Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We study the worst-case ε-complexity of a two-point boundary value problem u″(x) = ƒ(x) u (x), x ∈ [0,T], u(0) = c, u′ (T) = 0, where c,T ∈ R (c ≠ 0, T > 0) and ƒ is a nonnegative function with r (r ≥ 0) continuous bounded derivatives. We prove an upper bound on the complexity for linear information showing that a speed-up by two orders of magnitude can be obtained compared to standard information. We define an algorithm based on integral information and analyze its error, which provides an upper bound on the ε-complexity.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
205--220
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Cracow, Poland, drwiega@wms.mat.agh.edu.pl
Bibliografia
- [1] P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston 1982.
- [2] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York, 1962.
- [3] B. Kacewicz, How to increase the order to get minimal-error algorithms for systems of ODE, Numer. Math. 45 (1984), 1, 93–104.
- [4] B. Kacewicz, Optimal solution of some two-point boundary value problem, Numerical analysis and mathematical methods, Banach Center Publications 24 (1990), 241–256, PWN, Warsaw.
- [5] B. Kacewicz, Almost optimal solution of initial-value problems by randomized and quantum algorithms, J. Complexity 22 (2006), 676–690.
- [6] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, PWN, Warsaw 1987 (Polish edition).
- [7] A.G. Werschulz, Optimal solution for a problem of optimal control, J. Complexity 5 (1989), 144–181.
- [8] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
- [9] J.F. Traub, H.Wozniakowski, G.Wasilkowski, Information-Based Complexity, Academic Press, New York, 1988.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH9-0001-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.