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A FINITE DIFFERENCE METHOD
FOR NONLINEAR PARABOLIC-ELLIPTIC SYSTEMS

OF SECOND-ORDER PARTIAL DIFFERENTIAL
EQUATIONS

Abstract. This paper deals with a finite difference method for a wide class of weakly
coupled nonlinear second-order partial differential systems with initial condition and weakly
coupled nonlinear implicit boundary conditions. One part of each system is of the parabolic
type (degenerated parabolic equations) and the other of the elliptic type (equations with a
parameter) in a cube in R1+n. A suitable finite difference scheme is constructed. It is proved
that the scheme has a unique solution, and the numerical method is consistent, convergent
and stable. The error estimate is given. Moreover, by the method, the differential problem
has at most one classical solution. The proof is based on the Banach fixed-point theorem,
the maximum principle for difference functional systems of the parabolic type and some new
difference inequalities. It is a new technique of studying the mixed-type systems. Examples
of physical applications and numerical experiments are presented.
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1. INTRODUCTION

The aim of the paper is to give a finite difference method of approximate solving of
systems of weakly coupled strongly nonlinear second-order partial differential equa-
tions with initial condition and different boundary conditions, in particular weakly
coupled nonlinear implicit conditions. One part of each system is of the parabolic
type (degenerated parabolic equations) and the other of the elliptic type (equations
with a parameter) in Ω := [0, T ] × (0, δ)n ⊂ R1+n. The nonlinearity in the systems
is admitted with respect to second derivatives. It is a novelty for such mixed-type
systems. The existing study of the problem is devoted to parabolic-elliptic systems
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with different, linear or nonlinear, boundary conditions, but our conditions include
most of them.

The general weakly coupled nonlinear systems of the parabolic type or the elliptic
type have been treated by numerous authors, and various methods have been proposed
for the study of different aspects of the problem, such as the uniqueness of the classical
solution, differential inequalities, difference inequalities and a finite difference method
for the computation of an approximate solution (cf. [7, 10–12, 15, 16, 25, 26]). The
paper is motivated by the question whether these classical results can be transferred
from single-type systems to systems of mixed types. Numerical methods for general
weakly coupled functional differential systems of the first-order have, for instance,
been considered by D. Jaruszewska-Walczak and Z. Kamont [6].

There are a lot of well-known mathematical models describing physical phenome-
na by means of parabolic-elliptic systems with different initial-boundary conditions.
Weakly coupled system (3.1) realizes the process of incompressible fluid flow in a
porous medium [1–3]. P. Segall [20] used it for computing poroelastic stress changes
due to fluid extraction. System (3.1) supports a description of the process of heat
exchange with flow of a substance when temperature changes are small – modifica-
tions of the very important Navier-Stokes system. Parabolic-elliptic systems similar
to (3.1) are also used in medicine, in the theory of chemotaxis (the Keller-Segal
model) [21]. The mentioned systems occur in certain problems of astrophysics (the
evolutional version of Chandrasekhar’s model), hydromechanics (statistics of whirls
in Euler’s equations) and statistical mechanics (the Vlasov-Poisson-Boltzmann equa-
tion) [4, 8, 14]. R.C. MacCamy and M. Suri [9] use them to describe rotary currents
in electrodynamics. The parabolic-elliptic systems arise in a groundwater flow prob-
lem [5], a model of evolution of water waves (the Davey-Stewartson systems) [28] and
in the theory of magnetism (the Myrzakulov equations) [13]. Another example is the
Poisson-Schrödinger nonstationary system in the theory of semiconductors.

Such systems also have numerous various applications. Unfortunately though,
they have been less examined than systems of the parabolic, elliptic or hyperbolic
types. It is mainly caused by their specific mixed structure.

In the present paper, we construct a finite difference scheme for nonlinear differ-
ential system (3.1) with nonlinear implicit initial-boundary value conditions (3.2). It
is proved that, under suitable assumptions on functions and steps of a mesh, differ-
ence scheme (4.1) has a unique solution – the algorithm of its numerical solving is
included, moreover, the method is consistent, convergent and stable (stability follows
immediately from the convergence). The error estimate of the approximate solution
is given. Proof is based on the Banach fixed-point theorem, the maximum principle
for difference functional systems of the parabolic type formulated by M. Malec [10]
and some new difference inequalities. At the end of the paper, we present a numerical
example.

The assumptions generally concern the Lipschitz continuous of reaction and
boundary functions, the quasi-monotone property of the reaction functions and the
domination of the main diagonal in some symmetric matrices. They are typical of
such investigations of single-type systems (cf. [7, 10–12]).

It follows, from the convergence of the numerical method, that the problem con-
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sidered has at most one classical solution. Theorems on the existence and uniqueness
of such solutions for some special parabolic-elliptic systems are given for example
in [4, 8, 14] and [19].

We add that a finite difference method for parabolic-elliptic systems has been
studied among others by M.S. Mock [14], Z.Z. Sun [22, 23] and L. Sapa [17], but
in a case of quasi-linear systems of a special form only, without mixed derivatives.
L. Sapa [18] has considered a finite difference method for a general class of such
systems but with the Dirichlet condition only. Unfortunately, these more classical
difference methods and techniques of proof cannot be adapted to strongly nonlinear
systems with different, in particular implicit, boundary conditions. A quite simple
example given by (6.1), (6.2) illustrates this fact well.

2. NOTATION AND DEFINITIONS

2.1. SETS AND SPACES OF FUNCTIONS

Denote by Rn the Euclidean space and define the following sets

E := (0, δ)n ⊂ Rn, Ω := [0, T ]× E, (2.1)

where 0 < δ < +∞ and 0 < T < +∞.
Define also the sets

E := [0, δ]n, Ω := [0, T ]× E. (2.2)

Let
Γ := [0, T ]× ∂E (2.3)

be the side surface of the cube Ω, where ∂E is the boundary of E. In Γ we distinguish
the subset

Γ̃ := (0, T ]× ∂E (2.4)

and the families of subsets of the form

Γmi :=
{

(t, x) ∈ Γ : xi = (m− 1)δ
}
,

Γ̃mi :=
{

(t, x) ∈ Γ̃ : xi = (m− 1)δ
}

for m = 1, 2 and i = 1, . . . , n, where t ∈ R, x = (x1, . . . , xn) ∈ Rn.
Next, denote by

I1 := {1, . . . , q} , I2 := {q + 1, . . . , p} , I := I1 ∪ I2 (2.5)

the sets of indices, where p and q, q < p, are given natural numbers.
Moreover, define the sets

∆ := Ω×Rp ×Rn ×Rn2
,

Θ := Γ×Rp ×R, Θ̃ := Γ̃×Rq ×R, (2.6)

Θmi := Γmi ×Rp ×R, Θ̃mi := Γ̃mi ×Rq ×R
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for m = 1, 2, i = 1, . . . , n, and the sets

∆1 := Ω×R2p ×R2n ×R2n2
,

Θ1mi := Γmi ×R2p ×R2, Θ̃1mi := Γ̃mi ×R2q ×R2
(2.7)

for m = 1, 2, i = 1, . . . , n.
A continuous mapping u = (ul)l∈I : A → Rp whose derivatives ∂ul

∂t , ∂ul

∂xi
, ∂2ul

∂xjxi
,

l ∈ I, i, j = 1, . . . , n, are continuous on A ⊂ Ω will be called regular on A. We briefly
write u ∈ Creg(A,Rp). We define the space Creg(A,Rq) in the same way.

The set

B
(
Ω
)

:=
{
z = (zl)l∈I1

∣∣∣∣ zl : Ω → R, sup
(t,x)∈Ω

∣∣zl (t, x)
∣∣ < +∞, l ∈ I1

}
(2.8)

is the set of functions bounded on Ω.
For a fixed t ∈ [0, T ],

‖z‖ (t) := max
l∈I1

{
sup
x∈E

|zl (t, x)|
}

(2.9)

stands for a semi-norm in the space B(Ω), where z = (zl)l∈I1 ∈ B(Ω).

2.2. DIFFERENTIAL OPERATORS

Let Dt := ∂
∂t and let Di := ∂

∂xi
, Dij := ∂2

∂xj∂xi
for i, j = 1, . . . , n. Put Dx :=

(D1, . . . , Dn) and D2
x := (D11, . . . , D1n, . . . , Dn1, . . . , Dnn). The operator of the first

derivative in the internal normal to the boundary Γ (see (2.3)) is denoted by Dν .
Let ϕlmi : Θ̃mi → R for l ∈ I1 and ψlmi : Θmi → R for l ∈ I2 (see (2.6)) be

arbitrarily given functions, where m = 1, 2, i = 1, . . . , n, and let ϕl := (ϕlmi) for
l ∈ I1, ψl := (ψlmi) for l ∈ I2.

Suppose that functions f = (fl)l∈I : ∆ → Rp, ϕ = (ϕl)l∈I1 : Θ̃ → Rq and
ψ = (ψl)l∈I2 : Θ → Rp−q are given. For such the functions, we define the differential
operators

F : Creg(Ω,Rp) → Rq, F = (Fl)l∈I1 ,

G : Creg(Ω,Rp) → Rp−q, G = (Gl)l∈I2 ,

Φ : Creg(Γ̃,Rq) → Rq, Φ = (Φl)l∈I1 ,

Ψ : Creg(Γ,Rp) → Rp−q, Ψ = (Ψl)l∈I2 ,

(2.10)

with the following components

Fl[u](t, x) := Dtul(t, x)− fl(t, x, u(t, x), Dxul(t, x), D2
xul(t, x)) for l ∈ I1,

Gl[u](t, x) := fl(t, x, u(t, x), Dxul(t, x), D2
xul(t, x)) for l ∈ I2,

Φl[u](t, x) := ϕl(t, x, u(t, x), Dνul(t, x)) for l ∈ I1,
Ψl[u](t, x) := ψl(t, x, u(t, x), Dνul(t, x)) for l ∈ I2.

(2.11)
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2.3. DISCRETIZATION

Define a mesh on the set Ω (see (2.2)) in the following way. Let N1 and N , N ≥ 2,
be some natural numbers and put

k :=
T

N1
, h :=

δ

N
. (2.12)

We will call the set of discrete points

Skh :=
{
(tµ, xm1

1 , . . . , xmn
n ) ∈ Ω : tµ = µk, xmi

i = mih, i = 1, . . . , n
}
, (2.13)

where µ = 0, 1, . . . , N1 and mi = 0, 1, . . . , N for i = 1, . . . , n, the uniform rectangular
mesh on Ω with the time step k and spatial step h. Elements of Skh are called
knot points or briefly knots. For simplicity of notation, we write xM instead of
(tµ, xm1

1 , . . . , xmn
n ) ∈ Skh, where M = (µ,m) ∈ Z1+n and m = (m1, . . . ,mn) ∈ Zn; Z

is the set of integer numbers.
There exists a one-to-one correspondence between the mesh Skh and the set of

multi-indices

Z :=
{
M ∈ Z1+n : 0 ≤ µ ≤ N1, 0 ≤ mi ≤ N, i = 1, . . . , n

}
(2.14)

if steps k, h are fixed. Accordingly in the further part of the paper a knot xM ∈ Skh

is identified with a suitable multi-index M ∈ Z.
We assume that the set Z is well ordered (the order is arbitrary) for any steps k

and h.
In Z we distinguish the following subsets

Zµ := {M = (µ,m) ∈ Z : 0 ≤ mi ≤ N, i = 1, . . . , n} ,
Zµ1 := {M ∈ Zµ : 0 ≤ mi ≤ N − 1, i = 1, . . . , n} ,
Zµ2 := {M ∈ Zµ : 1 ≤ mi ≤ N, i = 1, . . . , n} ,
Z0

µ := Zµ1 ∩ Zµ2, ∂Zµ := Zµ \ Z0
µ

(2.15)

for µ = 0, 1, . . . , N1. Note that Zµ is the set of multi-indices of all knots of the mesh
Skh, Z0

µ is the set of multi-indices of knots of the mesh belonging to Ω and ∂Zµ is the
set of multi-indices of knots of the mesh belonging to Γ, for any µ ∈ {0, 1, . . . , N1}.

We define recurrently the sets Zµ1i and Zµ2i for µ = 0, 1, . . . , N1, i = 1, . . . , n, as
follows

Zµ11 := {M ∈ ∂Zµ : m1 = 0} , Zµ21 := {M ∈ ∂Zµ : m1 = N} ,

Zµ1i := {M ∈ ∂Zµ : mi = 0} \
( i−1⋃

k=1

(Zµ1k ∪ Zµ2k)
)
,

Zµ2i := {M ∈ ∂Zµ : mi = N} \
( i−1⋃

k=1

(Zµ1k ∪ Zµ2k)
)
,

(2.16)

where µ = 0, 1, . . . , N1, i = 2, . . . , n. It is evident that the above sets form a decom-
position of the boundary ∂Zµ, µ = 0, 1, . . . , N1, into separable sets.
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We also define the contiguity S(l,M) as a set of multi-indices T ∈ Z, T 6= M ,
such that knots xT ∈ Skh are used to approximate derivatives Dxul(xM ), D2

xul(xM )
and Dνul(xM ) in l−th equations of systems (3.1) and (3.2), respectively.

2.4. SPACES OF MESH FUNCTIONS, DIFFERENCE AND STEP OPERATORS

A mesh function it is any function a : B 3 M → aM ∈ R, where B is any subset
of Z. We denote the space of all such functions by F (B,R) and call it the space of
mesh functions. The spaces of a system of such functions are denoted similarly by:
F (B,Rp), F (B,Rq), F (B,Rp−q).

In the space of mesh functions F (B,Rp), B ⊂ Z, we introduce the maximum
norm

‖a‖ := max
l∈I

{
max
M∈B

∣∣aM
l

∣∣} , (2.17)

where a = (al)l∈I ∈ F (B,Rp), al : B 3 M → aM
l ∈ R for l ∈ I. We define norms in

F (B,Rq) and F (B,Rp−q) in the same manner.
We will call the functions

N1⋃
µ=0

Zµ1 3M → i(M) ∈ Z,
N1⋃

µ=0

Zµ2 3M → −i(M) ∈ Z,

N1−1⋃
µ=0

Zµ 3M → +M ∈ Z,

where

i(M) := (µ,m1, . . . ,mi−1,mi + 1,mi+1, . . . ,mn),
−i(M) := (µ,m1, . . . ,mi−1,mi − 1,mi+1, . . . ,mn),

+M := (µ+ 1,m)

for i = 1, . . . , n, the shift functions (cf. [10–12]).
Denote by aM−, aMi, aMi−, a−Mi, a−Mij and a+Mij the difference quotients

defined by

aM− :=
1
k

(a+M − aM ) for M ∈
N1−1⋃
µ=0

Zµ,

aMi :=
1
2h

(ai(M) − a−i(M)) for M ∈
N1⋃

µ=0

Z0
µ,

aMi− :=
1
h

(ai(M) − aM ) for M ∈
N1⋃

µ=0

Zµ1i,

a−Mi :=
1
h

(aM − a−i(M)) for M ∈
N1⋃

µ=0

Zµ2i,

(2.18)
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a−Mij :=
1

2h2
(ai(M) + aj(M) + a−i(M) + a−j(M) − 2aM − ai(−j(M)) − a−i(j(M))),

a+Mij :=
1

2h2
(−ai(M) − aj(M) − a−i(M) − a−j(M) + 2aM + ai(j(M)) + a−i(−j(M)))

for M ∈
N1⋃

µ=0
Z0

µ, i, j = 1, . . . , n, on the space F (Z,R). These operators will be used

to approximate derivatives in equations (3.1) and boundary conditions (3.2).
For any system of mesh functions a = (al)l∈I ∈ (Z,Rp), we introduce a notation

aM := (aM
l )l∈I ∈ Rp, ãM := (aM

l )l∈I1 ∈ Rq, (2.19)

where M ∈ Z.
Let

aMI
l := (aM1

l , . . . , aMn
l ),

aMII
l := (aM11

l , . . . , aM1n
l , . . . , aMn1

l , . . . , aMnn
l )

(2.20)

for l ∈ I and M ∈
N1⋃

µ=0
Z0

µ be vectors whose coefficients are the difference quotients

given by (2.18), where aMij
l has to be chosen equal either to a−Mij

l or to a+Mij
l ,

depending on what is specified further, in assumption F8 of Section 3.
Define the discrete operators

S0 : F (Z,Rp) → F (Z0,Rq),

S1 : F (Z,Rp) → F (Z\
(
Z0

N1
∪ ∂Z0

)
,Rq), S1 := (Sl)l∈I1 ,

S2 : F (Z,Rp) → F (Z,Rp−q), S2 := (Sl)l∈I2

(2.21)

by putting
S0aM := ãM − u0(xM ) for M ∈ Z0, (2.22)

SaM
l :=



aM−
l − fl(xM , aM , aMI

l , aMII
l ) for M ∈

N1−1⋃
µ=0

Z0
µ,

ϕl1i(xM , ãi(M), aMi−
l ) for M ∈

N1⋃
µ=1

Zµ1i,

ϕl2i(xM , ã−i(M), a−Mi
l ) for M ∈

N1⋃
µ=1

Zµ2i,

(i = 1, . . . , n)

(2.23)

for l ∈ I1 and

SaM
l :=



fl(xM , aM , aMI
l , aMII

l ) for M ∈
N1⋃

µ=0
Z0

µ,

ψl1i(xM , aM , aMi−
l ) for M ∈

N1⋃
µ=0

Zµ1i,

ψl2i(xM , aM , a−Mi
l ) for M ∈

N1⋃
µ=0

Zµ2i,

(i = 1, . . . , n)

(2.24)
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for l ∈ I2; a = (al)l∈I ∈ F (Z,Rp). The function u0 = (u0l)l∈I1 : E → Rq appears in
(3.2).

Finally, define the step operator S : F (Z,Rq) → B(Ω), S = (Sl)l∈I1 by the formula

Sl[a](t, x) :=
∑

M∈Z

χM (t, x)aM
l for (t, x) ∈ Ω, l ∈ I1, (2.25)

where a = (al)l∈I1 ∈ F (Z,Rq) and

χM (t, x) :=
{

1 for (t, x) ∈ JM ,
0 for (t, x) ∈ Ω \ JM ,

(2.26)

JM :=
{
(t, x) ∈ Ω : µk ≤ t < (µ+ 1)k, mih ≤ xi < (mi + 1)h , i = 1, . . . , n}.

(2.27)
We briefly write S[a] = a.

Remark 2.1. The step operator given by (2.25)–(2.27) has been used extensively
in [10, 11] and [12] to study systems of difference functional inequalities and to ap-
proximate the functional term in systems of differential functional equations. In this
paper it is used in the construction of some difference functional inequalities in a proof
of the convergence of the finite difference method for systems of differential equations,
without a functional term, which are a key-step in our proof. It is a new application
of the above step operator.

3. DIFFERENTIAL PROBLEM

Let functions f = (fl)l∈I : ∆ → Rp, ϕ = (ϕl)l∈I1 : Θ̃ → Rq, ψ = (ψl)l∈I2 : Θ → Rp−q

be the functions given in Section 2.2 and let u0 = (u0l)l∈I1 : E → Rq (the initial
function) be given. We consider a system of weakly coupled nonlinear differential
equations of the form {

F [u](t, x) = 0 for (t, x) ∈ Ω,
G[u](t, x) = 0 for (t, x) ∈ Ω (3.1)

with the initial condition and nonlinear implicit boundary conditions
ũ(0, x) = u0(x) for x ∈ E,
Φ[u](t, x) = 0 for (t, x) ∈ Γ̃,
Ψ[u](t, x) = 0 for (t, x) ∈ Γ,

(3.2)

where ũ := (ul)l∈I1 .
We need the following assumptions on the functions f , ϕ, ψ and regularity of a

solution u of (3.1), (3.2).



A finite difference method for nonlinear parabolic-elliptic systems. . . 267

Assumption F :
F1. There exist bounded functions αls, βli, γlij : ∆1 → R, l, s ∈ I, i, j = 1, . . . , n,

such that for any two points (t, x, y, z, w), (t, x, y, z, w) ∈ ∆,

fl(t, x, y, z, w)− fl(t, x, y, z, w) =
∑
s∈I

αls(P )(ys − ys)+
n∑

i=1

βli(P )(zi − zi)+

+
n∑

i,j=1

γlij(P )(wij − wij)
(3.3)

for l ∈ I, where P = (t, x, y, y, z, z, w,w) ∈ ∆1 (see (2.6), (2.7)).
F2. The matrices (γlij(P ))i,j=1,...,n are symmetric for all indices l ∈ I and points

P ∈ ∆1; and for (l, i, j) fixed, γlij(P ) ≥ 0 for all P ∈ ∆1 or γlij(P ) ≤ 0 for all
P ∈ ∆1.

F3. There exist constants L1, L2, Nl, Gli, gli > 0, L, Hli ≥ 0 and Kl < 0, l ∈ I2,
i = 1, . . . , n, such that the functions αls, βli, γlij , l, s ∈ I, i, j = 1, . . . , n, fulfil in
∆1 the following conditions

αls ≥ 0 for l, s ∈ I1, l 6= s, (3.4)∑
s∈I1

αls ≤ L for l ∈ I1, (3.5)

αll +
∑
s∈I2
s 6=l

|αls| ≤ −Nl for l ∈ I2, (3.6)

Kl ≤ αll for l ∈ I2, (3.7)
|αls| ≤ L1 for l ∈ I1 and s ∈ I2, (3.8)
|αls| ≤ L2 for l ∈ I2 and s ∈ I1, (3.9)
|βli| ≤ Hli for l ∈ I2, (3.10)

γlii −
n∑

j=1
j 6=i

|γlij | > 0 for l ∈ I1, (3.11)

gli ≤ γlii −
n∑

j=1
j 6=i

|γlij | for l ∈ I2, (3.12)

γlii ≤ Gli for l ∈ I2, i = 1, . . . , n. (3.13)

F4. There exist bounded functions δlmis, ρlmi : Θ̃1mi → R, l, s ∈ I1, m = 1, 2,
i = 1, . . . , n, such that for any two points (t, x, y, z), (t, x, y, z) ∈ Θ̃mi,

ϕlmi(t, x, y, z)− ϕlmi(t, x, y, z) =
∑
s∈I

δlmis(P )(ys − ys) + ρlmi(P )(z − z) (3.14)

for l ∈ I1, m = 1, 2 and i = 1, . . . , n, where P = (t, x, y, y, z, z) ∈ Θ̃1mi (see (2.6),
(2.7)).

F5. There exist bounded functions δlmis, ρlmi : Θ1mi → R, l ∈ I2, s ∈ I, m = 1, 2,
i = 1, . . . , n, such that for any two points (t, x, y, z), (t, x, y, z) ∈ Θmi,

ψlmi(t, x, y, z)− ψlmi(t, x, y, z) =
∑
s∈I

δlmis(P )(ys − ys) + ρlmi(P )(z − z) (3.15)

for l ∈ I2, m = 1, 2 and i = 1, . . . , n, where P = (t, x, y, y, z, z) ∈ Θ1mi.
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F6. There exist constants G, Ilmi > 0, Rlmi ≥ 0 and Slmi < 0, l ∈ I2, m = 1, 2,
i = 1, . . . , n, such that the functions δlmis, ρlmi, l, s ∈ I, m = 1, 2, i = 1, . . . , n,
fulfil in Θ̃1mi and Θ1mi, respectively, the following conditions

(−1)mδlmis ≤ 0 for l, s ∈ I1, l 6= s, (3.16)

δlmil +
∑
s∈I2
s 6=l

|δlmis| ≤ −Ilmi for l ∈ I2, (3.17)

Slmi ≤ δlmil for l ∈ I2, (3.18)
|δlmis| ≤ L2 for l ∈ I2 and s ∈ I1, (3.19)

G ≤ (−1)mρ−1
lmi

∑
s∈I1

δlmis for l ∈ I1, (3.20)

ρlmi ≥ 1 for l ∈ I1, (3.21)

0 ≤ (−1)m−1ρlmi ≤ Rlmi for l ∈ I2, (3.22)

where L2 is given in F3, m = 1, 2, i = 1, . . . , n.
F7. A function u ∈ Creg(Ω,Rp) is a regular solution of differential problem (3.1), (3.2).
F8. The difference quotients aMij

l have the form

aMij
l =

{
a−Mij

l , if i = j or γlij ≤ 0,
a+Mij

l , if i 6= j and γlij ≥ 0
(3.23)

for l ∈ I, i, j = 1, . . . , n and M ∈
N1⋃

µ=0
Z0

µ (see (2.20), (2.18)).

Remark 3.1. Assumptions F1, F4 and F5 are equivalent to the Lipschitz condition,
but they are more useful in the other assumptions. Moreover, if the reaction functions
fl and the boundary functions ϕl, ψl are differentiable, then the bounded functions in
these assumptions may be equal, by the mean value theorem, to their suitable deriva-
tives.

Remark 3.2. If assumptions F2 and F3 (see (3.11), (3.12)) on the strong domination
of the main diagonal in the symmetric matrices (γlij(P ))i,j=1,...,n for l ∈ I and P ∈
∆1 are satisfied, then differential system (3.1) is of the parabolic-elliptic type (the
degenerated parabolic-elliptic system with a parameter t) in the class of functions
u ∈ Creg(Ω,Rp). This follows from the fact that the matrices (γlij(P ))i,j=1,...,n are
positive defined and from the definition of ellipticity of the functions fl in [24], p. 132
(see also [7] and [27], p. 182).

4. DIFFERENCE PROBLEM

We give a definition of the difference scheme which will be applied to approximate a
solution of differential problem (3.1), (3.2).
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Definition 4.1. A difference scheme for differential problem (3.1), (3.2) is the system
of algebraic equations  S0a = 0,

S1a = 0,
S2a = 0,

(4.1)

where a ∈ F (Z,Rp) (see (2.21)–(2.24)).

In the further part of the paper, we use the following assumptions on steps k and
h of the mesh Skh.

Assumption K :

K1. The time step k and spatial step h are such that

h−1

(
γlii −

∑
j=1
j 6=i

n|γlij |
)
− 1

2
|βli| ≥ 0, (4.2)

1 + kαll − 2kh−2
n∑

i=1

γlii ≥ 0 (4.3)

for l ∈ I1, i = 1, . . . , n and for all points belonging to ∆1 (see (2.7), (3.3)).
K2. The step h fulfils the inequalities

ρlmi + (−1)m−1hδlmil ≥ 0 (4.4)

for l ∈ I1, m = 1, 2, i = 1, . . . , n and for all points in the sets Θ̃1mi, m = 1, 2,
i = 1, . . . , n, respectively (see (2.7), (3.14)).

K3. The inequalities
h−1gli −

1
2
Hli ≥ 0, (4.5)

l ∈ I2, i = 1, . . . , n, hold, where gli and Hli are the constants defined in F3 (see
(3.10), (3.12)).

Remark 4.1. If Assumption F holds, then there exists a sequence of steps k, h which
fulfil Assumption K and (k, h) → (0, 0).

5. THEORETICAL STUDY OF THE SCHEME

5.1. EXISTENCE AND UNIQUENESS OF THE SOLUTION
OF THE DIFFERENCE SCHEME

Suppose that Assumption F holds and let Aµ = (Aµl)l∈I ∈ F (Zµ,Rp) be arbitrary
for µ = 0, 1, . . . , N1. Define N1 + 1 of the difference operators Fµ : F (Zµ,Rp) →
F (Zµ,Rp−q), Fµ = (Fµ

l )l∈I2 , µ = 0, 1, . . . , N1, by setting

F
µAµM
l :=


fl(xM , aM , aMI

l , aMII
l ) for M ∈ Z0

µ,

ψl1i

(
xM , aM , aMi−

l

)
for M ∈ Zµ1i,

ψl2i

(
xM , aM , a−Mi

l

)
for M ∈ Zµ2i,

(i = 1, . . . , n),

(5.1)

where aM
l := AM

µl and aM := (aM
l )l∈I ∈ Rp (see (2.19)).
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Let kl = kl(h) > 0, l ∈ I2, be arbitrary real numbers such that

kl <

(
min

{
Nl, min

m=1,2
i=1,...,n

{Ilmi}
})−1

, (5.2)

kl ≤
(

2h−2
n∑

i=1

Gli −Kl

)−1

, (5.3)

kl ≤
(
h−1Rlmi − Slmi

)−1
(5.4)

for l ∈ I2, m = 1, 2, i = 1, . . . , n, where Nl, Ilmi, Gli, Kl, Rlmi, Slmi are the constants
given in assumptions F3 and F6. Denote by M (p−q)(N+1)n×(p−q)(N+1)n

the set of
(p− q)(N + 1)n × (p− q) (N + 1)n nonsingular real matrices and define the matrices
C = C(kq+1, . . . , kp) = (c(l,M)(s,T ))(l,M)∈I2×Zµ

(s,T )∈I2×Zµ

∈ M (p−q)(N+1)n×(p−q)(N+1)n

, µ =

0, 1, . . . , N1, in the following way

c(l,M)(s,T ) := klδ
s
l δ

T
M (5.5)

for l, s ∈ I2, M,T ∈ Zµ, µ = 0, 1, . . . , N1, where δs
l and δT

M are the Dirac delta
functions.

Next, we define the discrete operators ΦµC eVµ : F (Zµ,Rp−q) → F (Zµ,Rp−q),

ΦµC eVµ =
(
ΦµC eVµ

l

)
l∈I2

, µ = 0, 1, . . . , N1, associated with the discrete operators Fµ

and matrices C, by the formula

ΦµC eVµAµ := Aµ + CFµAµ , (5.6)

where Aµ = (Aµl)l∈I2 ∈ F (Zµ,Rp−q), Aµ := (Ṽµ, Aµ); Ṽµ = (Ṽµl)l∈I1 ∈ F (Zµ,Rq) is
an arbitrary parameter.

Lemma 5.1. If Assumption F holds, then for any spatial step h of the mesh Skh and
p− q numbers kl = kl(h) > 0, l ∈ I2, given by inequalities (5.2)–(5.4),

H ∈ (0, 1), (5.7)

where

H = H(kq+1, . . . , kp) := max
l∈I2

1− kl min

Nl, min
m=1,2

i=1,...,n

{Ilmi}


 (5.8)

and Nl, Ilmi are the numbers defined by (3.6), (3.17).

Proof. Dependence (5.7) is a consequence of definition (5.8), inequality (5.2) and the
fact that the numbers Nl, Ilmi and kl are positive.
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Lemma 5.2. If Assumptions F and K are satisfied, then for a fixed µ ∈ {0, 1, . . . , N1}
and a parameter Ṽµ = (Ṽµl)l∈I1 ∈ F (Zµ,Rq) the inequality∥∥∥ΦµC eVµAµ − ΦµC eVµBµ

∥∥∥ ≤ H ‖Aµ −Bµ‖ (5.9)

is true for all Aµ = (Aµl)l∈I2 , Bµ = (Bµl)l∈I2 ∈ F (Zµ,Rp−q), where ΦµC eVµ are the
operators given by (5.6) and H is the constant in (5.7).

Proof. Fix µ ∈ {0, 1, . . . , N1} and a parameter Ṽµ ∈ F (Zµ,Rq).
Put Aµ := (Ṽµ, Aµ), Bµ := (Ṽµ, Bµ) for arbitrary mesh functions Aµ, Bµ ∈

F (Zµ,Rp−q).
For simplicity of notation, let

Rµ := Aµ −Bµ, (5.10)

Dµ := ΦµC eVµAµ − ΦµC eVµBµ . (5.11)

Then, from definitions (5.5), (5.6), (5.10) and (5.11), it follows that

dM
l = rM

l + kl(F
µAµM
l − F

µBµM
l ) for l ∈ I2, M ∈ Zµ, (5.12)

where rM
l := RM

µl , d
M
l := DM

µl .
We now define real numbers cM,T

l,s = cM,T
l,s (PM

l ) depending on points PM
l , l ∈ I2,

s ∈ I, M ∈ Zµ, T ∈ S(l,M) ∪ {M} (see Section 2.3), as follows: if M ∈ Z0
µ, then

cM,T
l,s :=



αll − 2h−2
n∑

i=1

γlii + h−2
n∑

i,j=1
i6=j

|γlij | for T = M, s = l,

αls for T = M, s 6= l,

h−1

h−1

γlii−
n∑

j=1
j 6=i

|γlij |

+ 1
2 (−1)νβli

 for T = (−1)νi(M), s = l,

1
2h
−2|γlij | for T = (−1)νi ((−1)νe(l, i, j)j(M)) , s = l, i 6= j,
(ν = 1, 2, i, j = 1, . . . , n),

(5.13)
where

e(l, i, j) :=
{
−1, if i = j or γlij ≤ 0,
1, if i 6= j and γlij ≥ 0, (5.14)

PM
l = (xM , aM , bM , aMI

l , bMI
l , aMII

l , bMII
l ) ∈ ∆1; if M ∈ Z

µmi, m = 1, 2, i = 1, . . . , n,
then

cM,T
l,s :=

 δlmil + (−1)mh−1ρlmi for T = M, s = l,
δlmis for T = M, s 6= l,
(−1)m+1h−1ρlmi for T = (−1)m+1i(M), s = l,

(5.15)
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where PM
l = (xM , aM , bM , aMi−

l , bMi−
l ) ∈ Θ11i for M ∈ Zµ1i and PM

l =(
xM , aM , bM , a−Mi

l , b−Mi
l

)
∈ Θ12i for M ∈ Zµ2i. In this definition: αls = αls(PM

l ),
βli = βli(PM

l ), γlij = γlij(PM
l ), δlmis = δlmis(PM

l ), ρlmi = ρlmi(PM
l ).

Further, by virtue of assumptions F1, F2, F4, F5, definitions (5.1), (2.18),
(2.19)–(3.23) and (5.13), (5.15), we get

F
µAµM
l − F

µBµM
l =

∑
s∈I1

cM,M
l,s (vM

s − vM
s )+

∑
s∈I2

cM,M
l,s rM

s +
∑

T∈S(l,M)

cM,T
l,l rT

l (5.16)

for l ∈ I2 and M ∈ Zµ, where vM
s := Ṽ M

µs .
(5.16) and (5.12) imply

dM
l = (1 + klc

M,M
l,l )rM

l + kl

(∑
s∈I2
s 6=l

cM,M
l,s rM

s +
∑

T∈S(l,M)

cM,T
l,l rT

l

)
(5.17)

for l ∈ I2 and M ∈ Zµ.
To prove the statement of the lemma, we take τ ∈ I2 and A ∈ Zµ such that

∣∣dA
τ

∣∣ = ‖Dµ‖ . (5.18)

We consider two cases:
a) A ∈ Z0

µ,
b) A ∈ Zµmi for some m ∈ {1, 2} and i ∈ {1, . . . , n}.
In case a), from definition (5.13) of the coefficients cM,T

l,s , according to assumptions
(3.7), (3.13) and inequality (5.3), we conclude that

1 + kτ c
A,A
τ,τ = 1 + kτ

(
αττ − 2h−2

n∑
i=1

γτii + h−2
n∑

i,j=1
i 6=j

|γτij |

)
≥

≥ 1 + kτ

(
Kτ − 2h−2

n∑
i=1

Gτi

)
≥ 0.

(5.19)

Moreover, assumptions (3.10), (3.12) and (4.5) give

h−1

(
γτii−

n∑
j=1
j 6=i

|γτij |

)
+

1
2
(−1)νβτi ≥ h−1gτi −

1
2
Hτi ≥ 0 (5.20)



A finite difference method for nonlinear parabolic-elliptic systems. . . 273

for ν = 1, 2. Applying formulas (5.13), (5.14), (5.17), (5.18), the above inequalities,
assumption (3.6) and definition (5.8), we can write

‖Dµ‖ ≤

[ ∣∣1 + kτ c
A,A
τ,τ

∣∣+ kτ

( ∑
s∈I2
s 6=τ

∣∣cA,A
τ,s

∣∣+ ∑
T∈S(τ,A)

∣∣cA,T
τ,τ

∣∣)] ‖Rµ‖ =

=

[
1 + kτ

(
cA,A
τ,τ +

∑
s∈I2
s 6=τ

∣∣cA,A
τ,s

∣∣+ ∑
T∈S(τ,A)

∣∣cA,T
τ,τ

∣∣)] ‖Rµ‖ =

=

[
1 + kτ

(
αττ − 2h−2

n∑
i=1

γτii + h−2
n∑

i,j=1
i6=j

|γτij |+
∑
s∈I2
s 6=τ

|ατs|+

+
1
2
h−1

n∑
i=1

2∑
ν=1

(−1)νβτi + h−2
n∑

i=1

2∑
ν=1

(
γτii−

n∑
j=1
j 6=i

|γτij |

)
+

+
1
2
h−2

n∑
i,j=1

i6=j

2∑
ν=1

|γτij |

)]
‖Rµ‖ =

[
1 + kτ

(
αττ+

∑
s∈I2
s 6=τ

|ατs|

)]
‖Rµ‖ ≤

≤ (1− kτNτ )‖Rµ‖ ≤ H‖Rµ‖.

In case b), using definition (5.15) of the coefficients cM,T
l,s , assumptions (3.18),

(3.22) and inequality (5.4) gives

1 + kτ c
A,A
τ,τ = 1 + kτ (δτmiτ + (−1)mh−1ρτmi) ≥

≥ 1 + kτ (Sτmi − h−1Rτmi) ≥ 0.
(5.21)

As a consequence of (5.15), (5.17), (5.18), (5.21), assumptions (3.17), (3.22) and
definition (5.8), the following estimate is true

‖Dµ‖ ≤

[ ∣∣1 + kτ c
A,A
τ,τ

∣∣+ kτ

( ∑
s∈I2
s 6=τ

∣∣cA,A
τ,s

∣∣+ ∑
T∈S(τ,A)

∣∣cA,T
τ,τ

∣∣)] ‖Rµ‖ =

=

[
1 + kτ

(
cA,A
τ,τ +

∑
s∈I2
s 6=τ

∣∣cA,A
τ,s

∣∣+ ∑
T∈S(τ,A)

∣∣cA,T
τ,τ

∣∣)] ‖Rµ‖ =

=

[
1 + kτ

(
δτmiτ + (−1)mh−1ρτmi+

∑
s∈I2
s 6=τ

|δτmis|+ (−1)m+1h−1ρτmi

)]
‖Rµ‖ =

=

[
1 + kτ

(
δτmiτ+

∑
s∈I2
s 6=τ

|δτmis|

)]
‖Rµ‖ ≤ (1− kτIτmi) ‖Rµ‖ ≤ H ‖Rµ‖ .

Thus the proof is finished.
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Theorem 5.1. If the assumptions of Lemma 5.2 hold and

ϕlmi ∈ C1
(
Θ̃mi

)
for l ∈ I1, m = 1, 2, i = 1, . . . , n, (5.22)

then difference scheme (4.1) has the unique solution in the space F (Z,Rp).

Proof. To prove Theorem 5.1, first, using Algorithm 1 formulated below, we construct
a solution of difference scheme (4.1) and then show that it is unique.
Algorithm 1.

Step 1. Put µ := 0 and aM
l := u0l(xM ) for l ∈ I1, M ∈ Z0.

Step 2. If µ > 0, then solve the system of q[(N + 1)n − (N − 1)n] algebraic equations ϕl1i

(
xM , ãi(M), aMi−

l

)
= 0 for M ∈ Zµ1i,

ϕl2i

(
xM , ã−i(M), a−Mi

l

)
= 0 for M ∈ Zµ2i,

(l ∈ I1, i = 1, . . . , n)
(5.23)

in q[(N + 1)n − (N − 1)n] unknowns aM
l , l ∈ I1, M ∈ ∂Zµ.

Step 3. Solve the system of (p− q)(N + 1)n algebraic equations
fl

(
xM , aM , aMI

l , aMII
l

)
= 0 for M ∈ Z0

µ,

ψl1i

(
xM , aM , aMi−

l

)
= 0 for M ∈ Zµ1i,

ψl2i

(
xM , aM , a−Mi

l

)
= 0 for M ∈ Zµ2i,

(l ∈ I2, i = 1, . . . , n)

(5.24)

in (p− q)(N + 1)n unknowns aM
l , l ∈ I2, M ∈ Zµ.

Step 4. If µ = N1, then FINISH.
Step 5. 5. Solve the system of q(N − 1)n algebraic equations

aM−
l = fl

(
xM , aM , aMI

l , aMII
l

)
for M ∈ Z0

µ, l ∈ I1 (5.25)

in q(N − 1)n unknowns a+M
l , l ∈ I1, M ∈ Z0

µ. Then put µ := µ + 1 and go
to Step 2.

We start to construct the desired solution v ∈ F (Z,Rp) of (4.1).
Put µ := 0 and aM

l := u0l(xM ), l ∈ I1, M ∈ Z0, in Step 1 of Algorithm 1.
Then we omit Step 2, because µ = 0, and go to Step 3. We wish to find a solution

V0 = (V0l)l∈I2 ∈ F (Z0,Rp−q) of (5.24) for µ = 0. Put

Ṽ0 = (Ṽ0l)l∈I1 ∈ F (Z0,Rq), Ṽ M
0l := aM

l (5.26)

for l ∈ I1 and M ∈ Z0. It is easily seen that system of equations (5.24) is equivalent
to the equation

F 0A0 = 0 (5.27)

for µ = 0, where the operator F 0 is defined by (5.1), A0 := (Ṽ0, A0) ∈ F (Z0,Rp),
Ṽ0 is the parameter given by (5.26), and A0 ∈ F (Z0,Rp−q) is any mesh function.
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Then non-singularity of the matrix C in (5.5) implies that (5.27) is equivalent to an
equation of the form

Φ0C eV0A0 = A0 (5.28)

(see (5.6)). By Lemmas 5.2 and 5.1 and the Banach fixed-point theorem, it follows
that the last equation has the unique solution V0. This is also the unique solution of
(5.24) for µ = 0.

Next we go to Step 5, taking aM
l := V M

0l for l ∈ I2, M ∈ Z0, because µ = 0 < N1

and step 4 is omitted. As system of equations (5.25) for µ = 0 is the explicit difference
scheme, we compute numbers a+M

l for l ∈ I1, M ∈ Z0
0 uniquely. Put µ := 1 and go

to Step 2.
By consideration of assumptions (3.21), (5.22) and the implicit function theorem,

in Step 2, in F (∂Z1,Rq) there is exactly one solution of system (5.23) for µ = 1.
Then we set the parameter

Ṽ1 = (Ṽ1l)l∈I1 ∈ F (Z1,Rq), Ṽ M
1l := aM

l (5.29)

for l ∈ I1 and M ∈ Z1, where the numbers aM
l are computed above, and go to Step 3.

The procedure is repeated until µ = N1 in Step 4.
Thus, the system of mesh functions

v := (Ṽµ, Vµ)µ=0,...,N1 (5.30)

is the solution of difference scheme (4.1), where Vµ and Ṽµ, µ = 0, 1, . . . , N1, are
uniquely determined as above with use of Algorithm 1.

Suppose now that difference scheme (4.1) has another solution w. From the form of
(4.1), there exists µ0 ∈ {0, 1, . . . , N1} such that system of equations (5.23) for µ = µ0,
µ0 > 0, or system of equations (5.24) for µ = µ0 has at least two different solutions
in F (∂Zµ0 ,R

q) or F (Zµ0 ,R
p−q), respectively. But we have proved, constructing v in

(5.30), that each of these systems has exactly one solution for each µ. This gives a
contradiction.

This completes the proof of Theorem 5.1.

5.2. CONVERGENCE OF THE DIFFERENCE METHOD

In this part we deal with the convergence of the method considered. The error estimate
of the approximate solution of differential problem (3.1), (3.2) will be given. To this
end, we first formulate and prove some lemmas and prove that the difference method
is consistent.

Lemma 5.3. Fix µ ∈ {0, 1, . . . , N1}. Let real functions cM,M
l,s and cM,T

l,l , l ∈ I2,
s ∈ I, M ∈ Zµ, T ∈ S(l,M), defined in arbitrary domains and a mesh function Dµ ∈
F (Zµ,Rp−q) be given. Suppose that a mesh function Rµ = (R̃µ, Rµ) ∈ F (Zµ,Rq) ×
F (Zµ,Rp−q) is a solution of the system of algebraic equations∑

s∈I1

cM,M
l,s rM

s +
∑
s∈I2

cM,M
l,s rM

s +
∑

T∈S(l,M)

cM,T
l,l rT

l = dM
l (5.31)
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for l ∈ I2, M ∈ Zµ, where dM
l := DM

µl , r
M
s := RM

µs, r
T
l := RT

µl, and let indices
τ = τ(µ) ∈ I2, A = A(µ) ∈ Zµ fulfil the condition∣∣rA

τ

∣∣ = ‖Rµ‖ . (5.32)

If, moreover,

(1) there exists a constant λ = λ(µ) > 0 such that in the domains of the coefficients
cA,A
τ,s and cA,T

τ,τ , s ∈ I2, T ∈ S(τ,A), the inequality

∣∣cA,A
τ,τ

∣∣−
∑

s∈I2
s 6=τ

∣∣cA,A
τ,s

∣∣+ ∑
T∈S(τ,A)

∣∣cA,T
τ,τ

∣∣
 ≥ λ (5.33)

holds,
(2) there exists a constant L = L(µ) ≥ 0 such that in the domains of the coefficients

cA,A
τ,s , s ∈ I1, the estimate ∣∣cA,A

τ,s

∣∣ ≤ L (5.34)

is true,

then ∣∣rA
τ

∣∣ ≤ λ
−1

(∣∣dA
τ

∣∣+ L
∑
s∈I1

∣∣rA
s

∣∣) , (5.35)

‖Rµ‖ ≤ λ
−1
(
‖Dµ‖+ qL

∥∥∥R̃µ

∥∥∥) . (5.36)

Proof. Fix µ ∈ {0, 1, . . . , N1} and note that inequality (5.36) is a consequence of
relation (5.35).

Applying assumption (5.33) to system (5.31), it is easy to verify that∣∣∣∣∣dA
τ −

∑
s∈I1

cA,A
τ,s r

A
s

∣∣∣∣∣ =
∣∣∣∣∣cA,A

τ,τ r
A
τ +

∑
s∈I2
s 6=τ

cA,A
τ,s r

A
s +

∑
T∈S(τ,A)

cA,T
τ,τ r

T
τ

∣∣∣∣∣ ≥
≥
∣∣cA,A

τ,τ

∣∣ ∣∣rA
τ

∣∣− ∣∣∣∣∣ ∑
s∈I2
s 6=τ

cA,A
τ,s r

A
s

∣∣∣∣∣−
∣∣∣∣∣ ∑

T∈S(τ,A)

cA,T
τ,τ r

T
τ

∣∣∣∣∣ ≥
≥

[ ∣∣cA,A
τ,τ

∣∣−( ∑
s∈I2
s 6=τ

∣∣cA,A
τ,s

∣∣+ ∑
T∈S(τ,A)

∣∣cA,T
τ,τ

∣∣)] ∣∣rA
τ

∣∣ ≥
≥ λ

∣∣rA
τ

∣∣ .

(5.37)
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The formula (5.37) and assumption (5.34) lead to

∣∣rA
τ

∣∣ ≤ λ
−1

∣∣∣∣∣dA
τ −

∑
s∈I1

cA,A
τ,s r

A
s

∣∣∣∣∣ ≤ λ
−1

(∣∣dA
τ

∣∣+ ∑
s∈I1

∣∣cA,A
τ,s

∣∣ ∣∣rA
s

∣∣) ≤

≤ λ
−1

(∣∣dA
τ

∣∣+ L
∑
s∈I1

∣∣rA
s

∣∣) ,
giving (5.35) and concluding the proof.

Lemma 5.4. If the assumptions of Lemma 5.2 are satisfied, then for a fixed µ ∈
{0, 1, . . . , N1} and all mesh functions Aµ = (Ãµ, Aµ), Bµ = (B̃µ, Bµ) ∈ F (Zµ,Rq)
× F (Zµ,Rp−q),

‖Aµ −Bµ‖ ≤ λ
(∥∥FµAµ − FµBµ

∥∥+ qL2

∥∥∥Ãµ − B̃µ

∥∥∥), (5.38)

where

λ :=

(
min
l∈I2

{
Nl, min

m=1,2
i=1,...,n

{Ilmi}
})−1

, (5.39)

Fµ are the operators given by (5.1), L2 is the constant in assumptions F3, F6 and
Nl, Ilmi are the numbers defined by (3.6), (3.17).

Proof. Fix µ ∈ {0, 1, . . . , N1} and let Aµ = (Ãµ, Aµ), Bµ = (B̃µ, Bµ)
∈ F (Zµ,Rq)× F (Zµ,Rp−q) be arbitrary mesh functions.

Put
R̃µ := Ãµ − B̃µ, Rµ := Aµ −Bµ, Rµ := (R̃µ, Rµ), (5.40)

Dµ := FµAµ − FµBµ . (5.41)

Now, reasoning similarly as in the proof of Lemma 5.2, we can write

F
µAµM
l − F

µBµM
l =

∑
s∈I1

cM,M
l,s rM

s +
∑
s∈I2

cM,M
l,s rM

s +
∑

T∈S(l,M)

cM,T
l,l rT

l (5.42)

for l ∈ I2 and M ∈ Zµ (see (5.16)), where cM,M
l,s , cM,T

l,l are the numbers defined for
Aµ, Bµ, analogously as in (5.13), (5.15), and rM

s := RM
µs, r

T
l := RT

µl.
Therefore, it is obvious that the mesh function Rµ in (5.40) is a solution of a

system of algebraic equations of the form∑
s∈I1

cM,M
l,s rM

s +
∑
s∈I2

cM,M
l,s rM

s +
∑

T∈S(l,M)

cM,T
l,l rT

l = dM
l (5.43)

for l ∈ I2 and M ∈ Zµ, where dM
l := DM

µl . This system is of the type (5.31) in Lemma
5.3.
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We show that if the indices τ ∈ I2 and A ∈ Zµ are defined as in (5.32), then the
assumptions of Lemma 5.3 are satisfied for

λ := λ−1, L := L2. (5.44)

Indeed, estimate (5.34) follows from definition (5.44), and formulas (3.9) in as-
sumption F3 and (3.19) in assumption F6.

Next, to prove inequality (5.33) we consider two cases:

a) A ∈ Z0
µ,

b) A ∈ Zµmi for some m ∈ {1, 2} and i ∈ {1, . . . , n}.

In case a), addition of assumptions (3.6), (3.10), (3.12), (4.5), formula (5.20), defini-
tions (5.13), (5.44) and relation (5.39) yields

∣∣cA,A
τ,τ

∣∣−(∑
s∈I2
s 6=τ

∣∣cA,A
τ,s

∣∣+ ∑
T∈S(τ,A)

∣∣cA,T
τ,τ

∣∣) =

=

∣∣∣∣∣αττ − 2h−2
n∑

i=1

γτii + h−2
n∑

i,j=1
i6=j

|γτij |

∣∣∣∣∣−∑
s∈I2
s 6=τ

|ατs| −

− h−1
n∑

i=1

2∑
ν=1

∣∣∣∣∣h−1

(
γτii −

n∑
j=1
j 6=i

|γτij |

)
+

1
2
(−1)νβτi

∣∣∣∣∣− 1
2
h−2

n∑
i,j=1
i 6=j

2∑
ν=1

|γτij | =

=

∣∣∣∣∣αττ − h−2
n∑

i,j=1
i 6=j

|γτij | − 2h−2
n∑

i=1

(
γτii −

n∑
j=1
j 6=i

|γτij |

)∣∣∣∣∣−
−
∑
s∈I2
s 6=τ

|ατs| − 2h−2
n∑

i=1

(
γτii −

n∑
j=1
j 6=i

|γτij |

)
− h−2

n∑
i,j=1
i 6=j

|γτij | =

= −αττ + h−2
n∑

i,j=1
i 6=j

|γτij |+ 2h−2
n∑

i=1

(
γτii −

n∑
j=1
j 6=i

|γτij |

)
−

−
∑
s∈I2
s 6=τ

|ατs| − 2h−2
n∑

i=1

(
γτii −

n∑
j=1
j 6=i

|γτij |

)
− h−2

n∑
i,j=1
i 6=j

|γτij | =

= −αττ −
∑
s∈I2
s 6=τ

|ατs| ≥ Nτ ≥ λ.



A finite difference method for nonlinear parabolic-elliptic systems. . . 279

In case b), from assumptions (3.17) and (3.22), definitions (5.15) and (5.44) and
relation (5.39), we get

∣∣cA,A
τ,τ

∣∣−( ∑
s∈I2
s 6=τ

∣∣cA,A
τ,s

∣∣+ ∑
T∈S(τ,A)

∣∣cA,T
τ,τ

∣∣)=

=
∣∣δτmiτ + (−1)mh−1ρτmi

∣∣−∑
s∈I2
s 6=τ

|δτmis| −
∣∣(−1)m+1h−1ρτmi

∣∣ =
= −δτmiτ − (−1)mh−1ρτmi−

∑
s∈I2
s 6=τ

|δτmis| − (−1)m+1h−1ρτmi =

= −δτmiτ−
∑
s∈I2
s 6=τ

|δτmis| ≥ Iτmi ≥ λ.

Owing to a) and b), the statement of this lemma is a result of Lemma 5.3.

Definition 5.1. We say that a sequence of difference schemes of form (4.1) approx-
imates differential problem (3.1), (3.2) on its regular solution u ∈ Creg(Ω,Rp) or
briefly that difference method (4.1) is consistent if

lim
(k,h)→(0,0)

max
{∥∥S0U

∥∥ ,∥∥S1U
∥∥ ,∥∥S2U

∥∥} = 0,

where U ∈ F (Z,Rp) are the restrictions of u to the meshes Skh.

Theorem 5.2. If Assumption F holds, then difference method (4.1) is consistent in
the sense of Definition 5.1.

Proof. The consistence of difference method (4.1) follows immediately from the reg-
ularity of u and continuity of the mappings fl, ϕlmi and ψlmi with respect to y, z, w
in suitable sets (see F1, F4, F5).

We now go to the main problem of the paper, the problem of the convergence of
difference method (4.1).

Let U ∈ F (Z,Rp) be the restriction of the regular solution u ∈ Creg(Ω,Rp) of
differential problem (3.1), (3.2) (see assumption F7) to the mesh Skh, i.e. UM

l :=
ul(xM ) for l ∈ I, and let v ∈ F (Z,Rp) be the solution of difference scheme (4.1) (see
Theorem 5.1).

Definition 5.2. Difference method (4.1) is uniformly convergent if

lim
(k,h)→(0,0)

‖r‖ = 0,

where r := U − v ∈ F (Z,Rp) is the error of this method.

Let Uµ = (Ũµ, Uµ) ∈ F (Zµ,Rq) × F (Zµ,Rp−q) be the restriction of U to the
intersection Zµ of Z, µ = 0, 1, . . . , N1.
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Next, we define the mesh functions εµ ∈ F (Zµ,Rp−q) by the formula

εµM
l := F

µUµM
l for l ∈ I2, M ∈ Zµ, µ = 0, 1, . . . , N1, (5.45)

where Fµ are the operators in (5.1).

Lemma 5.5. If the assumptions of Theorem 5.1 hold, then

∣∣rM
l

∣∣ ≤ λ
(
‖εµ‖+ qL2

∥∥∥R̃µ

∥∥∥) (5.46)

for l ∈ I2, M ∈ Zµ, µ = 0, 1, . . . , N1, where r is the error of the method, R̃µ ∈
F (Zµ,Rq), R̃M

µl := rM
l for l ∈ I1, εµ are the functions defined by (5.45), λ is the

constant in (5.39) and L2 the constant in assumption F3.

Proof. Fix µ ∈ {0, 1, . . . , N1} and define Vµ = (Ṽµ, Vµ) ∈ F (Zµ,Rq) × F (Zµ,Rp−q)
as the restriction of v to Zµ.

Since

FµUµ − FµVµ = εµ,

we have by Lemma 5.4

‖Uµ − Vµ‖ ≤ λ(‖εµ‖+ qL2

∥∥∥R̃µ

∥∥∥),
and therefore inequality (5.46).

Further, we put

K := q(p− q)L1L2λ, (5.47)

where the constants L1, L2 arise in Assumption F and λ is given by (5.39), and

introduce the mesh functions η ∈ F
( N1−1⋃

µ=0
Z0

µ,R
q
)

and ηmi ∈ F
( N1⋃

µ=1
Zµmi,Rq

)
,

m = 1, 2, i = 1, . . . , n, defined by

ηM
l := UM−

l − fl

(
xM , UM , UMI

l , UMII
l

)
,

ηM
1il := ϕl1i

(
xM , Ũ i(M), UMi−

l

)
,

ηM
2il := ϕl2i

(
xM , Ũ−i(M), U−Mi

l

) (5.48)

for l ∈ I1 and M belonging to suitable sets.
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Moreover, we define the real valued functions ε, εm, ε, ε̂µ, ε̂, ε∗ for m = 1, 2,
µ = 0, 1, . . . , N1, depending on steps k and h, by setting

ε(k, h) := ‖η‖ ,

εm(k, h) := max
i=1,...,n

‖ηmi‖ ,

ε(k, h) := max
m=1,2

{εm(k, h)} ,

ε̂µ(k, h) := ε(k, h) + (p− q)L1λ ‖εµ‖ ,

ε̂(k, h) := max
µ=0,1,...,N1

{ε̂µ(k, h)} ,

ε∗(k, h) := ε̂(k, h) + (L+K)
ε(k, h)
G

(5.49)

(see (5.48), (3.8), (5.39), (5.45), (3.4), (3.5), (5.47) and (3.20)).
Making use of the above functions, we define the mesh function y ∈ F (Z,R) as

follows

yM :=


ε∗(k,h)
L+K {[1 + k(L+K)]µ − 1}+ ε(k,h)

G for M ∈ Z0
µ,

(1− hG)
(

ε∗(k,h)
L+K {[1 + k(L+K)]µ − 1}+ ε(k,h)

G

)
+ hε(k, h)

for M ∈ ∂Zµ.

(5.50)

We will apply it to estimate the error of the difference method.

Remark 5.1. Suppose that the assumptions of Theorem 5.1 are fulfilled. Then there
holds

1− hG ≥ 0, (5.51)
y ≥ 0. (5.52)

Proof. Observe that assumptions (3.20), (3.16), (3.21) and (4.4) yield

1− hG ≥ 1 + (−1)m−1hρ−1
lmi

∑
s∈I1

δlmis =

= 1 + (−1)m−1hρ−1
lmiδlmil + (−1)m−1hρ−1

lmi

∑
s∈I1
s 6=l

δlmis ≥ 0

for l ∈ I1, m = 1, 2 and i = 1, . . . , n, which gives (5.52).

As a consequence of the above lemmas, definitions and remark we obtain the
following conclusion.

Theorem 5.3. Let the assumptions of Theorem 5.1 hold. Then

(i)
∣∣rM

l

∣∣ ≤ yM for l ∈ I1, M ∈ Z, (5.53)
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(ii)
∣∣rM

l

∣∣ ≤ λ(‖εµ‖+ qL2y
M ) for l ∈ I2, M ∈ Zµ, µ = 0, 1, . . . , N1, (5.54)

(iii) difference method (4.1) is convergent in the sense od Definition 5.2,
where r is the error of the method (see (5.50), (5.45), (5.39), (3.9), (3.19)).

Proof. Note that

yM ≤ eT (L+K) − 1
L+K

ε∗(k, h) +
ε(k, h)
G

+ δε(k, h) for M ∈ Z. (5.55)

Then, it is obvious that the convergence of (4.1) follows immediately from (5.55),
the estimates in (i), (ii) and the consistence of the method (see Theorem 5.2).

From Lemma 5.5 and statement (i), statement (ii) follows. Therefore, it remains
to show (i).

We use the maximum principle (the monotonicity theorem) of [10] to the following
system of difference functional inequalities of the parabolic type

|rl|M−≤ ε̂(k, h)+
∑
s∈I1

αls

∣∣rM
s

∣∣+ n∑
i=1

βli |rl|Mi +
n∑

i,j=1

γlij |rl|Mij +K‖ |r| ‖(µk), (5.56)

yM−≥ ε̂(k, h)+
∑
s∈I1

αlsy
M+

n∑
i=1

βliy
Mi+

n∑
i,j=1

γlijy
Mij +K‖y‖(µk) (5.57)

for l ∈ I1, M ∈
N1−1⋃
µ=0

Z0
µ (see (2.9), (2.15), (2.18), (5.47), (5.49) and assumption F1);

∣∣rM
l

∣∣ ≤ yM for l ∈ I1, M ∈ Z0; (5.58)

|rl|Mi− ≥ −ε(k, h)ρ−1
l1i − ρ−1

l1i

∑
s∈I1

δl1is

∣∣∣ri(M)
s

∣∣∣ , (5.59)

yMi− ≤ −ε(k, h)ρ−1
l1i − ρ−1

l1i

∑
s∈I1

δl1isy
i(M) (5.60)

for l ∈ I1, M ∈
N1⋃

µ=1
Zµ1i, i = 1, . . . , n; and

|rl|−Mi ≤ ε(k, h)ρ−1
l2i − ρ−1

l2i

∑
s∈I1

δl2is

∣∣∣r−i(M)
s

∣∣∣ , (5.61)

y−Mi ≥ ε(k, h)ρ−1
l2i − ρ−1

l2i

∑
s∈I1

δl2isy
−i(M) (5.62)

for l ∈ I1, M ∈
N1⋃

µ=1
Zµ2i, i = 1, . . . , n (see (2.16), (2.18), (5.49) and assump-

tions F4, F5). Note that |rl|M−, |rl|Mi, |rl|Mij , |rl|Mi− and |rl|−Mi are the
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suitable difference quotients for the mesh functions |rl| ∈ F (Z,R+), |rl|M :=∣∣rM
l

∣∣, and |r| = S[|r|] where |r| := (|rl|)l∈I1 (see (2.25)–(2.27)). Moreover,
αls = αls(PM

l ), βli = βli(PM
l ), γlij = γlij(PM

l ), δlmis = δlmis(PM
l ), ρlmi =

ρlmi(PM
l ), where PM

l = (xM , UM , vM , UMI
l , vMI

l , UMII
l , vMII

l ) ∈ ∆1 in (5.56),
(5.57); PM

l = (xM , Ũ i(M), ṽi(M), UMi−
l , vMi−

l ) ∈ Θ̃11i in (5.59), (5.60); PM
l =

(xM , Ũ−i(M), ṽ−i(M), U−Mi
l , v−Mi

l ) ∈ Θ̃12i in (5.61), (5.62).
Inequality (5.58) is clear.
Next, we fix l ∈ I1, µ ∈ {0, 1, . . . , N1 − 1}, M ∈ Z0

µ and prove inequalities (5.56),
(5.57).

Observe that definitions (5.48), (4.1), (2.19), (2.20), (3.23) and assumptions F1,
F2 lead to

rM−
l = ηM

l + fl(xM , UM , UMI
l , UMII

l )− fl(xM , vM , vMI
l , vMII

l ) =

= ηM
l +

∑
s∈I

αls(PM
l )rM

s +
n∑

i=1

βli(PM
l )rMi

l +
n∑

i,j=1

γlij(PM
l )rMij

l .
(5.63)

After having grouped the suitable expressions in (5.63), in view of assumptions K1,
F2, F3 and definition (5.49), we get the estimate

∣∣r+M
l

∣∣ ≤ kε(k, h) +

(
1 + kαll − 2kh−2

n∑
i=1

γlii

)∣∣rM
l

∣∣+ k
∑
s∈I1
s 6=l

αls

∣∣rM
s

∣∣+
+ kh−1

n∑
i=1

[
h−1

(
γlii−

n∑
j=1
j 6=i

|γlij |

)
+

1
2
βli

] ∣∣∣ri(M)
l

∣∣∣+
+ kh−1

n∑
i=1

[
h−1

(
γlii−

n∑
j=1
j 6=i

|γlij |

)
− 1

2
βli

] ∣∣∣r−i(M)
l

∣∣∣+
+

1
2
kh−2

n∑
i,j=1

i6=j

|γlij |

(
2
∣∣rM

l

∣∣+ ∣∣∣ri(e(l,i,j)j(M))
l

∣∣∣+ ∣∣∣r−i(−e(l,i,j)j(M))
l

∣∣∣)+

+ k
∑
s∈I2

|αls|
∣∣rM

s

∣∣ ,

(5.64)

where

e(l, i, j) :=
{
−1, if rMij

l = r−Mij
l ,

1, if rMij
l = r+Mij

l
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for i, j = 1, . . . , n, i 6= j (see (2.18), (3.23)). Hence, from Lemma 5.5 and assumption
F3, there follows

|rl|M− ≤ ε(k, h)+
∑
s∈I1

αls

∣∣rM
s

∣∣+ n∑
i=1

βli |rl|Mi +
n∑

i,j=1

γlij |rl|Mij +

+ (p− q)L1λ
(
‖εµ‖+ qL2

∥∥∥R̃µ

∥∥∥) , (5.65)

where R̃M
µl := rM

l . Combining the fact∥∥∥R̃µ

∥∥∥ = ‖ |r| ‖ (µk) (5.66)

(see (2.17), (2.9)) and formulas (5.65), (5.47), (5.49), we obtain inequality (5.56).
We now prove inequality (5.57). For simplicity, we introduce a notation

zµ :=
ε∗(k, h)
L+K

{[1 + k(L+K)]µ − 1}+
ε(k, h)
G

. (5.67)

Note that if A ∈ ∂Zµ, then

yA − yM = (1− hG)zµ + hε(k, h)− zµ =

= −hGε
∗(k, h)
L+K

{[1 + k(L+K)]µ − 1} − hG
ε(k, h)
G

+ hε(k, h) =

= −hGε
∗(k, h)

L+K
{[1 + k(L+K)]µ − 1} ≤ 0.

(5.68)

Therefore, by (5.54), (5.67), (5.68) and Remark 5.1, there holds

‖y‖ (µk) = zµ (5.69)

and

yM− =
1
k

(
zµ+1 − zµ

)
=

=
ε∗(k, h)
k(L+K)

{
[1 + k(L+K)]µ+1 − [1 + k(L+K)]µ

}
=

=
ε∗(k, h)
k(L+K)

[1 + k(L+K)]µ [1 + k(L+K)− 1] =

= ε∗(k, h) [1 + k(L+K)]µ .

(5.70)

Then observe that

ε∗(k, h) [1+k(L+K)]µ =
(
ε∗(k, h)
L+K

{[1+k(L+K)]µ−1}+
ε(k, h)
G

)
(L+K)−

− ε(k, h)
G

(L+K) + ε∗(k, h).
(5.71)
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By (5.70), (5.71), (5.49), (5.67) and (5.69), we can write

yM− = zµ(L+K)− ε(k, h)
G

(L+K) + ε̂(k, h) +
ε(k, h)
G

(L+K) =

= ε̂(k, h) + LyM +K‖y‖(µk).
(5.72)

Note that (5.68) and assumption K1 imply
n∑

i=1

βliy
Mi+

n∑
i,j=1

γlijy
Mij ≤ 0. (5.73)

A proof of this inequality is similar to that in [12] and is omitted. The above two
relations and assumption F3 give (5.57).

To verify inequalities (5.59), (5.60), we fix l ∈ I1, i ∈ {1, . . . , n}, µ ∈ {1, . . . , N1}
and M ∈ Zµ1i.

From (5.48), (4.1), (2.19), (2.18) and assumption F4, it is obvious that

ηM
1il = ϕl1i

(
xM , Ũ i(M), UMi−

l

)
− ϕl1i

(
xM , ṽi(M), vMi−

l

)
=

=
∑
s∈I1

δl1isr
i(M)
s + ρl1ir

Mi−
l =

=
∑
s∈I1

δl1isr
i(M)
s + h−1ρl1i

(
r

i(M)
l − rM

l

)
=

=
∑
s∈I1

δl1isr
i(M)
s + h−1ρl1ir

i(M)
l − h−1ρl1ir

M
l .

(5.74)

After having grouped the expressions, these equalities are equivalent to

ρl1ir
M
l = h

∑
s∈I1
s 6=l

δl1isr
i(M)
s + (hδl1il + ρl1i) r

i(M)
l − hηM

1il. (5.75)

Use of assumptions F6, K2 and definition (5.49) imply

ρl1i

∣∣rM
l

∣∣ ≤ h
∑
s∈I1
s 6=l

δl1is

∣∣∣ri(M)
s

∣∣∣+ (ρl1i + hδl1il)
∣∣∣ri(M)

l

∣∣∣+ hε(k, h),

(ρl1i + hδl1il)
∣∣∣ri(M)

l

∣∣∣ ≥ ρl1i

∣∣rM
l

∣∣− h
∑
s∈I1
s 6=l

δl1is

∣∣∣ri(M)
s

∣∣∣− hε(k, h),

ρl1i |rl|Mi− ≥ −ε(k, h)−
∑
s∈I1

δl1is

∣∣∣ri(M)
s

∣∣∣ ,
and hence immediately (5.59).

Next, we examine (5.60). It is clear that the difference quotient yMi− can be
written in the equivalent form

yMi− =
{
Gyi(M) − ε(k, h), if i(M) ∈ Z0

µ,
0, if i(M) ∈ ∂Zµ.

(5.76)
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Since, if i(M) ∈ ∂Zµ, then Gyi(M) − ε(k, h) ≥ 0 (see (5.50), (5.49) and Remark 5.1),
by (5.76) we get

yMi− ≤ Gyi(M) − ε(k, h). (5.77)

Application of assumption F6 and Remark 5.1 gives the estimate

Gyi(M) − ε(k, h) ≤ −ε(k, h)ρ−1
l1i − ρ−1

l1i

∑
s∈I1

δl1isy
i(M)

and by (5.77), inequality (5.60).
Inequalities (5.61) and (5.62) are proven in the same manner.
The application of the maximum principle in [10] to system of inequalities

(5.56)–(5.62) concludes the proof of Theorem 5.3.

6. NUMERICAL RESULTS

To illustrate a little the class of problems which can be treated with our method we
consider a system of differential equations of the form{

Dtu1(t, x) = arctg(D2
xu1(t, x)) + u2(t, x) + g1(t, x),

D2
xu2(t, x) + cos (u1(t, x))− u2(t, x) = g2(t, x)

(6.1)

for (t, x) ∈ [0, 1]× (0, 1), with the initial-boundary conditions
u1(0, x) = sinx, x ∈ [0, 1],
Dxu1(t, 0)− u1(t, 0) = cos t− sin t, t ∈ (0, 1],
Dxu1(t, 1) + u1(t, 1) = cos (t+ 1) + sin (t+ 1), t ∈ (0, 1],
u2(t, 0)− u1(t, 0) = cos t− sin t, t ∈ [0, 1],
u2(t, 1)− u1(t, 1) = cos (t+ 1)− sin (t+ 1), t ∈ [0, 1],

(6.2)

where g1(t, x) := arctg(sin (t+ x)), g2(t, x) := cos (sin (t+ x)) − 2 cos (t+ x). It is
obvious that problem (6.1), (6.2) is a special case of (3.1), (3.2) with n = 1, δ = 1,
T = 1, E = (0, 1) and Ω = [0, 1] × (0, 1). Moreover, Assumption F and assumption
(5.22) are fulfilled.

Observe that the analytical solution of (6.1), (6.2) is given explicitly by u1(t, x) =
sin (t+ x), u2(t, x) = cos (t+ x). It will be compared with numerical results.

Difference scheme (4.1) corresponding to the above differential problem has the
form

aM
1 = sin xm, µ = 0, m ∈ [0, N ],
aM−
1 = arctg a−M11

1 + aM
2 + g1(xM ), µ ∈ [0, N1 − 1], m ∈ [1, N − 1],

a−M11
2 + cos aM

1 − aM
2 = g2(xM ), µ ∈ [0, N1], m ∈ [1, N − 1],

aM1−
1 − a

1(M)
1 = cos tµ − sin tµ, µ ∈ [1, N1], m = 0,

a−M1
1 + a

−1(M)
1 = cos (tµ + 1) + sin (tµ + 1), µ ∈ [1, N1], m = N,

aM
2 − aM

1 = cos tµ − sin tµ, µ ∈ [0, N1], m = 0,
aM
2 − aM

1 = cos (tµ + 1)− sin (tµ + 1), µ ∈ [0, N1], m = N,

(6.3)

where M = (µ,m) ∈ Z2 (see Section 2).
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Let N1 = 104 and N = 0.5 · 102. Then k = 10−4 and h = 2 · 10−2. Assumption
K holds for such the steps. Therefore, by Theorem 5.1, scheme (6.3) has exactly
one solution v = (v1, v2) ∈ F (Z,R2) and, by Theorem 5.3, the numerical method is
convergent.

Let r = (r1, r2) ∈ F (Z,R2) be the error of difference method (6.3), where r1 :=
U1 − v1, r2 := U2 − v2, UM

1 := u1(xM ), UM
2 := u2(xM ). Moreover, let ε1max, ε2max be

the largest and ε1mean, ε2mean mean value of the errors |r1|, |r2|, respectively, at the
moment tµ.

Table 1. Table of errors of the difference method

tµ ε1max ε1mean ε2max ε2mean

0.1 6.03 · 10−3 1.70 · 10−3 6.03 · 10−3 2.68 · 10−3

0.2 7.98 · 10−3 3.13 · 10−3 7.98 · 10−3 3.95 · 10−3

0.3 9.41 · 10−3 4.58 · 10−3 9.41 · 10−3 5.19 · 10−3

0.4 1.06 · 10−2 6.06 · 10−3 1.06 · 10−2 6.43 · 10−3

0.5 1.17 · 10−2 7.56 · 10−3 1.17 · 10−2 7.68 · 10−3

0.6 1.28 · 10−2 9.09 · 10−3 1.28 · 10−2 8.92 · 10−3

0.7 1.39 · 10−2 1.06 · 10−2 1.39 · 10−2 1.01 · 10−2

0.8 1.49 · 10−2 1.22 · 10−2 1.49 · 10−2 1.13 · 10−2

0.9 1.58 · 10−2 1.38 · 10−2 1.58 · 10−2 1.26 · 10−2

1.0 1.67 · 10−2 1.54 · 10−2 1.67 · 10−2 1.38 · 10−2

The table of errors (Tab. 1) is typical of difference methods. The computation
was performed on a PC computer.
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