Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A hierarchy of Lax-type flows on a dual space to the centrally extended Lie algebra of integral-differential operators with matrix-valued coefficients is considered. By means of a specially constructed Backlund transforniation the Hamiltonian representations for these flows coupled with suitable eigenfunctions and adjoint eigenfunctions evolutions of associated spectral problems are obtained. The Hamiltonian description of the corresponding set of additional symmetry hierarchies is represented. The relation of these hierarchies with Lax integrable (3+1)-dimensional nonlinear dynamical systems and their triple Lax-type linearizations is analysed.
Czasopismo
Rocznik
Tom
Strony
231--244
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
autor
- AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Cracow, Poland [Prykarpatsky A. K.], prykanat@cybergal.com ; pryk.anat.@ua.fm
Bibliografia
- [1] M. Adler, On a trace functional for formal pseudo-differential operators and the symplectic structures of a Korteweg-de Vries Equation, Invent. Math. 50 (1979), 219–248.
- [2] H. Aratyn, E. Nissimov, S. Pacheva, Supersymmetric KP hierarchy: “ghost” symmetry structure, reductions and Darboux-Backlund solutions, J. Math. Phys. 40 (1999), 2922–2933.
- [3] V.I. Arnold, Mathematical methods of classical mechanics, Nauka, Moscow, 1989 (in Russian).
- [4] M. Blaszak, Multi-Hamiltonian theory of dynamical systems, Springer, Verlag-Berlin-Heidelberg, 1998.
- [5] L.A. Dickey, Soliton equations and Hamiltonian systems, World Scientific Publishing, Singapore, 1991.
- [6] L.D. Faddeev, L.A. Takhtadjan, Hamiltonian methods in the theory of solitons, Springer-Verlag, New York-Berlin-Heidelberg, 1987.
- [7] O.Ye. Hentosh, Lax integrable supersymmetric hierarchies on extended phase spaces, Symmetry, Integrability and Geometry: Methods and Applications 2 (2006), 11 pp.; nlin. SI/0601007.
- [8] P.D. Lax, Periodic solutions of the KdV equation, Commun. Pure and Appl. Math. 28 (1975), 141–188.
- [9] S.V. Manakov, The method of inverse scattering problem and two-dimensional evolution equations, Advances of Math. Sciences 31 (1976), 245-246.
- [10] Yu.I. Manin, A.O. Radul, A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy, Commun. Math. Phys. 28 (1985), 65-77.
- [11] V.B. Matveev, M.I. Salle, Darboux-Backlund transformations and applications, Springer, New York, 1993.
- [12] E. Nissimov, S. Pacheva, Symmetries of supersymmetric integrable hierarchies of KP type, J. Math. Phys. 43 (2002), 2547–2586.
- [13] S.P. Novikov (ed.), Soliton theory: method of the inverse problem, Nauka, Moscow, 1980 (in Russian).
- [14] W. Oevel, R-Structures, Yang-Baxter equations and related involution theorems, J. Math. Phys. 30 (1989), 1140–1149.
- [15] W. Oevel, Z. Popowicz, The bi-Hamiltonian structure of fully supersymmetric Korteweg-de Vries systems, Commun. Math. Phys. 139 (1991), 441–460.
- [16] W. Oevel, W. Strampp, Constrained KP hierarchy and bi-Hamiltonian structures, Commun. Math. Phys. 157 (1993), 51–81.
- [17] A.K. Prykarpatsky, O.Ye. Hentosh, The Lie-algebraic structure of (2+1)-dimensional Lax type integrable nonlinear dynamical systems, Ukrainian Math. J. 56 (2004), 939–946.
- [18] A.K. Prykarpatsky, I.V. Mykytiuk, Algebraic integrability of nonlinear dynamical systems on manifolds: classical and quantum aspects, Kluwer Academic Publishers, Dordrecht-Boston-London, 1998.
- [19] A.K. Prykarpatsky, V.Hr. Samoilenko, R.I. Andrushkiw, Yu.O. Mitropolsky, M.M. Prytula, Algebraic structure of the gradient-holonomic algorithm for Lax integrable nonlinear systems. I, J. Math. Phys. 35 (1994), 1763–1777.
- [20] Y.A. Prykarpatsky, The structure of integrable Lax type flows on nonlocal manifolds: dynamical systems with sources, Math. Methods and Phys.-Mech. Fields 40 (1997), N 4, 106–115 (in Ukrainian).
- [21] Ya.A. Prykarpatsky, A.M. Samoilenko, V.G. Samoilenko, The structure of binary Darboux type transformations and their applications in soliton theory, Ukrainian Math. J. 55 (2003), 1704–1719 (in Ukrainian).
- [22] A.G. Reiman, M.A. Semenov-Tian-Shansky, The Hamiltonian structure of Kadomtsev-Petviashvili type equations, LOMI Proceedings, Nauka, Leningrad, 164 (1987), 212–227 (in Russian).
- [23] A.G. Reiman, M.A. Semenov-Tian-Shansky, The integrable systems, Computer Science Institute Publisher, Moscow-Izhevsk, 2003 (in Russian).
- [24] A.M. Samoilenko, A.K. Prykarpatsky, Y.A. Prykarpatsky, The spectral and differential-geometric aspects of a generalized de Rham-Hodge theory related with Delsarte tramsmutation operators in multi-dimension and its applications to spectral and sliton problems, Nonlinear Analysis 65 (2006), 395–432.
- [25] A.M. Samoilenko, Y.A. Prykarpatsky, Algebraic-analytic aspects of completely integrable dynamical systems and their pertubations, Institute of Mathematics Publisher, v. 41, Kyiv, 2002 (in Ukrainian).
- [26] A.M. Samoilenko, V.G. Samoilenko, Yu.M. Sydorenko, The Kadomtsev-Petviashvili equation hierarchy with nonlocal constraints: multi-dimensional generalizations and exact solutions of reduced systems, Ukrainian Math. J. 49 (1999), 78–97 (in Ukrainian).
- [27] M. Sato, Soliton equations as dynamical systems on infinite Grassmann manifolds, RIMS Kokyuroku, Kyoto Univ. 439 (1981), 30–40.
- [28] M. A. Semenov-Tian-Shansky, What is the R-matrix, Funct. Analysis and its Appl. 17 (1983), N 4, 17–33 (in Russian).
- [29] B. E. Zakharov, Integrable systems in multi-dimensional spaces, Lect. Notes Phys. 153 (1983), 190–216.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH9-0001-0014