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ALGEBRAIC CONSTRUCTION OF A COBOUNDARY
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Abstract. We present an algebraic construction of the coboundary of a given cycle as a
simpler alternative to the geometric one introduced in [4, 5].

Keywords: algorithm, homology theory, cycle, coboundary.

Mathematics Subject Classification: Primary 55-04, 55N35; Secondary 05C85.

1. INTRODUCTION

The Conley index is a very useful tool in the study of dynamical systems. It allows
us to prove various results like the existence of periodic points or chaos. However, it
is not that easy to compute the index because its construction is based on the quite
complicated homotopy and homology theories.

A reasonable solution to this problem is to construct an algorithm for computation
of the index. In a series of papers [1,3–5], Allili and Kaczyński presented an algorithm
for the construction of a chain homomorphism induced by a multivalued representable
map, which was necessary to compute a homeomorphism induced in homology by a
given continuous map. One of its most important parts was the computation of the
coboundary of a given cycle σ, i. e., a chain τ satisfying a condition ∂τ = σ, which
was done by means of geometry (see [4, 5]). In [2], the authors also suggested that
this problem may be solved by means of elementary linear algebra. The aim of this
paper is to develop the idea of an alternative algebraic construction.

Some remarks on the implementation of the Allili-Kaczyński algorithm were pre-
sented in [9]. The appropriate computer program which is a part of the Computa-
tional Homology Project was written in C++ language and it is available at [14]. For
applications of this algorithm, we refer the reader to [12,13].
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2. NOTATION

In this section we recall the notation introduced in [1, 3, 4].

Definition 1. A set E of cells in Rn is called a convex grid in Rn if the following
conditions are satisfied:

(1) Rn =
⋃

e∈E e,
(2) e ∩ e′ = ∅ if e 6= e′,
(3) each cell e ∈ E is a convex polyhedron without boundary,
(4) for each bounded set B ⊂ Rn the family stB := {e ∈ E| e ∩B 6= ∅} is finite,
(5) if B ⊂ Rn is bounded, then there exists a representable convex set containing B

(we call a closed set representable over a grid E if it is a finite union of cells from
E).

Example 2. The following two examples are especially important for applications.

(i) Any simplicial triangulation.
(ii) The cubic grid of mesh 1

k , k ∈ N∗

Ek := {1
k

(x + Q) ∈ Rn|x ∈ Zn, Q = I1 × . . .× In and Ij = (0, 1), {0} or {1}}.

Let E be a convex grid in Rn and let X be a representable set over E . By E(X)
we denote the set of all cells in X and by Eq(X) the set of all q–dimensional cells in
X.

The original geometric construction of a coboundary was presented by Allili and
Kaczyński in [4] for a cubic grid only, but later it was extended to the general case
(see [5]). For the sake of simplicity of the presentation, we also restrict our algorithm to
the case of a cubic grid. However, unlike the geometric construction, the algebraic one
is easily adaptable to wider classes of cells in a space grid. A way of such generalization
is suggested in Section 3, paragraphs The General Case.

Henceforth we proceed under the assumption that E is a cubic grid of Rn. It will
not result in the loss of generality if we assume that k = 1, i. e., that E is a unitary
cubic grid.

3. CONSTRUCTION OF A COBOUNDARY OF A GIVEN CYCLE

In this section, we present a construction of a coboundary COB(σ) of a given
(q − 1)–dimensional cycle σ. The construction is based on the elementary lin-
ear algebra. To make it applicable to the Allili-Kaczyński algorithm, we require
COB(σ) ⊂ convE(σ), where convE(σ) denotes the smallest representable convex set
containing σ (see [3] for details). Note that representable convex sets over a cubic
grid are rectangles.
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If σ = v− v is a zero-dimensional cycle for v = (v1, . . . vn) and v = (v1, . . . vn), we
define its coboundary by the following formula

COB(σ) :=
n∑

i=1

sgn(vi − vi){v1} × . . .× {vi−1} × (min{vi, vi},max{vi, vi})×

× {vi+1} × . . .× {vn}.

Here

{a1} × . . .× {ai−1} × (ai, bi)× {ai+1} × . . .× {an} :=

:=
bi−1∑
j=ai

{a1} × . . .× {ai−1} × (j, j + 1)× . . .× {an}.

One can easily check that ∂(COB(σ)) = σ. So, we have constructed the coboundary
of the cycle σ in the case of q = 1.

The General Case. In the general case constructing COB(σ) is equivalent to finding
such a path of edges in the connected graph G = (E0(convE(σ)), E1(convE(σ))) which
connects v and v. It is a classical problem of the graph theory and we can apply any
standard algorithm to solving it (see [7]).

Now let q > 1. Since reduced homologies of the rectangle convE(σ) are trivial,
there exists a coboundary of σ contained in convE(σ). To find it, it is enough to solve
the system of linearly dependent equations σ =

∑
{e∈Eq(conv(σ)} ae∂e with respect to

coefficients ae and then put COB(σ) :=
∑

{e∈Eq(conv(σ))} aee.
To implement this step, first we introduce some order of cells in the sets

Eq(conv(σ)) and Eq−1(conv(σ)), which allows us to create a computer representation
of the above system. For simplification, we make this independent from the dimension
and define a universal order in the set E(conv(σ)), i.e., a function

N : E(conv(σ)) → {1, 2, . . . , d}

(for some d ∈ N) which is one-to-one but not onto (see Section 3.1). Then we obtain
the system of d linearly dependent equations Ax = b, where A = (aij) ∈ Rd×d is
a matrix and b ∈ Rd is a vector such that for i ∈ {1, . . . , d} the coordinate bi is
equal to the coefficient of N−1(i) in σ. Here, for i, j ∈ {1, . . . , d}, aij = 0 or, if
N−1(j) ∈ Eq(conv(σ)), aij is equal to the coefficient of N−1(i) in the boundary of
N−1(j).

Finally, we solve the above system using some version of the Gauss algorithm
adapted to the “dependent” case (see Section 3.2).

The General Case. In Section 3.1, we define a special order of cells for the cubic grid
only, which admits an implementation enabling us to calculate values of functions N
and N−1 using simple formulas. In fact, in the general case, one can take an arbitrary
order instead.

One can also notice that the construction of a coboundary depends on a computa-
tion of a boundary operator. We give neither the abstract definition of the boundary,
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which is useless for implementation, nor the special one for a cubic grid. However, a
construction of a boundary operator is not a goal of this paper and can easily be done
in a case of any standard grid. For all detailed definitions we refer the reader to [8].

3.1. DEFINITION OF AN ORDER OF CELLS
IN A GIVEN REPRESENTABLE RECTANGLE

Assume that we are given a representable rectangle R[a, b] := [a1, b1]× [a2, b2]× . . .×
[an, bn], where a = (a1, . . . , an) and b = (b1, . . . , bn) denote its “left lower” and “right
upper” corner, respectively. Let d(R[a, b]) be equal to the dimension of R[a, b]), i.e.
d(R[a, b]) = ]{i ∈ {1, . . . , n} : ai < bi}. If v ∈ E0(R[a, b]) is a vertex, then let
v + 1 also be a vertex of E0(R[a, b]) with coordinates (v + 1)i = vi + sgn(bi − ai) for
i ∈ 1, . . . , n.

First, we define an auxiliary function

N 0
c,d : E0(R[c, d]) → N

by the formula

N 0
c,d(v) := (vn−cn)rn−1rn−2 . . . r1+ . . .+(v2−c2)r1+(v1−c1), for v ∈ E0(R[c, d]),

where ri = di− ci +1 for each i ∈ {1, . . . , n}. Note that N 0
c,d is a one-to-one function.

Indeed, if N 0
c,d(v) = m for some vertex v and integer number m, one can easily check

that then the coordinates of v are defined recursively by the sequence of equations

v1 = m mod r1 + c1,

vi =
m− ((vi−1 − ci−1)ri−2 . . . r1 + . . . + (v1 − c1))

ri−1 . . . r1
mod ri +ci, for i ∈ {2, . . . , n}.

So, the function (N 0
c,d)

−1 inverse to N 0
c,d is given on the image of the latter.

Now we are able to define the function

N = Na,b : E(R[a, b]) → N.

Let σ ∈ E(R[a, b]). Then σ = σ(s, t) =]s1, t1[× . . .×]sn, tn[ for some points s =
(s1, . . . , sn) and t = (t1, . . . , tn), where

]si, ti[=
{

(si, ti), if si = ti + 1,
{si}, if si = ti

for i ∈ {1, . . . n}. Put

Na,b(σ) := 2d(R[a,b])(N 0
a,b(s) + 1)− (N 0

s,s+1(t) + 1).

Since 0 ≤ 2d(R[a,b]) − 1−N 0
s,s+1(t) ≤ 2d(R[a,b]) − 1, Na,b is a one-to-one function with

the inverse defined, for each m ∈ N belonging to its image, by

(Na,b)−1(m) = σ(s, t),
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where
s = (N 0

a,b)
−1(m div 2d(R[a,b]))

and
t = (N 0

s,s+1)
−1(2d(R[a,b]) − 1−m mod 2d(R[a,b])),

where m div n denotes the integer part of the quotient m/n and m mod n denotes
the remainder of the division m/n.

So, we have defined the order N = Na,b of cells in the representable rectangle
R[a, b].

3.2. FINDING A SOLUTION OF THE SYSTEM OF LINEARLY DEPENDENT
EQUATIONS

The goal of this section is to implement the algorithm for finding any solution of the
system of linear equations:

n∑
j=1

aijxj = bi i = 1, . . . , n (1)

As the equations are linearly dependent, the determinant of the matrix A =
[aij ]i,j=1,...,n is equal to 0, and one cannot apply the classical Gauss algorithm. How-
ever, it can be easily modified to be used also in this case in the following way (cf. [10],
Section 9.2).

The first step is to reduce the matrix by eliminating all its zero rows and columns.
Of course, the obtained matrix may not be square any more. Let row_num and
col_num denote the number of its rows and columns, respectively. Now we trian-
gulate A, i.e., carry out operations like replacement, summation and subtraction of
the rows or columns, in order to obtain an equivalent system of equations with a
corresponding matrix such that its left upper maximal minor is lower triangular.

We proceed with the following algorithm:

i := row_num;
m := min(row_num, col_num);
for j := col_num downto col_num−m + 1 do
begin

if aij = 0 then
for s := i− 1 downto 1 do

if asj 6= 0 then
exchange i-th and s-th rows;

if aij = 0 then
for t := j − 1 downto 1 do

if ait 6= 0 then
exchange j-th and t-th columns;

if aij 6= 0 then
for s := i− 1 downto 1 do

replace s-th row by such a linear combination of s-th and i-th rows
that asj = 0;
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end;
i := i− 1;
if row_num < col_num then

replace first row_num columns by the last ones
else

replace first col_num rows by the last ones;

Let us now denote the left upper maximal minor of the output matrix by B. It
is obvious from the construction that B is lower triangular. Moreover, if a certain
coefficient aii on its diagonal is equal to 0, all the coefficients asi for s < i as well as
ait for any t are zeros, too. Thus, finding any solution x of system of equations (1)
is now very simple. For indices i such that i > min(row_num, col_num) or aii = 0,
we put xi := 0. In fact, these coefficients of the solution can be chosen arbitrarily, as
a set of columns with indices i such that i ≤ min(row_num, col_num) and aii 6= 0
forms a minor of maximal rank in A. The remaining coefficients of the solution are
determined the same way as in the classical Gauss algorithm:

for i := 1 to m := min(row_num, col_num) do
if aii = 0 then

xi := 0
else
begin

temp := 0;
for t := 1 to i− 1 do

temp := temp + ait ∗ xt;
xi := (bi − temp)/aii

end;
for i := m + 1 to col_num do

xi := 0;

4. EXAMPLE

Consider the following one-dimensional cycle whose coboundary consists of 3 cubic
cells (Fig. 1).

-

6
�

?�

?
Fig. 1
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The geometric construction of a coboundary of this cycle was presented in [4].
Our goal is to obtain it using the algebraic algorithm.

First of all, we enclose the cycle in its convex hull, i.e., a square which is a union of
9 zero-dimensional, 12 one-dimensional and 4 two-dimensional cells. Then we number
all cells using the previously defined order. The numbers are as follows (Fig. 2).

Dimension 0 Dimension 1 Dimension 2

3 7 11

15
19

23

27 31 35

1

13

5

17

9

21

2 6

14 18

26 30

0 4

12 16

Fig. 2

Next step is to express the problem by means of system (1) of linear equations.
In our example, after the reduction, the corresponding matrix A is equal to

( 0 4 12 16 )

1
2
5
6
9
13
14
17
18
21
26
30





−1 0 0 0
1 0 0 0
1 −1 0 0
0 1 0 0
0 1 0 0
0 0 −1 0
−1 0 1 0
0 0 1 −1
0 −1 0 1
0 0 0 1
0 0 −1 0
0 0 0 −1



,

where the numbers in the left column and the top row denote the numbers of
one-dimensional and two-dimensional cells in the convex hull of the cycle, respectively.
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The vector b is equal to 

−1
1
0
1
1
0
−1
−1
0
1
0
−1



.

The process of triangulation changes A into

( 0 4 12 16 )

14
18
26
30
9
13
21
17
1
2
5
6





−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


and b into 

−1
−1
0
−1
0
0
0
0
0
0
0
0



.
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Thus, we obtain the following easily solvable system of linear equations:
−x0 = −1,
−x4 = −1,
−x12 = 0,
−x16 = −1.

Its solution 
x0 = 1,
x4 = 1,
x12 = 0,
x16 = 1

indicates the coefficients of the cells in a coboundary of the cycle. Therefore, it consists
of 3 two-dimensional cells whose numbers are 0, 4 and 16.
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