value problems with a spectral parameter in the boundary condition, (Russian) Mat. Sb. (N.S.) 100 (142) (1976), 210–216.
  • [9] D. Colton, R. Kress, Integral equation methods in scattering theory, John Wiley & Sons, New York, 1983.
  • [10] V.A. Derkach, M.M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), 1–95.
  • [11] V.A. Derkach, M.M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 73, 2 (1995), 141–242.
  • [12] R. Duduchava, The Green formula and layer potentials, Int. Eq. Oper. Theory. 41 (2001), 127–178.
  • [13] E.B. Fabes, M. Jodeit Jr., N.M. Rivi`ere, Potential Techniques for boundary value problems on C1-domains, Acta Math. 141 (1978), 165–186.
  • [14] V.I. Gorbachuk, M.L. Gorbachuk, Boundary value problems for operator differential equations, Kluwer Academic Publishers Group, Dordrecht, 1991.
  • [15] G. Grubb, A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968), 425–513. (From Stanford University dissertation 1966).
  • [16] G. Grubb, Known and unknown results on elliptic boundary problems, Bull. Amer. Math. Soc. 43 (2006), 227–230.
  • [17] A.N. Kočhubeĭ, On extension of symmetric operators and symmetric binary relations, Mat. Zametki 17 (1975), 41–48 (in Russian).
  • [18] N.D. Kopachevskii, S.G. Krein, Abstract Green Formula for a Triple of Hilbert Spaces, Abstract Boundary-Value and Spectral Problems, Ukr. Math. Bull. 1 (2004), 77–105.
  • [19] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.
  • [20] J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
  • [21] M.S. Livsic, Operators, Oscillations, Waves (Open Systems), American Mathematical Society, Providence, Rhode Island, 1973.
  • [22] V.E. Lyantse, O.G. Storozh, Methods of the theory of unbounded operators, Naukova Dumka, Kiev, 1983.
  • [23] V.G. Maz’ya, Boundary Integral Equations, in Encyclopaedia of Mathematical Sciences, Vol. 27, Analysys IV, Springer-Verlag, Berlin, Heidelberg, New York, 1991.
  • [24] A. Nachman, J. Sylvester, G. Uhlmann An n-Dimensional Borg-Levinson Theorem, Comm. Math. Phys. 115 (1988), 595–605.
  • [25] J. Sylvester, G. Uhlmann, The Dirichlet to Neumann map and applications, In: Proceedings of the Conference “Inverse problems in partial differential equations (Arcata, 1989)”, SIAM, Philadelphia, 1990, 101–139.
  • [26] G. Uhlmann, Commentary on Alberto P. Calder´on’s paper: On an inverse boundary value problem, Selecta (to appear) (A. Bellow, C. E. Kenig, and P. Malliavin, eds.).
  • [27] M. Vishik, On general boundary conditions for elliptic differential equations, AMS Translations 24 (1963), 107–172.
  • [28] H. Weyl, The method of orthogonal projection in potential theory, Duke Math. J. 7 (1940), 411–444.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH9-0001-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.