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EVOLUTIONARY APPROACH
FOR OBTAINING THE HUB AND SPOKE STRUCTURE
IN THE LOGISTIC NETWORK

Abstract: In order to describe transportation system, as a routine a connection graph would
be used. Vertices of the graph can be train stations, bus stop, airports etc. The edges show direct
connections between vertices. A direct application of such graph can be difficult and compu-
tational problems can occur while one would try to organize or optimize such a transportation
system. Therefore, a method of aggregation of such graph was introduced, using the general
kernel and shell structure and a hub and spoke transformation method of the source graph.
These structures allow to concentrate and order the transport of goods/persons among ver-
tices and enable to reduce the number of analyzed vertices as well as edges of the graph. In the
presented paper we continue our work on kernel and shell and its instance hub and spoke methods
of connection graph transformation. In this paper we develop model of the transportation sys-
tem using the hub and spoke method with predetermined, minimum and indirectly described
numbers of hub nodes. To obtain the desired structures, several versions of specialized evolu-
tionary algorithm (EA) were developed and applied.

Keywords: kernel and shell, hub and spoke, logistic network, evolutionary algorithm.

1. Introduction
The theory of logistic transportation systems deals with models of phenomena con-
nected with movement of goods and persons. The idea of kernel and shell structure
in graph of connections deals with the problem of separation some highly bounded
structures in a graph corresponding to same real logistic system especially trans-
portation network [1], [4], defined in general by three essential components [6], [7],
[8], [9], [13], [14], [15], [16], [22]:

– work task – necessity to relocate objects (cargo or/and persons),
– composition – type and number of elements describing the equipment and

crew systems,
– organization – methods of system’s elements reaction during task realization.
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The tasks of the freight-transport system are determined by the system cus-
tomers needs and they are described by the type and number of objects to freight,
route for relocation of objects and the time of delivery [5], [10], [11], [12].

The theory of transportation systems does not directly investigate physical phe-
nomena of this domain, but its goal is to build and to test models of transport systems
[18]. The model of transportation system should be accurate enough to replace the
real system during the process of solving a particular problem. Mathematical de-
scription of transportation system is usually represented by a graph of connections
[19], [20], [21]. The vertices of this graph are railway stations, bus stations or airports,
depending on considered means of transport. Edges of this graph are determined by
a presence of connections among vertices. As it can be easily noticed, a connection
graph may have a large number of vertices and edges. The form of this graph has a
big influence on transport organization. In this paper we continue our work on the
kernel and shell structure and its instance the hub and spoke ([8], [9]) structure using the
evolutionary method for optimization a logistic network The kernel and shell structure
is a generalization of well known hub and spoke structure and similar approaches, in-
cluding an α-clique structure [14], [15], [19], [20], [21].

Using of the kernel and shell structure in a graph of connections enables to con-
centrate flows of transported persons or goods among vertices. The kernel subgraph
constitutes a set of strongly connected vertices with cheap, fast or frequent connec-
tions (depending on the modeled transportation system), while the shell vertices are
less frequently connected, mostly with their kernel vertices (hubs). The kernel and shell
idea enables to eliminate many bilateral connections between the majority of vertices,
instead of it only local connections between kernel vertices and local connections be-
tween kernel vertice and their shell vertices are required. Our approach deals with
simple, undirected and unweighted graphs. These limitations are accepted to sim-
plify the problem but presented methods can be extended and applied to that kinds
of graphs.

Fig. 1 presents the initial structure of connections before transformation to the
kernel and shell structure (concentration). An adequate choice of several transit nodes
and local connections can improve the efficiency of transport system, reducing costs
and increasing service quality. After the concentration process (Fig. 2), the graph of
connections turned into a kernel and shell structure. The graph presented in Fig. 1
may represent a structure of an existing traffic system, where the set of vertices cor-
responds to the set of traffic nodes and the set of edges correspond to the set of traffic
connections. The kernel and shell structure reduces the complexity of the management
problem.

The advantages of such transport structure are:

– more frequent connections among points,
– lower average times of journeys,
– lower costs of transport,
– lower number of required transport means to assess all connections,
– local connections are easier to synchronize, make timetables, etc.
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Fig. 1. Input structure

 
Fig. 2. Relevant kernel and shell structure

In this work we use a basic approach to transform the unstructured graph of
connections into the hub and spoke structure.

The hub and spoke method of graph transformation is useful in situations where
important are only connections between the kernel node (hub) and its shell nodes
(spokes). All transfers within the shell are performed via the kernel node (hub). This
method can also be used in several cases:

– predetermined number of communication hubs with the possibility of direct de-
termining which nodes should become hubs or selecting them by the solving
method;

– the minimum value of hubs which constitute at least a connected subgraph with
all remaining nodes connected to their hubs (the number of hubs used in the
previous point must be bigger than this minimum value);

– the number of communication hubs is determined indirectly by imposed pro-
gram parameters, mainly the parameter of α (the hub subgraph must constitute
an α-clique with imposed value of α).

The evolutionary algorithm has been chosen as a tool for graph transformations,
because the transformation process is a hard computational problem and there are no
efficient, dedicated algorithms of solving it. In our work the evolutionary algorithm
(EA) is responsible for selecting the optimized configuration of shell nodes attached
to their communication hubs and the best candidates for hubs, if they are not pre-
defined by the user. The evolutionary method and obtained results are presented
further in this paper.

2. Graphs
Notions described below are based on [24].

A graph is a pair G = (V ,E), where V is a non-empty set of vertices and E is a set of
edges. Each edge is a pair of vertices v1, v2 with v1 6= v2.
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Two vertices in graph G = (V ,E) are called incident if for vi, vj ∈ V there is
vi, vj ∈ E. One vertex is incident to itself.
A sub-graph of graph G = (V ,E) is a graph G′ = (V ′,E′), where V ′ ⊆ V ,V ′ 6= ∅
and E′ ⊆ E such that for all e ∈ E and e = v1, v2 if v1, v2 ∈ V ′ then e ∈ E′.
A degree of vertex is the number of edges to which this vertex belongs.

Graph G = (V ,E) is a complete graph, if for each pair of vertices there is an edge
e ∈ E between them.
A clique (a complete sub-graph)Q = (Vq,Eq) in graphG = (V ,E) is a graph such that
Vq ⊆ V and Eq ⊆ E and Card(Vq) = 1 or each pair of vertices v1, v2 ∈ Vq fulfills the
condition v1, v2 ∈ Eq ([?]). Each sub-graph of clique is a clique.

An α-clique [14], [19], [20], [21], [22].
LetA = (V ′,E′) be a sub-graph of graphG = (V ,E),V ′ ⊆ V ,E′ ⊆ E, k = Card(V ′)
and let ki be a number of vertices vj ∈ V ′ that vi, vj ∈ E′:

1) for k = 1 the sub-graph A of graph G is an α-clique(α);
2) for k > 1 the sub-graphA of graphG is anα-clique(α) if for all vertices vi ∈ V ′

fulfill the condition α ¬ (ki + 1)/k, where α ∈ (0, 1].
It is simple to prove if α > 0.5 then α-clique is a connected graph [23].
A structure kernel and shell in graph G(V ,E) is composed of two graphs:

kernel – a subgraph, which constitutes a group of strongly connected vertices
K(Vk,Ek), depending on actual needs, possibilities or on the input graph struc-
ture, it can be a clique (ideally), an α-clique or at least a connected subgraph;
shell – a graph S(V s,Es) where Vs = V − Vk and Es = E −Ek, depending on
optimized transportation system requirements, it can be an α-clique (including
its kernel node) or a tree with the kernel node as root and shell nodes as leaves.
For logistic modeling we propose evolutionary methods that transform connec-

tion graph into an instance of the shell and kernel structure leading to the hub-and-spoke
structure according to problem-specific restrictions.

A hub and spoke structure [9], [29] (Fig 3b) is a graph Hs = (Gh ∪Gs,E) where
the subsetGh determines at least a connected graph (kernel) with the relevant subset
of set E, each vertex of subset Gs has degree 1 and is connected exactly with one
vertex from subset Gh (shell).

The hub and spoke is a particular case of a kernel and shell structure. This
structure can be used in logistic models, where direct connections between nodes-
”spokes” attached to its hub are not very important and direct connections are not
necessary. The hub and spoke structure can be derived using one of three possible
methods. The first method uses a predetermined by some expert number of commu-
nication hubs with the possibility of direct determining which nodes should become
hubs or selecting them by the solving method. The second method tries to find the
minimum value of hubs which constitute at least a connected subgraph with all re-
maining nodes connected to their hubs. It must be noticed that the number of hubs
used in the first method must be bigger than this minimum value.
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(a) (b)

Fig. 3. a source graph (a); the shell and kernel structure obtained from the source graph (b)

3. The evolutionary method to find the kernel and shell structure
of connection graph

The standard evolutionary algorithm works in the manner as shown in algorithm 2,
but this simple scheme requires many problem specific improvements to work effi-
ciently [17].

The adjustment of the genetic algorithm to the solved problem requires a proper
encoding of solutions, an invention of specialized genetic operators proper for ac-
cepted data structure and solved problem and at last a fitness function to be opti-
mized by the algorithm.

Algorithm 1: The standard evolutionary algorithm
Input:

Input data
Output:

Output data
begin

Random initialization of the population of solutions.
while stop condition is not satisfied do

begin
Reproduction and modification of solutions using genetic operators
Valuation of obtained solutions
Selection of individuals for the next generation

end;
end;

Evolutionary algorithms are often used to solve difficult graph problems such as
graph coloring, TSP, graph partitioning, maximum clique searching, etc. [2], [24] thus
it seems fully justified to use the evolutionary algorithm in graph clustering problem.
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The problem encoding or in different words the individual representation de-
pends on the desired graph structure to be obtained using EA. In our approach the
information about the problem is stored in an array of data that describes all con-
nections among graph nodes. This array can be binary (an adjacency matrix of undi-
rected graph: 0 – no connection, 1 – presence of connection) or non-negative (undi-
rected graph) real-valued and in this case the stored value denotes the strength of the
connection.

The kernel and shell representation of a connection graph is a general structure,
several particular instances of such structure are described in this work. Each case of
these structures requires specific encoding method. Generally, described encoding
methods are rather similar but it is necessary to point out the differences.

In the EA the fitness function is closely connected with problem’s specific quality
function. The fitness function evaluates the members of the population. It is a mod-
ified (scaled, moved, etc.) problem’s quality function, prepared for computational
purposes in the EA. The problem’s quality function is responsible for obtaining the
proper graph structure. The quality functions in considered problems are little artifi-
cial formulae, because solved problems are not pure optimization tasks, but transfor-
mation graph structure to the desired form can be treated as an optimization prob-
lem. The quality function must precisely direct EA to find desired graph structure.
Thus, several quality functions may be used, depending on input data (binary, in-
teger or real) or what set of kernel nodes or shell nodes one wants to obtain (equal
size or maximal size, the minimum number of kernel nodes, etc.). Usually the fitness
function has to contain a punishment part for the potential not valid solutions.

Another important problem is designing genetic operators for accepted data
structure, taking into account constraints imposed on solutions. It is obvious that
standard crossover and mutation are not proper, so problem-specific, specialized op-
erators must be prepared to efficiently solve described problems. This section de-
scribes applied methods of solutions’ modification in detail.

3.1. The hub and spoke structure

As it has been noticed, the hub and spoke structure of a connection graph is useful
when direct transfers among spokes in one shell subgraph are not necessary. Thus,
shell subgraphs need not constitute α-cliques but a structure of a root and attached
leaves or in different words a star or a hub and spoke structure.

3.1.1. The hub and spoke structure with predetermined number of kernel nodes

The hub and spoke representation is presented in Fig. 4. The spokes do not constitute α-
cliques but groups of nodes that are connected with their hubs. The subgraph of hubs
is anα-clique with as big value ofα as possible – ideally hubs should constitute a com-
plete subgraph, but in very difficult conditions, where connections between nodes
are very sparse or are determined as existing junction nodes (for instance railway
stations), it is admissible that the subgraph of hubs constitutes simply a connected
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graph. The kernel nodes can be explicitly assigned or only the number of them may
be imposed.

Fig. 4. Structure of the population member for the hub and spoke structure with predetermined
number of kernel nodes

A member of the population as well, contains several more data items including:
a vector of real numbers, which describe its knowledge about genetic operators and
the number of the operator chosen to modify the solution in the current iteration.

The hub and spoke structure with predetermined number of kernel nodes prob-
lem’s quality function promotes solutions where a rather small subgraph of hubs is
(almost) fully connected and generated sets of spokes attached to their hubs have
medium sizes:

maxQ =
1
m

n∑
i=1

(
ki −

∣∣∣∣k− nn − ki
∣∣∣∣+ hi

n

)
(1)

where:
n – predetermined (constant) number of hubs in the solution evaluated,
m – number of connected subgraphs in kernel subgraph,
ki – number of nodes (spokes) attached to the ith hub,
k – number of nodes in the whole graph,
hi – number of connections between hub i and other hubs.
The fitness function (1) promotes bigger shell subgraphs (spokes), ideally of size

almost equal to average number of spokes (|(k − n)/n− ki|), assuring connectivity
of kernel subgaph (1/m – for connected subgraph m should be 1), maximizing the
number of connections among hubs (hi/n− 1).

This problem can be solved using similar operators to the α-clique methods, but
different conditions are checked before they are performed. When one node (spoke)
is to be moved to another hub’s shell, first it must be checked if it has connection
with this new hub. If not, the operation is canceled and no modification of solution
is performed.
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In this case the set of genetic operators in this case contains:

1) mutation – an exchange of randomly chosen nodes in different sets of spokes;
2) movement of a randomly chosen node to a different set of spokes;
3) exchange of randomly selected hub for randomly selected spoke – this oper-

ator is inactive when kernel nodes are explicitly assigned;
4) also multiple versions of operators are applied.

The problem arises when the predetermined number of kernel nodes is lower
than the minimal value (see p. 3.1.3), that assures that all shell nodes will be attached
to their kernel hubs. This problem can be solved in two ways. The first allows that the
final result contains unattached nodes. The second increases the number of kernel
nodes to obtain connected graph of connections. These methods are realized using
modified forms of quality function (1) with the punishment part for unattached shell
nodes or additional kernel nodes.

3.1.2. The hub and spoke structure with indirectly imposed number of kernel nodes

The case of hub and spoke structure with indirectly imposed size of kernel subgraph
is encoded in manner presented on Fig. 5. The number of kernel nodes (hubs) is
unknown in advance and varying during computations. The algorithm must find
the best value and kernel candidates optimizing quality function (2). The data struc-
ture contains a dynamic table of chosen kernel nodes (communication hubs) and lists
of spokes which constitute shells of ordinary nodes. As in the previously considered
cases, each node is considered only once in one solution.

 

Fig. 5. Structure of the population member for the hub and spoke structure with indirectly imposed
number of kernel nodes
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For computer simulations we used the following quality function:

maxQ =
1

m · n

n∑
i=1

(
ki −

∣∣∣∣k− nn − ki
∣∣∣∣+ hi

n

)
(2)

where:
n – number of hubs in the solution evaluated,
m – number of connected subgraphs in kernel subgraph,
ki – number of nodes (spokes) attached to the ith hub,
k – number of nodes in the whole graph,
hi – number of connections between hub i and other hubs.
The fitness function (2) promotes bigger shell subgraphs (spokes), ideally of size

almost equal to average number of spokes (|(k − n)/n− ki|), assuring connectivity
of kernel subgraph (1/m – for connected subgraph m should be 1), maximizing the
number of connections among hubs (hi/n− 1).

The set of genetic operators in this case contains:

1) mutation – an exchange of randomly chosen nodes in different sets of spokes;
2) movement of a randomly chosen node to a different set of spokes (random and

“intelligent” version, “intelligent” version performs changes in the individual
only if new set of spokes are better connected with their kernels than before
this operation);

3) exchange of randomly selected hub for randomly selected spoke (as in the
previous case random and “intelligent” version);

4) concatenation – attempt to concatenate two sets of spokes (tries to minimize
the number of the kernel nodes);

5) also multiple versions of operators are applied.

3.1.3. The hub and spoke structure with the minimum number of kernel nodes

The hub and spoke structure with the minimum size of kernel subgraph is a special case
of the structure with indirectly imposed number of kernel nodes, but this problem is
computationally more difficult to solve. The problem encoding is identical as in the
case with the indirectly determined size of kernel subgraph (Fig. 5) but the optimized
fitness function (3) is different:

minQ = n ·m (3)

where:
n – number of hubs in the solution evaluated,
m – number of connected subgraphs in kernel subgraph.
The fitness function (3) promotes the smallest set of connected kernel nodes with

all spokes attached to their hubs.
The set of genetic operators in this case contains:

1) mutation – an exchange of randomly chosen nodes in different sets of spokes;
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2) movement of a randomly chosen node to a different set of spokes (random and
“intelligent” version, “intelligent” version performs changes in the individual
only if new set of spokes are better connected with their kernels than before
this operation);

3) exchange of randomly selected hub for randomly selected spoke (as in the
previous case random and “intelligent” version);

4) concatenation – attempt to concatenate two sets of spokes (tries to minimize
the number of the kernel nodes);

5) also multiple versions of operators are applied.

4. Evolutionary algorithm used to solve the problem
Use of specialized genetic operators requires having a method of selecting and exe-
cuting them in all iterations of the algorithm. In the approach used [23] it is assumed
that an operator that generates good results should have bigger probability and more
frequently effect the population. But it is very likely that the operator, that is proper
for one individual, gives worse effects for another, for instance because of its location
in the domain of possible solutions. Thus, every individual may have its own prefer-
ences. Every individual has a vector of floating point numbers, besides the encoded
solution.

Each number corresponds to one genetic operation. It is a measure of quality of
the genetic operator (a quality factor). The higher the factor, the higher the probability
of using the operator. The ranking of quality factors becomes a basis for computing
the probabilities of appearance and execution of genetic operators. Simple normal-
ization of the vector of quality coefficients turns it into a vector of operator execution
probabilities. This set of probabilities is also a basis of experience of every individual
and according to it, an operator is chosen in each epoch of the algorithm. Due to the
experience gathered one can maximize chances of its offspring to survive.

The method of computing quality factors is based on reinforcement learning [3]
(one of algorithms used in machine learning). An individual is treated as an agent,
whose role is to select and call one of the evolutionary operators. When the selected
ith operator is applied, it can be regarded as an agent action ai leading to a new state
si, which, in this case, is a new solution. Agent (genetic operator) receives reward or
penalty depending on the quality of the new state (solution). The aim of the agent
is to perform the actions, which give the highest long term discounted cumulative
reward V ∗:

V Π = EΠ

∞∑
k=0

γkrt+k+1 (4)

V ∗ = max
Π

(
V Π
)

(5)

The following formula can be derived from (3) and (4) and is used for evaluation
purposes:
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V (st+1) = V (st) + αrt+1 + γV ∗(st+1)− V (st) (6)

where:
Π – represents the strategy of the agent,

V Π – represents discounted cumulative reward obtained using strategy
Π,

E – represents expected value,
k – represents consecutive time steps,
t – represents current time,

V (St) – is a quality factor or discounted cumulative reward,
V ∗(St+1) – estimated value of the best quality factor (in our experiments we take

the value attained by the best operator),
α – is a learning factor,
γ – is a discount factor,

rt+1 – represents the reward for the best action, which is equal to the im-
provement of the quality of a solution after execution of the evolu-
tionary operator.

In the presented experiments the values of α and γ were set to 0.1 and 0.2 respec-
tively.

5. Obtained results of computer simulations

5.1. The testing data

Unfortunately, we did not have a real traffic data, thus we used a testing example
from BHOSLIB: Benchmarks with Hidden Optimum Solutions for Graph Problems
(Maximum Clique, Maximum Independent Set, Minimum Vertex Cover and Vertex
Coloring) – Hiding Exact Solutions in Random Graphs [30]. The chosen problems
were graphs with 450 vertices and 83 198 edges with the maximum clique size equal
30 (frb30-15-clq.tar.gz) and two complementary graphs the first with 4000 vertices
and 572 774 with the maximum clique size equal 100 edges (frb100-40-mis.gz) and
graph with 4000 vertices and 7 425 226 edges with Maximum Independent Set=100
and Minimum Vertex Cover=3900 (frb100-40.clq.gz). The size of considered prob-
lems are relatively big, but its complexity is similar to problems encountered during
planning connections among bigger European cities for instance.

5.2. Results obtained for the hub and spoke method

5.2.1. The problem with the minimum number of kernel nodes

We used two methods to obtain this version of kernel and shell graph form. The first
one was with numbers of hubs and spokes generated by the algorithm – it was the
smallest number of hubs possible to cover the source graph. Its results are presented
below.
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Table 1. Results obtained using algorithm searching the minimum partitioning of the source graph

Obtained number
of kernel nodes

min max mediana

Graph problem name Vertices Edges
frb30-15-1 450 83 198

2
Card of shell 2 2 2

kernel’s node degree in shell 67 381 2
kernel’s node degree in kerne 2 2 2

Graph problem name Vertices Edges
frb100-40 mis 4 000 572 774

45
Card of shell 4 291 60

kernel’s node degree in shell 4 291 60
kernel’s node degree in kerne 2 7 4

Graph problem name Vertices Edges
frb100-40 4 000 7 425 226

2
Card of shell 2 2 2

kernel’s node degree in shell 2 069 2 929 2
kernel’s node degree in kerne 2 2 2

It can be noticed that this version of algorithm gives too small possibilities of
graph transformation. We obtain only one solution for each example and in this case
generated sets of spokes may be too big to be useful. But this results helps us to find
the lower limitation of possible numbers of hubs. We can use it and set bigger num-
bers for the second method.

5.2.2. The problem with imposed number of kernel nodes

The second method generates the kernel and shell structure with the given a priori
number of hubs. Results obtained using this method are presented in Tab. 2. Due to
input graph structure, some hub and spoke structures with predefined numbers of
kernel nodes may not be achieved without leaving unattached shell nodes (and re-
quired number of kernel nodes) or without increasing number of kernel nodes (with-
out unattached nodes), for instance it would happen if we wanted a hub and spoke
structure with 30 kernel nodes for the frb100-40-mis problem. In presented results of
we considered results obtained in the previous section and requested kernel values
are bigger than obtained minimal values.
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Table 2. Results obtained for desired numbers of hubs

The desired number
of kernel nodes

min max mediana αK /conn1

Graph problem name Vertices Edges
frb30-15-1 450 83198

5
Card of shell 89 89 89

1.00kernel’s node degree in shell 89 89 89
kernel’s node degree in kernel 5 5 5

10
Card of shell 44 44 44

1.00kernel’s node degree in shell 44 44 44
kernel’s node degree in kernel 10 10 10

20
Card of shell 21 22 21

1.00kernel’s node degree in shell 21 22 21
kernel’s node degree in kernel 20 20 20

40
Card of shell 10 11 10

0.93kernel’s node degree in shell 10 11 10
kernel’s node degree in kernel 37 40 39

50
Card of shell 8 8 8

0.92kernel’s node degree in shell 8 8 8
kernel’s node degree in kernel 46 50 48

100
Card of shell 3 4 3

0.89kernel’s node degree in shell 3 4 3
kernel’s node degree in kernel 89 97 92

Graph problem name Vertices Edges
frb100-40-mis 4000 572 774

50
Card of shell 62 113 79

0.04/+kernel’s node degree in shell 62 113 79
kernel’s node degree in kernel 2 11 5

60
Card of shell 65 66 66

0.03/+kernel’s node degree in shell 65 66 65
kernel’s node degree in kernel 2 13 5

75
Card of shell 26 53 39

0.03/+kernel’s node degree in shell 26 53 39
kernel’s node degree in kernel 3 15 8

100
Card of shell 18 48 39

0.02/+kernel’s node degree in shell 18 48 39
kernel’s node degree in kernel 2 8 15

200
Card of shell 13 27 19

0.02/+kernel’s node degree in shell 13 27 19
kernel’s node degree in kernel 5 29 16

1The value of α > 0.5 assures graph connectivity
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Table 2. Results obtained for desired numbers of hubs – cont’d

The desired number
of kernel nodes

min max mediana αK /conn

Graph problem name Vertices Edges
frb100-40 4000 7 425 226

5
Card of shell 799 799 799

1.00kernel’s node degree in shell 799 799 799
kernel’s node degree in kernel 5 5 5

10
Card of shell 399 399 399

1.00kernel’s node degree in shell 399 399 399
kernel’s node degree in kernel 10 10 10

20
Card of shell 199 199 199

1.00kernel’s node degree in shell 199 199 199
kernel’s node degree in kernel 20 20 20

50
Card of shell 79 79 79

1.00kernel’s node degree in shell 79 79 79
kernel’s node degree in kernel 50 50 50

100
Card of shell 39 39 39

0.99kernel’s node degree in shell 39 39 39
kernel’s node degree in kernel 99 100 99

200
Card of shell 19 19 19

0.97kernel’s node degree in shell 19 19 19
kernel’s node degree in kernel 194 198 196

Results collected in Tab. 2 show that the method with given number of hubs is
much more flexible, because it is possible to obtain desired structure of transformed
graph, while the first method gives only one solution for each case. As it can be seen,
for bigger numbers of hubs their subgraph becomes not fully connected, but numbers
of connections among hubs are very high (α of such α-clique is close to 1) . However,
it is possible to obtain worse results for sparse graphs or for bigger number of hubs.
It is necessary then to assess at least connectivity of that subgraph.

5.2.3. The problem with indirectly imposed number of kernel nodes

Results obtained in this case are similar to those obtained in the case of the minimum
kernel size, different results are only for the sparse graph frb100-40-mis, where ad-
ditional limitations (connectedness of kernel subgraph, requirement that all spokes
must be connected with their hubs with proper structure of shell subgraphs) enlarged
the number of obtained kernel nodes.
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Table 3. Results obtained for algorithm with auto-partitioning of the source graph

Obtained
number of

kernel nodes

min max mediana αK /conn2

Graph problem name Vertices Edges
frb30-15-1 450 83 198

2
Card of shell 224 224 224

1.00kernel’s node degree in shell 224 224 224
kernel’s node degree in kernel 2 2 2

Graph problem name Vertices Edges
frb100-40-mis 4000 572 774

50
Card of shell 71 89 79

0.04/+kernel’s node degree in shell 71 89 79
kernel’s node degree in kernel 2 20 8

Graph problem name Vertices Edges
frb100-40 4000 7 425 226

2
Card of shell 1999 1999 1999

1.00kernel’s node degree in shell 1999 1999 1999
kernel’s node degree in kernel 2 2 2

2The value of α > 0.5 assures graph connectivity

6. Conclusions

The results of the series of conducted experiments show that hard computational
problems, like transformation a logistic network into the kernel and shell structure can
be easily done using evolutionary algorithms. Also the hub and spoke structure, which
can be treated as an instance of kernel and shell, can be easily obtained using the
evolutionary method.

Presented methods can be very useful for developing logistic and transportation
systems.
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