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Abstract. We study the abstract boundary value problem defined in terms of the Green
identity and introduce the concept of Weyl operator function M(·) that agrees with other
definitions found in the current literature. In typical cases of problems arising from the
multidimensional partial equations of mathematical physics the function M(·) takes values
in the set of unbounded densely defined operators acting on the auxiliary boundary space.
Exact formulae are obtained and essential properties of M(·) are studied. In particular,
we consider boundary problems defined by various boundary conditions and justify the well
known procedure that reduces such problems to the “equation on the boundary” involving
the Weyl function, prove an analogue of the Borg-Levinson theorem, and link our results to
the classical theory of extensions of symmetric operators.
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INTRODUCTION AND NOTATION

The abstract approach to various linear boundary value problems arising in math-
ematical physics is commonly based on the extension theory of symmetric opera-
tors that was developed in classic works of J. von Neumann, H. Weyl, D. Hilbert,
K. Friedrichs, M. Krein and many others. In fact, the extension theory as we know it
today can be seen as a cumulative result of intensive research on various problems of
physics carried out in the last century. The basic assumption under which the fruitful
theory was developed is the validity of the so-called Green formula that furnish a
convenient setting for the study of various boundary conditions in the form of linear
dependencies between traces of the solution being sought and its normal derivatives on
the boundary. The abstract framework allowed one to treat classical boundary value
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problems such as problems of Dirichlet, Neumann, and Robin for partial differential
equations of mathematical physics as direct applications of the extension theory.

An abstract approach based on the Green formula that only requires the main
operator to be symmetric and densely defined and does not impose any constraints on
its nature, be it differential or otherwise, was developed later and summarized in many
works, see [8,10,11,14,17,18,22] and references therein. The main object of the theory
is the so called boundary triple that consists of the main operator assumed to be the
adjoint to a symmetric densely defined one, and two boundary mappings defined on
its domain with values in an auxiliary Hilbert space. An abstract Green formula then
can explicitly written in terms of these objects and subsequently studied. The authors
of [10,11] succeeded in advancing the theory to the point where an abstract version of
the Weyl-Titchmarsh function, previously known only for the Sturm-Liouville type of
problems, was successfully introduced and utilized for the following spectral analysis.
Conditions imposed in [10,11] are rather strict and don’t allow one to consider the case
of symmetric operators with non-surjective boundary mappings. Unfortunately, this
class includes many interesting partial differential operators of mathematical physics
with infinite defect indices. A few successful attempts have been made recently in
order to overcome these limitations and extend the theory of boundary triples and
respective Weyl functions to situations where requirements of [10, 11] are not met,
see [3, 18] for examples.

The paper is dedicated to the systematic treatment of general boundary value
problems and associated Weyl functions by means of operator theory. The approach
offered here is not based on the theory of symmetric operators and their extensions;
we engage another line of reasoning. The starting point is the Green formula for
the main operator and certain assumptions regarding its restriction to the null set of
one of the boundary mappings. The illustrative example supplied at the end of paper
deals with the Laplacian defined on its natural domain in the bounded region in R3 as
the main operator and two boundary operators that map a smooth function defined
inside this region to its trace and trace of its normal derivative on the boundary.
The restriction mentioned above turns out to be the Dirichlet Laplacian which is a
selfadjoint operator with the bounded inverse. These two properties of the Laplacian
are in fact the main conditions imposed on the abstract problem under consideration.
It is useful to keep this example in mind reading the paper. Further, the Weyl function
defined in the manner consistent with the previous definitions is an analytic function
whose values are unbounded operators. However, after substraction of its value at
the origin it becomes an analytic bounded operator function of Herglotz class, i.e.
the operator function with the positive imaginary part in the upper half plane. In
the example cited above the Weyl function coincides with the Dirichlet-to-Neumann
map for the Laplacian, see [25]. It has to be noted that all results of the paper are
obtained under minimal assumptions about participating objects. In particular, the
main operator is not assumed to be closed.

There exits a tight relationship of our results with the theory of open systems as
developed by M.S. Livŝiç in his seminal book [21]. Broadly speaking, the main opera-
tor of the boundary problem can be understood as a main operator of a certain open
system whose input and output transformations are described in terms of boundary
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mappings. Correspondingly, in light of this interpretation the Weyl function becomes
a transfer function of this system and as such describes the system’s properties. More
importantly, the approach based on the open system theory offers an intuitive way
to model various boundary value problems as closed systems perturbed by certain
“channel vectors”. The latter are naturally interpreted as external control and ob-
servation channels attached to the system. The author hopes to expound these ideas
and address other relevant topics in a subsequent publication.

The paper is organized as follows.
In the Section 1 after definition of the Green formula two main assumptions are

formulated. Then we study their immediate consequences and make a few observa-
tions that will be used later in the paper. The Section concludes with two equivalent
descriptions of the boundary value problem subject to the main assumptions.

Section 2 links the setting introduced in the previous section with the extension
theory of symmetric operators. It is possible to define the minimal operator and
show that it is symmetric, and if its domain is dense, the standard extension theory
can be applied. Then we formulate the criteria for complete nonselfadjointness of
the minimal operator and distinguish two special cases which are equivalent to the
Friedrichs and Krein extensions in more conventional setting of semibounded densely
defined symmetric operators.

Third Section is dedicated to the Weyl function and its properties. Here we
study the question of recovery of the boundary value problem by its Weyl function
and prove an analogue of the Borg-Levinson theorem. The last paragraph deal with
general boundary value conditions and offers a recipe to reduce the corresponding
boundary value problem to the equation “on the boundary”. Solvability criteria of
such obtained boundary equation are formulated in terms of the Weyl function and
boundary conditions.

Final Section 4 illustrates the theory by means of an example of the Laplacian on
the smooth bounded domain. The Weyl function is expressed in terms of the surface
potentials and some related results regarding its properties are formulated.

The author would like to thank Prof. S.N. Naboko for his interest to the work
and continual encouragement and to the anonymous referee for the close attention
and valuable remarks.

The symbol B(H1,H2) where H1, H2 are separable Hilbert spaces is used for the
Banach algebra of bounded operators, defined everywhere in H1 with values in H2.
The notation A : H1 → H2 is equivalent to A ∈ B(H1,H2). Also, B(H) := B(H,H).
The real axis, complex plane are denoted as R, C, respectively. Further, C± := {z ∈
C : ± Im z > 0}, R± := {x ∈ R : ± x > 0}, where Im stands for the imaginary
part of a complex number. The domain, range and kernel of a linear operator A are
denoted as D(A), R(A), and ker(A); the symbol ρ(A) is used for the resolvent set
of A. For a Hilbert space the term subspace will denote a closed linear set. The
orthogonal complement to a linear set in a Hilbert space is always closed, i.e. is a
subspace.
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1. GREEN FORMULA

1. Let H be a separable Hilbert space and A be a linear operator on H with dense
domain D(A).

Definition 1.1. We will call the Green formula for A the equality

(Au, v)H − (u,Av)H = (Γ1u,Γ0v)E − (Γ0u,Γ1v)E , u, v ∈ D(A), (1.1)

where linear operators Γ0, Γ1 map vectors from D(Γk) ⊂ H, k = 0, 1 into an auxiliary
Hilbert space E. It is assumed that D(Γk) ⊃ D(A), k = 0, 1. In the sequel the space E
is called boundary space.

Assumption 1. Green formula (1.1) for operator A holds with some operators Γ0,
Γ1 and space E.

Remark 1.2. Note that we do not impose any conditions on boundedness or clos-
ability of the operators A, Γ0, Γ1. In particular, A, Γ0, Γ1 acting on the domain D(A)
are not assumed to be closed or even closable. If the domains D(Γk), k = 0, 1 are
wider than D(A), the restrictions of mappings Γ0, Γ1 to the sets D(Γ0)\D(A) and
D(Γ1)\D(A) respectively are irrelevant to the following considerations. For that rea-
son we will assume in the sequel that D(Γ0) = D(Γ1) = D(A) without any loss of
generality.

Remark 1.3. The well known situation when Green formula (1.1) holds is the case
when A is the adjoint of a symmetric operator with equal deficiency indices defined
on the dense domain. The validity of (1.1) with some Γ0, Γ1, E is readily verified
on the ground of the Neumann formula for D(A). (See, e.g. [5].) In a series of
papers dedicated to this case with an additional condition Γ0D(A) = Γ1D(A) = E
the collection {Γ0,Γ1, E} is called a boundary triple or a boundary values space of the
operator A, see [8,10,11,14,17] for more details.

Let us introduce the null set ker(A) of operator A and denote it H :

H := ker(A) = {u ∈ D(A) |Au = 0}. (1.2)

The set H is closed in H if A is closed, as in the case described in Remark 1.3. For
our purposes, however, the closedness of H is not relevant. Denote A0 the restriction
of A to the intersection of D(A) and ker(Γ0):

A0 := A|D(A0), where D(A0) := {u ∈ D(A) | Γ0u = 0}. (1.3)

Following equalities are direct consequence of the definitions above:

ker(A0) = ker(Γ0) ∩H (1.4)

(A− zI)(A0 − zI)−1u = u, u ∈ H, z ∈ ρ(A0) (1.5)

where the resolvent set in (1.5) is assumed to be non-empty. According to (1.1),
(1.3), operator A0 is symmetric on the possibly non-dense domain D(A0).

Now we can formulate our second assumption imposed on the introduced objects:
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Assumption 2. In notation (1.1)–(1.3) following conditions are satisfied:

1. Operator A0 is selfadjoint on the domain D(A0) and there exists its bounded in-
verse A−1

0 :
A0 = A∗0, ∃ A−1

0 : H → H. (1.6)

2. Set Γ0H is dense in E:
Γ0H = E. (1.7)

In the sequel we will always assume that both assumptions are valid and will use
the following symbol

{A,Γ0,Γ1,H,E} (1.8)

for the collection of three operators A, Γ0, Γ1, and two Hilbert spaces H, E subjected
to these Assumptions.

Remark 1.4. Since A0 is selfadjoint, it is closed and its resolvent set is not empty.
It follows that (1.5) holds at least for Im z 6= 0 and z ∈ C in some neighborhood of
the origin. Furthermore, domains D(A0) and D(A) are dense in H. The inverse
operator A−1

0 is defined on the whole space H and its range coincides with D(A0).
Now formula (1.4) shows that

D(A0) ∩H = {0}. (1.9)

It means that the set H could not be “too large” in the space H. Particularly, (1.9)
may be not valid if the set H is replaced with its closure H .

Remark 1.5. Operators Γ0, Γ1 are not determined uniquely by the Green formula. In
particular, the equality (1.1) holds true if the operator Γ1 is replaced by the sum Γ1 +
NΓ0, where N is a symmetric operator on E defined on the domain Γ0D(A). It
is easily seen that Assumption 2 holds or not for the sets {A,Γ0,Γ1 + NΓ0,H,E}
and (1.8) at the same time. Indeed, neither of conditions (1.6) and (1.7) affects the
operator Γ1.

Remark 1.6. For any a ∈ R, the Green formula (1.1) is valid for both A and A−aI
simultaneously with the same E, Γ0, Γ1. It means that the requirement 0 ∈ ρ(A0) in
Assumption 2 always can be ensured provided that there exists a real number a ∈ R
such that a ∈ ρ(A0). To that end, it is sufficient to pass to the boundedly invertible
selfadjoint operator A − aI in place of A. Note as well that the condition (1.7) will
be satisfied automatically if the space E is defined as the closure of Γ0H .

2. Our next objective is to establish the relationships among vectors from linear
sets ker(A − zI) for different values of z ∈ ρ(A0) and describe the domain of A in
terms of operator A0 and vectors from H .

Proposition 1.7. 1. The mapping

h 7−→ (I − zA−1
0 )−1h, h ∈ H , z ∈ ρ(A0) (1.10)

establishes a one-to-one correspondence between H = ker(A) and ker(A − zI).
For any h ∈ H and hz := (I − zA−1

0 )−1h ∈ ker(A − zI), z ∈ ρ(A0) the equality
Γ0h = Γ0hz holds.



310 Vladimir Ryzhov

2. For any z1, z2 ∈ ρ(A0)

ker(A− z1I) ∩ ker(A− z2I) = {0}, z1 6= z2.

3. For any z ∈ ρ(A0) the domain D(A) allows the representation in the form of direct
sum

D(A) = D(A0)+̇ ker(A− zI) = D(A0)+̇(I − zA−1
0 )−1H , z ∈ ρ(A0). (1.11)

Proof. Let z ∈ ρ(A0) be a complex number.
(1) Due to (1.5) we have for any vector h ∈ H

(A− zI)(I − zA−1
0 )−1h = (A− zI)[I + z(A0 − zI)−1]h = (A− zI)h+ zh = 0.

Conversely, for hz ∈ ker(A− zI) and h := (I − zA−1
0 )hz we obtain

Ah = Ahz − zAA−1
0 hz = (A− zI)hz = 0.

Finally, the equality Γ0h = Γ0hz follows directly from the relation h = (I − zA−1
0 )hz

and definition of the domain D(A0).
(2) Let z1, z2 ∈ ρ(A0) be two complex numbers. If (A−z1)u = 0 and (A−z2)u =

0 for some vector u ∈ D(A), then Au = z1u = z2u. Therefore (z1 − z2)u = 0, which
implies the required equality.

(3) For an arbitrary number z ∈ ρ(A0) the sum in (1.11) is direct because the
equality (A − zI)f = 0 for a vector f ∈ D(A0) implies (A0 − zI)f = 0. Therefore
f = 0 because ker(A0 − zI) = {0}. Further, any vector f ∈ D(A) can be represented
in the form:

f = (A0 − zI)−1(A− zI)f +
[
f − (A0 − zI)−1(A− zI)f

]
, z ∈ ρ(A0). (1.12)

The first summand here belongs to D(A0), and the second one lies in ker(A − zI)
according to the formula (1.5). The rest follows from the already proven statement (1).
In the particular case of z = 0 we arrive at the decomposition

f = A−1
0 Af + (f −A−1

0 Af), f ∈ D(A). (1.13)

Operator A−1
0 A here can be interpreted as an oblique projection of the sum D(A) =

D(A0)+̇H onto the first summand.
The proof is complete.

3. Now we can introduce one of the main objects of the theory under development,
operator Π. Its properties and relationships with operators A and Γ0 play a significant
role in the sequel.

Proposition 1.8. 1. Operator Γ1A
−1
0 is defined everywhere on the space H and bo-

unded. Let Π be its adjoint.

Π ≡ (Γ1A
−1
0 )∗ : E → H. (1.14)
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2. The set H permits the characterization:

H = {u ∈ D(A) | ΠΓ0u = u}. (1.15)

3. The range of operator Π is dense in the subspace H :

R(Π) = H . (1.16)

Proof. (1) Operator Γ1A
−1
0 is defined in the whole H because for any element x ∈ H

the vector A−1
0 x belongs to the domain D(A0) = D(Γ1). Let us write the Green

formula (1.1) with u ∈ D(A) and v = A−1
0 x, where x ∈ H and use the equality (1.5)

with z = 0:

(Au,A−1
0 x)− (u,AA−1

0 x) = (Γ1u,Γ0A
−1
0 x)− (Γ0u,Γ1A

−1
0 x),

Since AA−1
0 x = x and Γ0A

−1
0 = 0, we obtain

(Au,A−1
0 x) = (u, x)− (Γ0u,Γ1A

−1
0 x), u ∈ D(A), x ∈ H. (1.17)

Further, for u = h ∈ H the relation (1.17) implies

(h, x) = (Γ0h,Γ1A
−1
0 x), x ∈ H, h ∈ H .

This identity means that the vector Γ0h belongs to the domain of operator (Γ1A
−1
0 )∗,

acting as
(Γ1A

−1
0 )∗ : Γ0h 7−→ h, h ∈ H . (1.18)

The set Γ0H is dense in E according to Assumption 2, so that the operator Γ1A
−1
0

defined on H has the densely defined adjoint (Γ1A
−1
0 )∗. Consequently, Γ1A

−1
0 is

closable in H. (See [5], p. 70-71.) As the domain of Γ1A
−1
0 is the whole space H, it

implies that Γ1A
−1
0 is already closed. By the virtue of closed graph theorem Γ1A

−1
0 is

bounded, so is its adjoint Π = (Γ1A
−1
0 )∗.

(2) Taking into account the definition (1.14) of operator Π, the implication
u ∈ H ⇒ ΠΓ0u = u follows directly from (1.18). In order to prove the inverse
assertion note that for a vector u ∈ D(A) for which ΠΓ0u = u, the right hand side
of (1.17) is zero for any x ∈ H. The set {A−1

0 x | x ∈ H} is equal to D(A0), hence is
dense in H. Now the inclusion u ∈ ker(A) is a consequence of the equality to zero of
the left hand side of (1.17).

(3) Equality (1.15) means that H ⊂ R(Π). Let us show that any vector from
R(Π) can be approximated by elements of H . It is sufficient for the proof of (1.16).
For a given Πe ∈ R(Π), e ∈ E and ε > 0 we choose the vector h ∈ H such
that ‖Γ0h− e‖ ≤ ε‖Π‖−1. It is always possible because Γ0H is dense in the space E
according to Assumption 2. Since h = ΠΓ0h due to equality (1.15), we have ‖Πe−h‖ =
‖Πe−ΠΓ0h‖ ≤ ‖Π‖ · ‖e− Γ0h‖ ≤ ε.

The proof is complete.
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From the description (1.15) we obtain following important equality

ΠΓ0h = h, h ∈ H . (1.19)

showing that the operator Π is the left inverse of the restriction of Γ0 to the set H .
Let us take notice of a few consequences of (1.19).

Remark 1.9. Since H ⊂ D(A) = D(Γ0), operator Γ0 can be applied to the both sides
of (1.19), which yields

(Γ0Π− I)Γ0h = 0, h ∈ H . (1.20)

This equality shows that the restriction Π|Γ0H is the right inverse of Γ0 restricted to
the set H .

Remark 1.10. Operator ΠΓ0 defined on the domain D(A) = D(A0)+̇H is an oblique
projection to the second summand

ΠΓ0 : f + h 7−→ h, f ∈ D(A0), h ∈ H .

In particular, ΠΓ0D(A) and H coincide. This assertion follows immediately from the
definition of domain D(A0) = D(A) ∩ ker(Γ0) and (1.19).

Remark 1.11. The equality (1.9) can be strengthened as follows

D(A0) ∩R(Π) = {0}. (1.21)

Indeed, let e ∈ E be a vector from E such that Πe ∈ D(A0), in other words, Γ0Πe = 0.
Owing to the identity Γ0Π = IE for the closure of operator Γ0Π resulting from (1.20)
and density of Γ0H in E, we conclude that Γ0Πe = e. Now the equality e = 0 follows.

Remark 1.12. Since f − A−1
0 Af ∈ H , the relation (1.19) and relation Γ0A

−1
0 = 0

imply that the sum (1.13) can be rewritten in a more elaborated form

f = A−1
0 Af + ΠΓ0f, f ∈ D(A). (1.22)

Let us insert this representation into the expression for the second summand in (1.12):

f − (A0 − zI)−1(A− zI)f = [I − (A0 − zI)−1(A− zI)]f =

=
[
I − (A0 − zI)−1(A− zI)

]
A−1

0 Af +
[
I − (A0 − zI)−1(A− zI)

]
ΠΓ0f =

=
[
I + z(A0 − zI)−1

]
ΠΓ0f = A0(A0 − zI)−1ΠΓ0f = (I − zA−1

0 )−1ΠΓ0f.

Now (1.12) can be rewritten as

f = (A0 − zI)−1(A− zI)f + (I − zA−1
0 )−1ΠΓ0f, f ∈ D(A), z ∈ ρ(A0) (1.23)

in complete accordance with the decomposition (1.11). Obviously, this formula is a
generalization of (1.22).
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Remark 1.13. If we represent h ∈ H in (1.19) as h = (I − zA−1
0 )hz, where hz ∈

ker(A− zI), z ∈ ρ(A0), then (1.19) takes the form

(I − zA−1
0 )−1ΠΓ0hz = hz, hz ∈ ker(A− zI), z ∈ ρ(A0). (1.24)

In particular, this equality shows that the intersection ker(Π)∩Γ0 ker(A−zI) is trivial:

ker(Π) ∩ Γ0 ker(A− zI) = {0}, z ∈ ρ(A0), (1.25)

which is almost obvious if we take into consideration that Γ0 ker(A− zI) = Γ0H due
to the assertion (1) of Proposition 1.7 and recall that the operator Π is the left inverse
of Γ0|H .

4. The collection (1.8) as defined above naturally appears in the context of what could
be called the theory of null extensions of selfadjoint operators.

Definition 1.14. Let T be an operator on the Hilbert space H with domain D(T ).
Linear operator S on the space H is called a null extension of T if D(S) is represented
as a direct sum D(S) = D(T )+̇N , where N is a linear manifold such that Sx = Tx
if x ∈ D(T ) and Sx = 0 if x ∈ N .

Next two Propositions offer convenient ways to construct collections {A,Γ0,Γ1,H,
E} that automatically satisfy both Assumptions 1 and 2.

Proposition 1.15. Let A0 be a selfadjoint boundedly invertible operator on the
space H with domain D(A0) and H be a linear set in H with the property D(A0) ∩
H = {0}. Define operator A as a null extension of A0 to the set D(A) := D(A0)+̇H
according to the formula A(A−1

0 f+h) := f , f ∈ H, h ∈ H . Assume that there exists a
Hilbert space E and a linear mapping Γ0 with domain D(A0)+̇H and the range R(Γ0)
dense in E, such that ker(Γ0) = D(A0) and there exists a bounded left inverse Π of
the restriction Γ0|H defined on the whole space E. Let N be a symmetric operator
on E with the dense domain Γ0H and Γ1 := Π∗A +NΓ0, D(Γ1) := D(A0)+̇H be a
densely defined mapping from H to E. Then the collection {A,Γ0,Γ1,H,E} of such
defined objects satisfies both Assumptions 1 and 2.

Proof. Assumption 2 follows directly from the premise of Proposition. With regard
to Assumption 1, it is sufficient to show that the Green formula (1.1) is valid for u =
v ∈ D(A). For any vector u ∈ D(A) of the form u = A−1

0 + h with some f ∈ H
and h ∈ H we have Au = f . Therefore, since A−1

0 is selfadjoint and Γ0A
−1
0 = 0,

ΠΓ0h = h,

(Au, u)− (u,Au) = (f,A−1
0 f + h)− (A−1

0 f + h, f) = (f, h)− (h, f) =
= (f,ΠΓ0h)− (ΠΓ0h, f) = (Π∗f,Γ0h)− (Γ0h,Π∗f) =

= (Π∗Au,Γ0(A−1
0 f + h))− (Γ0(A−1

0 f + h),Π∗Au) =
= (Π∗Au+NΓ0u,Γ0u)− (Γ0h,Π∗Au+NΓ0u) =
= (Γ1u,Γ0u)− (Γ0u,Γ1u),

so that Assumption 1 is valid as well.



314 Vladimir Ryzhov

As an alternative, collection (1.8) satisfying Assumptions 1 and 2 can be defined
in terms of the pair {A,Γ0}. Properties of {A,Γ0} that ensure existence of the cor-
responding collection (1.8) are easy to formulate. Arguments similar to the proof of
Proposition 1.15 result in the following

Proposition 1.16. Let A be a linear operator on Hilbert space H with domain D(A)
and Γ0 be an operator from H to an auxiliary Hilbert space E with the domain D(Γ0) =
D(A). Assume that:

1. Operator A0 defined as a restriction of A to the linear set D(A0) := ker(Γ0) is
selfadjoint and boundedly invertible.

2. There exists a bounded mapping Π : E → H such that ΠΓ0h = h for any h ∈
ker(A).

3. Set Γ0 ker(A) is dense in E.

Then the collection {A,Γ0,Γ1,H,E} where the operator Γ1 is defined as Γ1 := Π∗A+
NΓ0 with an arbitrary symmetric operator N on the domain D(N) := Γ0 ker(A),
satisfies both Assumptions 1 and 2.

2. MINIMAL OPERATOR AND KREIN EXTENSION

1. Operator A00 defined as a restriction of A to the set D(A00) := {u ∈ D(A0) | Γ1u =
0} is called minimal. Obviously, A00 is symmetric and A0 is the selfadjoint extension
of A00. Furthermore, A00 : A−1

0 f 7→ f where A−1
0 f ∈ D(A00). It turns out that the

domain D(A00) can be effectively described in other terms, not involving directly
operators Γ0 and Γ1. Moreover, under some quite natural assumption A00 is the
minimal operator indeed in the sense of extension theory of symmetric operators.

Proposition 2.1. The equalities hold

D(A00) := {u ∈ D(A) | Γ0u = Γ1u = 0} = A−1
0 H ⊥. (2.1)

If the set D(A00) is dense in H then A is closable and A∗00 coincides with its closure Ā.
The domain of Ā allows decomposition D(Ā) = D(A0)+̇H where H is the null
subspace of Ā.

Proof. For f ∈ H and u := A−1
0 f ∈ D(A0) we have Γ1u = Γ1A

−1
0 f = Π∗f . Therefore,

the inclusion f ∈ H ⊥ = ker(Π∗) is equivalent to the equality Γ1u = 0.
Further, in order for a densely defined operator to be closable it is necessary and

sufficient that its adjoint be densely defined, see [5], p. 70. Let us consider the adjoint
operator A∗ and show that A∗ ⊃ A00. Then A is closable since A00 is densely defined.
For u := A−1

0 f + h ∈ D(A) where f ∈ H, h ∈ H and v := A−1
0 f0 ∈ D(A00) where

f0 ∈ H ⊥ we have

(Au, v) = (A(A−1
0 f + h), A−1

0 f0) = (f,A−1
0 f0) = (A−1

0 f + h, f0) = (u,A00v)

so that A∗ ⊃ A00 as required.
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Usual duality arguments yield Ā = A∗∗ ⊂ A∗00, so that for the proof of equal-
ity A∗00 = Ā we only need to show that Ā ⊃ A∗00. We start with the observation
that the subspace H belongs to ker(Ā) because the null set of a closed operator is
always closed. In particular, H ⊂ D(Ā). Further, assuming x ∈ D(A∗00) by the
definition of adjoint operator, (A00A

−1
0 f0, x) = (f0, A−1

0 A∗00x) for any f0 ∈ H ⊥.
From the other side, obviously (A00A

−1
0 f0, x) = (f0, x) since A00 is a restriction

of A0. Therefore, x − A−1
0 A∗00x ⊥ H ⊥, or the vector h(x) := x − A−1

0 A∗00x belongs
to the subspace H . It follows that any vector x ∈ D(A∗00) is represented in the
form of sum x = A−1

0 A∗00x+ h(x) where A−1
0 A∗00x ∈ D(A0) and h(x) ∈ H . In other

words, D(A∗00) ⊂ D(A0)+H ⊂ D(Ā). The equality D(A∗00) = D(Ā) = D(A0)+̇H is
therefore obtained. The sum here is direct because if the intersection D(A0)∩H was
not trivial, then it would consist of vectors x ∈ D(A0) such that Āx = A0x = 0, which
contradict the assumption ker(A0) = {0}. Now we need to show that actions of A∗00
and Ā coincide on their domain. To that end note that H = R(A00)⊥ = ker(A∗00),
so that parts of both operators A∗00 and Ā in the subspace H is the null operator.
Finally, action of Ā on the domain D(A0) is Ā : A−1

0 f 7→ f where f ∈ H. From the
other side, for the operator A∗00 we obtain

(A∗00A
−1
0 f, v) = (A−1

0 f,A00v) = (f,A−1
0 A00v) = (f, v)

where f ∈ H, v ∈ D(A00). Because D(A00) is dense in H, it follows that A∗00 :
A−1

0 f 7→ f , f ∈ H. Therefore actions of operators A∗00 and Ā coincide on their
domain D(A0)+̇H .

The proof is complete.

2. Operator A00 can have nontrivial selfadjoint parts, i. e. nontrivial reducing sub-
spaces where it generates selfadjoint operators. If there are no such parts, opera-
tor A00 is called completely non-selfadjoint or simple. The criterion of complete
non-selfadjointness of A00 is given in the following proposition.

Proposition 2.2. Denote Hnsa the closed envelope of ker(A − zI), z ∈ ρ(A0) and
let H0 := H 	Hnsa be the orthogonal complement. Then

Hnsa = clos
∨

z∈ρ(A0)

ker(A− zI) =

= clos
∨

e∈E, z∈ρ(A0)

(I − zA−1
0 )−1Πe = clos

∨
e∈E, n≥0

A−n
0 Πe,

(2.2)

and H0 is the maximal subspace where A00 induces a selfadjoint operator coinciding
with A0|H0 .

Proof. Equalities in (2.2) follow from the description of ker(A− zI) given in Propo-
sition 1.7, density of Γ0H in E, and the power expansion of resolvent (I − zA−1

0 )−1,
z ∈ ρ(A0).

From (2.2) we have that both Hnsa and H0 reduce the selfadjoint operator A0

and H0 ⊂ H ⊥. Taking into consideration the definition D(A00) = A−1
0 H ⊥, we
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conclude that A−1
0 H0 ⊂ D(A00) ∩ H0. Since A00 is a restriction of A0, it follows

that A00A
−1
0 h0 = h0 for h0 ∈ H0. Therefore A0|H0 ⊂ A00, H0 reduces A00, and

the part of A00 in H0 is a selfadjoint operator A0|H0 . In order to show that H0

is the maximal subspace where A00 induces a selfadjoint part, assume that H ′ is a
reducing space of A00 and A00|H′ is selfadjoint. Since A00 is the restriction of A0,
the space H ′ also reduces the selfadjoint operator A0. The set A−1

0 H ′ is dense in H ′;
it is the domain of the selfadjoint part A0|H′ = A00|H′ of A00. It follows from
the definition of D(A00) that H ′ ⊂ H ⊥. Since H ′ is invariant for A−1

0 , we have
0 = (A−n

0 x,Πe) = (x,A−n
0 Πe) for x ∈ H ′, e ∈ E, and n ≥ 0. Therefore, H ′ is

orthogonal to the subspace (2.2) and H ′ ⊂ H0.

3. Consider the null extension AK of operator A00 to the set D(AK) := A−1
0 H ⊥+̇H .

According to Definition 1.14,

AK : A−1
0 f0 + h 7→ f0, f0 ∈ H ⊥, h ∈ H .

It is a simple exercise to see that AK is symmetric, but not necessarily densely defined.
The next Theorem summarizes other properties of AK .

Theorem 2.3. 1. Symmetric operator AK is a restriction of A to the domain

D(A0) = {u ∈ D(A) | (Γ1 − ΛΓ0)u = 0}

where Λ := Γ1Π is symmetric, densely defined and closable on D(Γ) := Γ0H .
2. The equation AKu = f is solvable only when Π∗f = 0, that is, for f ∈ H ⊥. The

solutions are represented in the form u = A−1
0 f + h, where h ∈ H is arbitrary.

3. If the domain D(A00) is dense in H, then AK is essentially selfadjoint. Its closure
is the null extension of AK to the set A−1

0 H ⊥+̇H .

Proof. (1) Let f ∈ H and h ∈ H be two arbitrary vectors and u := A−1
0 f + h ∈

D(A). Then

(Γ1 − ΛΓ0)u = (Γ1 − Γ1ΠΓ0)
(
A−1

0 f + h
)

=

= Γ1A
−1
0 f + Γ1h− Γ1h = Γ1A

−1
0 f = Π∗f,

where we used equalities Γ0A
−1
0 = 0 and ΠΓ0h = h. Since ker(Π∗) = R(Π)⊥ = H ⊥,

the inclusion f ∈ H ⊥ is equivalent to (Γ1 − ΛΓ0)u = 0. If h ∈ H , then

(ΛΓ0h,Γ0h)− (Γ0h,ΛΓ0h) = (Γ1ΠΓ0h,Γ0h)− (Γ0h,Γ1ΠΓ0h) =
= (Γ1h,Γ0h)− (Γ0h,Γ1h) = 0.

Since Λ is symmetric and densely defined, it is closable.
(2) Obvious according to the definition D(AK).
(3) Operator AK is symmetric and densely defined. The representa-

tion A−1
0 H ⊥+̇H for the domain of its closure is obtained in the way demonstrated in

the proof of Proposition 2.1. Let us show that AK is essentially selfadjoint. Since AK
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is symmetric, D(AK) ⊂ D(A∗K) and we need to verify correctness of the inverse
inclusion. Let f0 ∈ H ⊥, h ∈ H , and x ∈ D(A∗K), i. e.

(AK(A−1
0 f0 + h), x) = (A−1

0 f0 + h,A∗Kx) = (f0, A−1
0 A∗Kx) + (h,A∗Kx).

Since the left hand side is equal to (f0, x), we have (f0, x − A−1
0 A∗Kx) = (h,A∗Kx).

For h = 0 this equality yields the representation x = A−1
0 A∗Kx + h, where h ∈ H

is some vector. From the other side, if f0 = 0, then (h,A∗Kx) = 0 for each h ∈ H
and we see that A∗Kx ∈ H ⊥. Thus any vector x ∈ D(A∗K) is represented in the
form x = A−1

0 g + h with g = A∗Kx ∈ H ⊥ and h ∈ H . Therefore, x ∈ D(AK).
The proof is complete.

Remark 2.4. Operator AK is an analogue of the Krein extension of operator A00,
see [2]. From the same point of view A0 is equivalent to the Friedrichs extension
of A00. For any element u ∈ D(A) we have (Γ1 − ΛΓ0)u = (Γ1 − Γ1ΠΓ0)u = Γ1(I −
ΠΓ0)u, so that the condition u ∈ D(AK) is equivalent to the identity Γ1u = Γ1ΠΓ0u.
Operator Λ was studied by M. Vishik in the context of elliptic boundary value problems
in [27]. Later Γ1 − ΛΓ0 was rewritten as Γ1(I − ΠΓ0) by G. Grubb in the paper [15],
where mapping properties of Λ were studied in detail. See the note [16] for further
references regarding boundary conditions for the Krein extension. In our case the
extension AK is not necessarily densely defined, nor semibounded. Extensions A0 and
AK of the symmetric operator A00 are transversal in the sense of [10], i. e. D(A0) ∩
D(AK) = D(A00) and D(A0) ∨ D(AK) = D(A). Note at last that the operator AK

is uniquely determined by the pair {A0,H }. In particular, it does not depend on the
choice of operator Γ1 in the Green formula.

3. SPECTRAL BOUNDARY VALUE PROBLEM AND WEYL FUNCTION

Let {A,Γ0,Γ1,H,E} be the collection (1.8) subject to Assumptions 1 and 2. In
this section we consider the spectral boundary value problem defined by the
set {A,Γ0,Γ1,H,E}, describe conditions of its solvability, and introduce the notion of
Weyl function.

Definition 3.1. For given f ∈ H and ϕ ∈ E we call the spectral boundary value
problem associated with collection (1.8) the problem of finding pairs (u, z) of vec-
tors u ∈ D(A) and complex numbers z ∈ C, satisfying equations:{

(A− zI)u = f,
Γ0u = ϕ.

(3.1)

Let us formulate a simple result regarding solvability of (3.1).

Theorem 3.2. For any z ∈ ρ(A0), ϕ ∈ Γ0H , f ∈ H the solution u = uf,ϕ
z to the

problem (3.1) exists and is unique. It is represented in the form

uf,ϕ
z = (A0 − zI)−1f + [I + z(A0 − zI)−1]Πϕ. (3.2)
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Proof. Verification of the uniqueness of solution is more or less standard. If for some
z ∈ ρ(A0), ϕ ∈ Γ0H , and f ∈ H there exist two solutions u1, u2 ∈ D(A) to the
system (3.1), then their difference u0 := u1−u2 satisfies both equations (3.1) with f =
0, ϕ = 0. Therefore the vector u0 belongs to the domain of operatorA0 because Γ0u0 =
0. Then it follows from the first equation (3.1) than (A − zI)u0 = (A0 − zI)u0 = 0
and u0 = 0 because z ∈ ρ(A0).

Further, from the equality (1.5) and the inclusion Πϕ ∈ H where ϕ ∈ Γ0H , we
obtain for the vector uf,ϕ

z defined by (3.2)

(A− zI)uf,ϕ
z = f + (A− zI)[I + z(A0 − zI)−1]Πϕ = f + (A− zI)Πϕ+ zΠϕ = f.

Hence, the first equation in (3.1) is satisfied. Next, using equalities Γ0(A0−zI)−1 = 0
and (1.20) we obtain for the vector uf,ϕ

z

Γ0u
f,ϕ
z = Γ0Πϕ = ϕ.

The proof is complete.

Remark 3.3. From the representation (3.2) follows the norm estimate of the solu-
tion uf,ϕ

z :

‖uf,ϕ
z ‖ ≤ C(z)(‖f‖+ ‖ϕ‖), f ∈ H, ϕ ∈ Γ0H , z ∈ ρ(A0)

with a constant C(z) > 0 depending on z ∈ ρ(A0). Owing to the density of Γ0H
in E (cf. (1.7)) this means that the mapping (f, ϕ) 7→ uf,ϕ

z defined on the set of
pairs {(f, ϕ) | f ∈ H,ϕ ∈ Γ0H } can be uniquely extended to a bounded operator
from H ⊕ E to H. Assuming z ∈ ρ(A0), it seems natural to interpret vectors uf,ϕ

z

defined by the formula (3.2) with f ∈ H, ϕ ∈ E as solutions to the problem (3.1)
as well. Each solution uf,ϕ

z for ϕ ∈ E \ Γ0H can be approximated by “regular”
solutions uf,ϕn

z , n = 1, 2, . . . , where ϕn ∈ Γ0H . A short argument reveals that the
passage from solutions uf,ϕ

z where ϕ ∈ Γ0H to solutions for ϕ ∈ E corresponds to the
null extension of operator A from the set D(A0)+̇H to the wider set D(A0)+̇R(Π)
as described in Proposition 1.15. The sum is direct due to (1.21). At last, since the
vector uf,ϕ

z is unambiguously defined by the right hand side of (3.2) for any ϕ ∈ E,
we can state that for z ∈ ρ(A0) the uniqueness property of solution (3.2) holds true
for any f ∈ H, ϕ ∈ E.

Remark 3.4. In general, the solution (3.2) does not belong to the domain D(A) if
ϕ ∈ E \ H . Nevertheless, the vector uf,ϕ

z defined by (3.2) is a solution to a “weak
variant” of the problem (3.1), thereby is a weak solution to (3.1). More precisely, the
vector uf,ϕ

z solves the following variational problem for unknown u ∈ H

(u, (A0 − z̄I)v) = (f, v)H + (ϕ,Γ1v)E , v ∈ D(A0). (3.3)

The proof is based on direct calculations.

(uf,ϕ
z , (A0 − z̄I)v) = ((A0 − zI)−1f + [I + z(A0 − zI)−1]Πϕ, (A0 − z̄I)v) =

= (f, v) + ((I − zA−1
0 )−1Πϕ, (A0 − z̄I)v) =

= (f, v) + (ϕ,Γ1A
−1
0 (I − z̄A−1

0 )−1(A0 − z̄I)v) =
= (f, v) + (ϕ,Γ1v),
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as required. In order to show that the equation (3.3) is the weak version of (3.1)
assume that some w ∈ H solves (3.1). In particular, w ∈ D(A) and Γ0w = ϕ. Then
for any v ∈ D(A0) by the Green formula

(w, (A0 − z̄I)v) = (w,A0v)− (zw, v) = (w,Av) + (f −Aw, v) =
= (f, v) + (w,Av)− (Aw, v) = (f, v) + (Γ0w,Γ1v)− (Γ1w,Γ0v) =
= (f, v) + (ϕ,Γ1v),

that is, the vector w solves the weak problem (3.3) as well. Note that if the set Γ1D(A0)
is dense in E and R(A0 − z̄I) is dense in H, then the weak solution is determined
by (3.3) uniquely.

3.1. SEMI-HOMOGENEOUS PROBLEMS

The classical approach of boundary value problems theory (see [4, 28] for instance)
considers two semi-homogeneous problems obtained from (3.1) by putting f = 0,
ϕ 6= 0 and f 6= 0, ϕ = 0. The solution to (3.1) then is sought in the form of sum of
solutions to these auxiliary problems. Below we give a brief account regarding their
solvability in abstract setting of the paper.

Let us start our discission with the case f = 0, ϕ ∈ E.{
(A− zI)u = 0,
Γ0u = ϕ.

(3.4)

According to Theorem 3.2 and Remark 3.3, for any ϕ ∈ E, z ∈ ρ(A0) there exists
an unique solution uϕ

z to the problem (3.4). If ϕ ∈ E \ Γ0H , then the solution uϕ
z is

the weak solution as explained in Remark 3.4. The representation (3.2) with f = 0
reduces to the expression:

uϕ
z = [I + z(A0 − zI)−1]Πϕ = (I − zA−1

0 )−1Πϕ, ϕ ∈ E. (3.5)

It is easily seen that vectors defined in (3.2) and (3.5) are connected by the relation:

uf,ϕ
z = (A0 − zI)−1f + uϕ

z , f ∈ H, ϕ ∈ E, z ∈ ρ(A0), (3.6)

Obviously, (A0 − zI)−1f here is a solution to the problem (3.1) with f 6= 0, ϕ = 0.
Thus, formula (3.6) represents the solution to (3.1) as a direct sum of the solution to
(3.1) with f 6= 0, ϕ = 0 and the solution to (3.1) with f = 0, ϕ 6= 0. It is interesting
to observe that these two problems can be seen as conjugate to each other in the
following sense.

Remark 3.5. Let z ∈ ρ(A0) and vf
z = (A0 − zI)−1f be the solution to the

semi-homogeneous problem{
(A− zI)v = f
Γ0v = 0 z ∈ C, f ∈ H.
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Let uϕ
z be a solution to (3.4). Then

(uϕ
z , f)H = (ϕ,Γ1v

f
z )E , f ∈ H, ϕ ∈ E, z ∈ ρ(A0).

Indeed, since[
(I − zA−1

0 )−1Π
]∗

= Γ1A
−1
0 (I − z̄A−1

0 )−1 = Γ1(A0 − z̄I)−1,

the assertion follows directly from the representation (3.5).

Finally, the case of (3.1) with f = 0, ϕ = 0 is in fact the spectral problem for the
eigenvalues and eigenvectors of selfadjoint operator A0.

3.2. WEYL FUNCTION

The vector uϕ
z defined in (3.5) for ϕ ∈ Γ0H belongs to ker(A− zI), consequently lies

in the domain of the operator Γ1. Let us calculate Γ1u
ϕ
z for a given pair of ϕ ∈ Γ0H

and z ∈ ρ(A0). We have

Γ1u
ϕ
z = Γ1[I + z(A0 − zI)−1]Πϕ = Γ1Πϕ+ zΓ1(A0 − zI)−1Πϕ =

= Γ1Πϕ+ zΓ1A
−1
0 (I − zA−1

0 )−1Πϕ = Γ1Πϕ+ zΠ∗(I − zA−1
0 )−1Πϕ =

= [Γ1Π + zΠ∗(I − zA−1
0 )−1Π]ϕ.

Introduce an operator-function M(z), z ∈ ρ(A0) with values in the set of densely
defined operators on E with the domain Γ0H :

M(z) : ϕ 7−→ [Γ1Π + zΠ∗(I − zA−1
0 )−1Π]ϕ, ϕ ∈ Γ0H , z ∈ ρ(A0). (3.7)

Since ϕ = Γ0u
ϕ
z for the solution uϕ

z to the problem (3.4), the calculations conducted
above show that

Γ1u
ϕ
z = M(z)Γ0u

ϕ
z , z ∈ ρ(A0), ϕ ∈ Γ0H . (3.8)

Definition 3.6. Function M(z) is called Weyl function of the problem (3.1)
(or (3.4)).

Remark 3.7. Note that the densely defined operator M(0) = Γ1Π is not necessarily
bounded, whereas the component of M(·) depending on z, that is, the difference M(z)−
M(0), z ∈ ρ(A0), is an analytic operator function with values in B(E).

Remark 3.8. The Weyl function M(z) can be rewritten in the form

M(z)ϕ = Γ1(I − zA−1
0 )−1Πϕ, ϕ ∈ Γ0H , z ∈ ρ(A0). (3.9)

This representation directly follows from the definition above, since

I + z(A0 − zI)−1 = A0(A0 − zI)−1 = (I − zA−1
0 )−1.

Assuming ϕ = Γ0h with some h ∈ H and noting that for h and hz = (I−zA−1
0 )−1h ∈

ker(A − zI) the equality ϕ = Γ0h = Γ0hz holds according to Proposition 1.7, we can
rewrite (3.9) in the form:

M(z)Γ0hz = Γ1hz, hz ∈ ker(A− zI), z ∈ ρ(A0). (3.10)
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Let us formulate some properties of the constant term M(0) = Γ1Π of Weyl
function M(z) and its z-dependent part M(z)−M(0), z ∈ ρ(A0).

Proposition 3.9. 1. Operator M(0) = Γ1Π defined on the domain Γ0H is symmet-
ric and closable.

2. The difference M(z)−M(0) is an operator R-function, i. e. an analytic operator
function taking values in B(E) with the positive imaginary part in the upper half
plane.

3. Let {A,Γ0,Γ1 + NΓ0,H,E} where N is a symmetric operator on E with do-
main Γ0H be the collection (1.8) obtained from {A,Γ0,Γ1,H,E} according to
Remark 1.5. Then the Weyl function of boundary value problem associated with
{A,Γ0,Γ1 +NΓ0,H,E} is the sum N +M(z), z ∈ ρ(A0).

Proof. (1) Operator M(0) = Γ1Π coincides with the operator Λ defined in Theo-
rem 2.3.

(2) Analyticity of M(z)−M(0) for z ∈ ρ(A0) is obvious and a short calculation
yields the equality

(M(z)ϕ,ψ)E − (ϕ,M(ζ)ψ)E =

= (z − ζ)
(
(I − zA−1

0 )−1Πϕ, (I − ζA−1
0 )−1Πψ

)
H
,

ϕ, ψ ∈ Γ0H , z, ζ ∈ ρ(A0).

(3.11)

where the right hand side is defined correctly for all ϕ,ψ ∈ E. In the special case
of ζ = z, z /∈ R and ϕ = ψ we obtain

Im(M(z)ϕ,ϕ) = (Im z) · ‖(I − zA−1
0 )Πϕ‖2, ϕ ∈ E, z /∈ R

showing that the function M(z)−M(0) is an operator R-function.
(3) Informally, the assertion is an consequence of the Weyl function defini-

tion (3.10). The formal proof reads as follows. Firstly, the operator Π does not
depend on the particular choice of operator Γ1 in the Green formula (1.1). Indeed,
for Γ̃1 := Γ1 + NΓ0 we have Π∗ = Γ1A

−1
0 = (Γ1 + NΓ0)A−1

0 = Γ̃1A
−1
0 . Therefore,

the z-dependent part of the Weyl function M(z)−M(0) = zΠ∗(I − zA−1
0 )−1Π is not

affected by the choice of Γ1. Moreover, for x ∈ Γ0H we have Γ̃1Πx = (Γ1 +NΓ0)Πx =
Γ1Πx+NΓ0Πx = (M(0) +N)x, as required.

The proof is complete.

Remark 3.10. Assuming N = −M(0) in the statement (3) of the Proposition, we
conclude that the Weyl function of the boundary value problem corresponding to collec-
tion {A,Γ0,Γ1−M(0)Γ0,H,E} is a bounded analytic operator function M(z)−M(0)
equal to the null operator at the origin. Operator Γ̃1 = Γ1 −M(0)Γ0 considered as an
alternative to Γ1 was introduced in the context of boundary value problems for elliptic
partial differential equations by Vishik in [27].

Remark 3.11. Let At := A+ tI where t ∈ R. Then Assumption 1 is obviously satis-
fied for the operator At. Definition (3.8) makes it possible to introduce the concepts of
Weyl function for the operator At. Since ker(A− zI) = ker(At− ζI), where ζ = t+ z



322 Vladimir Ryzhov

and operators Γ0, Γ1 do not depend on t ∈ R, the Weyl function Mt(·) for operator At

can be defined in a quite natural way as Mt(ζ) := M(ζ − t), ζ ∈ ρ(A0 + tI).

3.3. UNIQUENESS

This subsection is dedicated to the question of uniqueness as to what extent a bound-
ary value problem can be recovered from its Weyl function. It turns out that the
answer depends on the assumption of complete nonselfadjointness of the minimal
operator A00. If A00 is completely nonselfadjoint, then all components of the collec-
tion {A,Γ0,Γ1,H,E} are determined by the Weyl function uniquely up to an unitary
equivalence.

Theorem 3.12. Let E, H be two Hilbert spaces and M1(·), M2(·) are the Weyl
functions of two boundary value problems {Aj ,Γj

0 ,Γ
j
1 ,H,E}, j = 1, 2 defined in H

with the boundary space E whose minimal operators are completely nonselfadjoint.
Other objects that corresponds to these problems, such as operators Π and A0, will
be distinguished similarly by employing the superscript based notation. Assume that
symmetric operators Λj = Mj(0), j = 1, 2 are defined on the common domain D :=
D(M1(·)) = D(M2(·)) dense in E and the differences mj(z) := Mj(z)−Mj(0), j = 1, 2
are bounded operator functions analytic in some neighborhood of the origin z = 0
where m1(z) = m2(z). Then there exists an unitary U : H → H such that UA1

0 =
A2

0U , UΠ1 = Π2, UA1 = A2U , Γ1
0 = Γ2

0U , and Γ1
1 = (Γ2

1 +NΓ2
0 )U where N = Λ1−Λ2

is a symmetric operator on D .

Proof. From the condition m1(z) = m2(z) by using expansion (I − zT )−1 =∑∞
n=0(zT )n, T ∈ B(H) with T = Aj

0, we obtain

((A1
0)
−nΠ1e, (A1

0)
−mΠ1e) = ((A2

0)
−nΠ2e, (A2

0)
−mΠ2e), n,m = 0, 1, 2, . . . , e ∈ E.

Define the mapping Ũ on the set {(A1
0)
−nΠ1e | n ≥ 0, e ∈ E} dense in H due to

complete nonselfadjointness of A1
00 as Ũ : (A1

0)
−nΠ1e 7→ (A2

0)
−nΠ2e. The operator Ũ

is isometric and its range is dense in H. We extend Ũ to the unitary U defined
everywhere on H. Then U(A1

0)
−nΠ1 = (A2

0)
−nΠ2. For n = 0 we obtain UΠ1 = Π2.

Moreover, UA1
0(A

1
0)
−nΠ1 = A2

0(A
2
0)
−nΠ2 = A2

0U(A1
0)
−nΠ1 for any n ≥ 0; therefore

UA1
0 = A2

0U . A similar computation can be found in [6].
Now we can define the operator Aj on its domain D(Aj) := D(Aj

0)+̇ΠjD as
follows. Let the action of Aj on the set D(Aj

0) coincide with that of Aj
0 and Ajh = 0

for h ∈ ΠjD . Consequently, UA1 = A2U . Operator Γj
0 is defined as null on the

set D(Aj
0) and as the left inverse to Πj on ΠjD . Therefore, D(Γj

0 ) = D(Aj). For
h := Π1D the relation UΠ1 = Π2 yields Γ1

0 h = Γ2
0 Π2Γ1

0 h = Γ2
0UΠ1Γ1

0 h = Γ2
0Uh.

For f ∈ D(A1
0) obviously 0 = Γ1

0 f = Γ2
0Uf since Uf ∈ D(A2

0). Therefore, Γ1
0 u = Γ2

0Uu
for u ∈ D(A1).

Having obtained pairs {Aj ,Γj
0 } we can employ Proposition 1.16 and conclude

that boundary value problems {Aj ,Γj
0 ,Γ

j
1 ,H,E} corresponding to the Weyl func-

tions M j(·) are uniquely determined with the exception of operators Γj
1 . From
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the representation Γj
1 = (Πj)∗Aj + ΛjΓj

0 we have Γ1
1 = ((Π2)∗A2 + Λ1Γ2

0 )U =
Γ2
1U + (Λ1 − Λ2)Γ2

0U = (Γ2
1 +NΓ2

0 )U .
The proof is complete.

Note that the statements of Theorem regarding operators Γ0, Γ1 are only valid
if D(Λ1) ∩ D(Λ2) is dense in E. With this assumption omitted, details of the proof
allows us to formulate the following Corollary.

Corollary 3.13. In the notation of Theorem 3.12 if m1(z) = m2(z) for z ∈ C in
some neighborhood of the origin, then there exists an unitary U : H → H such that
UA1

0 = A2
0U and UΠ1 = Π2.

Theorem 3.12 sets forth questions of finding objects that would be sufficient to
serve as the “inverse data” in the process of reconstructing the boundary value prob-
lem, as well as finding an explicit recipes for such reconstructions. One relevant
result regarding the former is given below for the case when operator A0 has no
continuous spectrum. In a sense, it is a version of the Borg-Levinson theorem for the
Schrödinger operator (see [24]) generalized to the case of boundary value problems
under consideration.

Theorem 3.14. Let the spectrum of operator A0 be purely discrete. Denote {zj}∞1 ,
{fj}∞1 the eigenvalues and the orthonormal basis of corresponding eigenvectors of A0.
If the symmetric operator A00 is completely nonselfadjoint, then operators A0 and
Π are determined uniquely up to an unitary equivalence by the collections {zj}∞1
and {Γ1fj}∞1 .

Proof. We only need to show that the function m(z) = M(z)−M(0), z ∈ ρ(A0) can
be recovered from the given collections {zj}, {Γ1fj}. The reconstruction of A0 and Π
knowing the function m(z) is ensured by Corollary 3.13. Since m(·) is bounded, it is
sufficient to consider the quadratic form (m(z)e, e), e ∈ E only. We have

(m(z)e, e) = (zΠ∗(I − zA−1
0 )−1Πe, e) = (z(I − zA−1

0 )−1Πe,Πe) =

= z
∑

j

〈(I − zA−1
0 )−1Πe, fj〉〈fj ,Πe〉 =

= z
∑

j

〈e,Γ1A
−1
0 (I − z̄A−1

0 )−1fj〉〈Γ1A
−1
0 fj , e〉 =

= z
∑

j

1
z2
j

· 〈e,Γ1fj〉〈Γ1fj , e〉
1− zz−1

j

=
∑

j

z

zj
· |(e,Γ1fj)|2

zj − z
.

Therefore, the function m(z) is uniquely determined by the sets {zj} and {Γ1fj}.

3.4. GENERAL BOUNDARY CONDITIONS

Properties of the Weyl function play an important role in the study of spectral prob-
lems for restrictions of operator A to the domains described by various boundary
conditions. Let B0, B1 be two linear operators on the space E such thatD(B0) ⊃ Γ0H
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and B1 ∈ B(E). The problem of our interest is to find the vector w ∈ D(A) satisfying
following equations: {

(A− zI)w = f,
(B0Γ0 +B1Γ1)w = ϕ,

(3.12)

for given f ∈ H, ϕ ∈ E, and z ∈ C. Note that we can easily assume that the
operators B0 and B1 in (3.12) depend on the complex number z ∈ C. In this case
the problem (3.12) is an example of the boundary value problem with the spectral
parameter in the boundary condition.

The following theorem establishes a one-to-one correspondence between solutions
to the system (3.12) and solutions to a certain “boundary equation” in the space E
that involves the Weyl function. Such a reduction of the boundary value problem
to the “equation on the boundary” is well known in the literature, see [1, 18, 19] for
examples. The theorem can be seen as an abstract variant of this procedure. Note
that its value is fully realized only if B1 is not equal to the null operator.

Theorem 3.15. Let wf,ϕ
z ∈ D(A) be a solution to the problem (3.12) for given

z ∈ ρ(A0), f ∈ H and ϕ ∈ E. Then the vector

Ψf,ϕ
z := Γ0w

f,ϕ
z (3.13)

is a solution to the equation

(B0 +B1M(z))Ψ = ϕ−B1Π∗(I − zA−1
0 )−1f, Ψ ∈ Γ0H . (3.14)

Conversely, if Ψf,ϕ
z ∈ Γ0H is a solution to (3.14) for given z ∈ ρ(A0), f ∈ H and

ϕ ∈ E, then the vector

wf,ϕ
z := (A0 − zI)−1f +

[
I + z(A0 − zI)−1

]
ΠΨf,ϕ

z (3.15)

is a solution to the problem (3.12).

Proof. Let wf,ϕ
z ∈ D(A) solves the problem (3.12). Then

ϕ−B1Π∗(I − zA−1
0 )−1f = (B0Γ0 +B1Γ1)wf,ϕ

z −B1Γ1A
−1
0 (I − zA−1

0 )−1f =

= B0Γ0w
f,ϕ
z +B1Γ1

[
wf,ϕ

z − (A0 − zI)−1f
]

=

= B0Γ0w
f,ϕ
z +B1Γ1

[
I − (A0 − zI)−1(A− zI)

]
wf,ϕ

z =

= B0Γ0w
f,ϕ
z +B1M(z)Γ0

[
I − (A0 − zI)−1(A− zI)

]
wf,ϕ

z =

= [B0 +B1M(z)] Γ0w
f,ϕ
z

where we made use of the inclusion [I − (A0 − zI)−1(A − zI)]wf,ϕ
z ∈ ker(A − zI)

and property (3.10) of Weyl function. We see that (3.13) is a solution to the prob-
lem (3.14). The required inclusion Γ0w

f,ϕ
z ∈ Γ0H follows from the decomposition

wf,ϕ
z = (A0 − zI)−1f + hz = (A0 − zI)−1f + (I − zA−1

0 )−1h,

where hz ∈ ker(A− zI) and h := (I − zA−1
0 )hz ∈ H , so that Γ0w

f,ϕ
z = Γ0hz = Γ0h ∈

Γ0H according to Proposition 1.7.
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To prove the inverse, let Ψf,ϕ
z ∈ Γ0H be a solution to the equation (3.14). Then

since the second summand in (3.15) belongs to ker(A − zI), the vector wf,ϕ
z defined

by (3.15) lies in the domain of the operator A and obviously, (A− zI)wf,ϕ
z = f . Let

us verify that wf,ϕ
z is also a solution to the second equation (3.12). We have

(B0Γ0 +B1Γ1)wf,ϕ
z = (B0Γ0 +B1Γ1)

[
(A0 − zI)−1f +

(
I + z(A0 − zI)−1

)
ΠΨf,ϕ

z

]
=

= B0Γ0ΠΨf,ϕ
z +B1Γ1(A0 − zI)−1f +B1Γ1(I − zA−1

0 )−1ΠΨf,ϕ
z =

= [B0 +B1M(z)]Ψf,ϕ
z +B1Γ1(A0 − zI)−1f =

= ϕ−B1Π∗(I − zA−1
0 )−1f +B1Γ1(A0 − zI)−1f =

= ϕ−B1Γ1

[
A−1

0 (I − zA−1
0 )−1 − (A0 − zI)−1

]
f,

where we used representation (3.9) for the Weyl function, equality Γ0ΠΨfϕ
z = Ψfϕ

z

and assumption (3.14). Now the required result (B0Γ0 +B1Γ1)wf,ϕ
z = ϕ follows from

the identity A−1
0 (I − zA−1

0 )−1 = (A0 − zI)−1.
The proof is complete.

Remark 3.16. A simple condition that guarantees solvability of (3.14) for any f ∈
H, ϕ ∈ E is the closedness of the operator (B0 + B1M(z)) on its domain Γ0H and
its invertibility, so that the range of its inverse [B0 +B1M(z)]−1 coincides with Γ0H .
As easily seen from (3.15), in this case the norm estimate ‖wf,ϕ

z ‖ ≤ C(z)(‖f‖+ ‖ϕ‖)
holds with some positive constant C(z) <∞ depending on z ∈ ρ(A0).

Remark 3.17. Comparison of (3.15) and (3.2) shows that the solution wf,ϕ
z can

be obtained by solving the problem (3.1) with ϕ ∈ E replaced with the solution Ψf,ϕ
z

to (3.14) provided that the latter exists. In case if (3.14) is solvable and Ψf,ϕ
z ∈ E, but

not necessarily Ψf,ϕ
z ∈ Γ0H as required in conditions of Theorem 3.15, solution wf,ϕ

z

still can be defined as a weak solution uf,Ψ
z where Ψ := Ψf,ϕ

z to the problem (3.1)
described in Remark 3.4.

4. AN EXAMPLE

This section illustrates the formalism developed above by means of an example. The
setting can be extended to more general cases of operators and domains, most notably
to the general strongly elliptic partial differential operators and domains of lesser
smoothness. Such generalizations would be based upon the potential theory developed
to the degree that embraces more generic domains and operators. Relevant results
are partially available in the literature, see [12, 19]. However, we keep the exposition
simple in hope to dedicate a separate publication to more advanced situations.

Let Ω ⊂ R3 be a bounded simply connected domain with the C∞-boundary Γ,
and H := L2(Ω), E := L2(Γ). Operator A is the Laplacian ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

on
domain D(A) = H2(Ω) where H2(Ω) is the Sobolev space of functions u ∈ L2(Ω) such
that ∂2u/∂x2

i ∈ L2(Ω), i = 1, 2, 3. Denote ∂ν := ∂
∂ν the derivative in the direction

of the outer normal ν to the boundary Γ. For any function u ∈ D(A) there exist its



326 Vladimir Ryzhov

trace u|Γ and the trace of its derivative (∂νu)|Γ on Γ. We define the mappings Γ0

and Γ1 on the domain D(A) = H2(Ω) as follows

Γ0 : u 7→ u|Γ , Γ1 : u 7→ (∂νu)|Γ , u ∈ D(A).

It is known that Γ0 and Γ1 are bounded operators acting from H2(Ω) into L2(Γ).
More precisely, the following equalities for their ranges hold: R(Γ0) = H3/2(Γ) and
R(Γ1) = H1/2(Γ), where H3/2(Γ) and H1/2(Γ) are fractional Sobolev spaces on the
surface Γ, see [19,20]. For any vectors u, v ∈ D(A) the Green formula holds:

(Au, v)H − (u,Av)H = (Γ1u,Γ0v)E − (Γ0u,Γ1v)E , u, v ∈ D(A).

The operator A0 defined as a restriction of A = ∆ to the domain D(A0) :=
{u ∈ H2(Ω) | Γ0u = 0} is the operator of Dirichlet boundary value problem in the
space L2(Ω). It is a closed boundedly invertible selfadjoint operator with discrete
spectrum. (See [7] for the proof of its closedness.)

The null set H of A = ∆ consists of all harmonic functions h in Ω, ∆h = 0 that
belong to the space H2(Ω). Note that Γ0H ⊂ H3/2(Γ) and Γ1H ⊂ H1/2(Γ), since
H ⊂ H2(Ω). The closure of H in L2(Ω) is wider that the Sobolev class H2(Ω) and
includes square integrable functions on Ω that don’t possess boundary values on Γ
and don’t belong to the domain D(A).

The intersection D(A0)∩H is trivial because any harmonic function from H with
the zero boundary values on Γ is equal to zero almost everywhere in Ω. The operator Π
is the left inverse to the mapping h 7→ h|Γ, h ∈ H . It is the operator of harmonic
continuation from the boundary Γ that maps a function ϕ ∈ H3/2(Γ) to the harmonic
function h from H such that h|Γ = ϕ. Noticing that, the decomposition D(A) =
D(A0)+̇H becomes almost obvious. Indeed, for any u ∈ H2(Ω) there exists a unique
harmonic function h = Π(u|Γ) with the same boundary values h|Γ = u|Γ. Therefore,
the difference u− h belongs to H2(Ω) and vanishes at the boundary: (u− h)|Γ = 0.
Hence, u− h lies in the domain D(A0). This decomposition of the space H2(Ω) and
the equality Γ0H

2(Ω) = H3/2(Γ) given above show that Γ0H = H3/2(Γ).
Consequently, Assumptions 1 and 2 hold true for the collection {∆, u 7→ u|Γ, u 7→

∂νu|Γ, L2(Ω), L2(Γ)} and we can apply the theory developed in preceding sections to
the semi-homogeneous spectral boundary value problem{

(∆− z)u = 0 in Ω,
u|Γ = ϕ

(4.1)

where ϕ ∈ H3/2(Γ).
We start with the following representation of any vector uz ∈ H2(Ω) satisfying

the equation (∆− z)u = 0, z ∈ C in Ω

uz(x) =
∫

Γ

[
Gz(x, y) ·

∂uz

∂ν
− ∂Gz(x, y)

∂νy
· uz(y)

]
dSy, x ∈ Ω

where

Gz(x, y) :=
1
4π

exp (ik|x− y|)
|x− y|

, x, y ∈ R3, k :=
√
−z, Im k ≥ 0
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is the fundamental solution to the Helmholz equation (∆ − z)u = 0 in R3 and dSy

is the euclidian surface measure on Γ. This formula is well known for functions uz

continuous in the closure of the domain Ω (see [9]). For the general case of uz ∈ H1(Ω)
the relevant result can be found in [19]. We rewrite this representation in the form

uz = Sz(∂νuz|Γ)−Dz(uz|Γ) = SzΓ1uz −DzΓ0uz (4.2)

where operators Sz and Dz are the usual single and double layer potentials. For
functions w ∈ L2(Γ) they are defined as mappings

(Szw)(x) :=
∫

Γ

Gz(x, y)w(y)dSy, (Dzw)(x) :=
∫

Γ

∂Gz(x, y)
∂νy

w(y)dSy. x ∈ Ω.

Operators Sz and Dz acting from the space L2(Γ) into L2(Ω) are compact for Im z 6=
0, see [19]. Boundary values of (4.2) on the surface Γ can be calculated using well
known formulae of potential theory. Namely, for any w ∈ C2(Ω) the following equal-
ities hold [9, 23]:

Γ0Szw = Szw, Γ0Dzw = −1
2
(w −Kzw),

Γ1Szw =
1
2
(w + K′zw), Γ1Dzw = Rzw

(4.3)

where for x ∈ ∂Ω

(Szw)(x) :=
∫

Γ

Gz(x, y)w(y)dSy, (Kzw)(x) := 2
∫

Γ

∂Gz(x, y)
∂νy

w(y)dSy.

are direct values of the single and double layer potentials on the surface Γ, and

(K′zw)(x) := 2
∫

Γ

∂Gz(x, y)
∂νx

w(y)dSy, (Rzw)(x) :=
∂

∂νx

∫
Γ

∂Gz(x, y)
∂νy

w(y)dSy.

Operators K′z and Rz are sometimes called the adjoint double layer potential and the
hypersingular operator, respectively. It turns out that under our assumptions about
the boundary Γ the mappings Sz, Kz, K′z are compact operators on the space L2(Γ) (
[13, 23]). Operator Rz is unbounded on L2(Γ). It can be shown, however, that
Rz : H1(Γ) → L2(Γ), see [19]. Consequently, values Γ0uz and Γ1uz for the vector uz

from (4.2) belong to the domain of operators Sz, Kz, K′z, and in addition, Γ0uz as an
element of H3/2(Γ) ⊂ H1(Γ), lies in the domain of Rz. Thus, we have

Γ0uz = Γ0(SzΓ1 −DzΓ0)uz = SzΓ1uz +
1
2
(I −Kz)Γ0uz,

Γ1uz = Γ1(SzΓ1 −DzΓ0)uz =
1
2
(I + K′z)Γ1uz − RzΓ0uz.

An elementary rearranging of summands yields:

(I + Kz)Γ0uz = 2SzΓ1uz, (I −K′z)Γ1uz = −2RzΓ0uz.
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Recall now that operators Kz and K′z are in fact analytic operator-functions of the
complex parameter z. Since Kz and K′z are compact, the operators I + Kz and
I − K′z are boundedly invertible for all z ∈ C except for a countable set of points
accumulating to the infinity, provided they are invertible at least for one value of z ∈
C. (See [6] for example.). More accurate result from [9] says that poles of the
operator-function (I+Kz)−1 coincide with the eigenvalues of the Neumann boundary
problem in L2(Ω). This problem is defined as (∆− z)u = 0, ∂νu|Γ = 0. Analogously,
poles of (I−K′z)

−1 are the eigenvalues of the Dirichlet boundary problem (∆−z)u = 0,
u|Γ = 0 in L2(Ω), that is, the spectrum of operator A0. Since all these eigenvalues
are real, it follows that the Weyl function M(·) of the boundary value problem (4.1)
and its inverse M−1(·) are

M(z) = −2(I −K′z)
−1Rz, M−1(z) = 2(I + Kz)−1Sz, z ∈ C±. (4.4)

Function M(·) is defined correctly on the domain H1(Γ), whereas values of its in-
verse M−1(·) are compact operators on L2(Γ).

According to the theory above, the solution to problem (4.1) is the vector (I −
zA−1

0 )−1Πϕ, see formula (3.5). Now the representation (4.3) for Γ0Dz gives rise to
the following Proposition.

Proposition 4.1. Solutions uϕ
z = (I − zA−1

0 )−1Πϕ of the problem (4.1) are given by
the formula

uϕ
z = −2Dz(I −Kz)−1ϕ, z ∈ ρ(A0) (4.5)

where ϕ ∈ H3/2(Γ).

Proof. The fact that (4.5) is a solution to the problem (4.1) is the well known result
of the potential theory. Taking into consideration (4.3) we need to show that (I −
Kz)−1ϕ, z ∈ ρ(A0) is a vector from H3/2(Γ) for ϕ ∈ H3/2(Γ). This follows directly
from the fact that Kz is a pseudodifferential operator of order not greater than −1
(see [1]). Hence, (I −Kz)−1 is an invertible pseudodifferential operator or order zero,
so that (I −Kz)−1H3/2(Γ) = H3/2(Γ). Finally, uniqueness of representation (4.5) for
vectors uϕ

z = (I − zA−1
0 )−1Πϕ is a consequence of Proposition 1.7 which guarantees

that if two vectors u1, u2 from ker(A−zI) have the same boundary values Γ0u1 = Γ0u2

then necessarily u1 = u2.
The proof is complete.

Remark 4.2. According to results above, the set of all solutions (4.5) coincides
with ker(A − zI) and the mapping ϕ 7→ uϕ

z = (I − zA−1
0 )−1Πϕ establishes a one-to

one correspondence between ϕ ∈ H3/2(Γ) and the respective solution uϕ
z . This result

combined with formula (4.5) and properties of (I −Kz)−1 cited in the proof of Propo-
sition 4.1 implies that the double layer potential Dz restricted to the set H3/2(Γ) is
an invertible operator. More precisely, its range coincides with ker(A − zI) and the
inverse mapping is given by the formula

(Dz)−1uz = −2(I −Kz)−1Γ0uz, uz ∈ ker(A− zI).
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Remark 4.3. From the representation (4.5) we obtain for ϕ = Γ0u
ϕ
z

Γ1u
ϕ
z = −2Γ1Dz(I −Kz)−1ϕ = −2Rz(I −Kz)−1ϕ

since (I−Kz)−1ϕ ∈ H3/2(Γ) for ϕ ∈ H3/2(Γ). It means that the Weyl function M(·)
can be rewritten in the form

M(z) = −2Rz(I −Kz)−1, z ∈ ρ(A0).

Remark 4.4. Operator M(0) = −2R0(I −K0)−1 = −2(I −K′0)
−1R0 is the so-called

Dirichlet-to-Neumann map for the Laplace equation ∆u = 0. It maps a smooth func-
tion ϕ on the boundary Γ to the trace of the normal derivative on Γ of the solution uϕ

0

to the Laplace equation ∆u = 0 with the boundary condition u|Γ = ϕ. In other words,
M(0) maps the boundary values of the Dirichlet boundary problem for the Laplacian
into those of the Neumann problem, M(0) : ϕ 7→ ∂νu

ϕ
0 |Γ. Representation M(0) = Γ1Π

established above for the general case now becomes self-evident. Properties of the
Dirichlet-to-Neumann map of various partial differential operators were investigated
in a number of papers, starting from [27]. (See as well the survey [25].) In the
case under consideration M(0) is a positive selfadjoint pseudodifferential operator of
order 1 (see [1, 27]). Further, since the Weyl function M(z), z ∈ ρ(A0) maps ϕ
to uϕ

z |Γ where uϕ
z is the solution to the equation (∆ − z)u = 0, it can be said that

the operator M(z) is the Dirichlet-to-Neumann map for the equation (∆ − z)u = 0,
cf. [25].

Remark 4.5. Invertibility of the double layer potential Dz, z ∈ ρ(A0) stated in Re-
mark 4.2 shows that Dz maps H3/2(Γ) into a subset of H2(Ω). Applying interpolation
arguments [20] we conclude that Dz is the operator from L2(Γ) to the space H1/2(Ω),
therefore Dz is compact as a mapping from E = L2(Γ) to H = L2(Ω). Thus, according
to Proposition 4.1, the transformation ϕ 7→ (I−zA−1

0 )−1Πϕ, ϕ ∈ E is compact. Fur-
thermore, since M(z)−M(ζ) = (z−ζ)Π∗(I−ζA−1

0 )−1(I−zA−1
0 )−1Π for z, ζ ∈ ρ(A0),

see (3.11), the difference M(z) −M(ζ) is a compact operator on E. In particular,
it holds for M(z) −M(0), thereby M(z), z ∈ ρ(A0) is a compact perturbation of the
Dirichlet-to-Neumann map Λ = M(0) of the Laplacian.

Remark 4.6. Theorem 3.12 shows that if one knows the function M(z), then one
can determine the operator A and boundary maps Γ0, Γ1 up to isomorphism. We
know from the case of the Sturm-Liouville operator in one dimension that this is the
best possible result in the abstract setting. However for the multidimensional case of
differential operators one can recover its coefficients knowing just M(z0) for a single
point z0 ∈ ρ(A0), see e. g. [24, 25]. In fact even weaker results are now known such
as recovery of the coefficients knowing the function M(z) on just a part of a smooth
boundary, see [26] for the survey.

REFERENCES

[1] M.S. Agranovich, Elliptic Boundary Problems, in Encyclopaedia of Mathematical Sci-
ences, Vol. 79, Partial Differential Equations IX, Springer-Verlag, Berlin Heidelberg
New York, 1997.



330 Vladimir Ryzhov

[2] A. Alonso, B. Simon, The Birman-Krein-Vishik theory of selfadjoint extensions of semi-
bounded operators, J. Oper. Theory 4 (1980), 251–270.

[3] W. O. Amrein, D.B. Pearson, M-operators: a generalisation of Weyl-Titchmarsh the-
ory, J. Comput. Appl. Math. 171 (2004) 1–26.

[4] S. Bergman, M. Schiffer, Kernel Functions and Elliptic Differential Equations in Math-
ematical Physics, Academic Press, New York, N.Y., 1953.

[5] M.S. Birman, M.Z. Solomyak, Spectral theory of selfadjoint operators in Hilbert Space,
D. Reidel Publishing Company, Dordrecht, Holland, 1987.
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