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PUBLIC-TRANSIT VEHICLE SCHEDULES
USING A MINIMUM CREW-COST APPROACH

Abstract: Commonly, public transit agencies, with a view toward efficiency, aim at minimizing
the number of vehicles in use to meet passenger demand, and therefore at reducing crew cost.
This work contributes to achieving these two objectives by proposing the use of two predom-
inant characteristics of public-transit operations planning: (a) different resource requirements
between peak and off-peak periods, and (b) working during irregular hours. These character-
istics result in split duties (shifts) with unpaid in-between periods. The outcome of this work is
an optimal solution for maximizing the unpaid shift periods with the assurance of complying
with the minimum number of vehicles attained. The optimization problem utilizes a highly
informative graphical technique (deficit function) for finding the least number of vehicles; this
enables the construction of vehicle chains (blocks) that take into account maximum unpaid
shift periods. The latter consideration is intended to help construct crew schedules at mini-
mum cost. The methodology developed was implemented by two large bus companies and
resulted in a significant cost reduction.

Keywords: public transportation, vehicle scheduling, crew scheduling, deficit function.

1. Introduction
Two of the most time-consuming and cumbersome public transit scheduling tasks
are creating chains of trips, each for a single daily vehicle duty (called vehicle block),
and assigning the crew (drivers) to vehicle blocks. These tasks require the service
of imaginative, experienced schedulers, and usually it is performed automatically.
Consequently it is not surprising to learn that most of the commercially available
transit-scheduling software packages concentrate primarily on these two tasks, and
especially on the crew-scheduling activities. After all, from the transit agency’s per-
spective, the largest single cost item in the budget is the driver’s wage and fringe
benefits.
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22 A. Ceder

This work focuses on the characteristics of split crew duties (shifts) with unpaid
in-between periods; these split duties are the result of different resource requirements
between peak and off-peak periods. Usually every transit agency desires both to min-
imize the number of vehicles in use that will comply with passenger demand, and to
minimize the crew cost. This work helps in fulfilling these objectives by providing an
optimal solution for maximizing the unpaid shift periods, hence reducing the crew
costs, with the assurance of maintaining the minimum number of vehicles required.

1.1. Background

Public transit operations planning can be thought of as a multistep process. Because
of the complexity of this process each step is normally conducted separately, and se-
quentially fed into the other. The process steps are: (1) designing network of routes;
(2) setting timetables; (3) scheduling vehicles to trips; and (4) assigning the crew. In or-
der for this process to be cost-effective and efficient, it should embody a compromise
between passenger comfort and cost of service. For example, a good match between
vehicle supply and passenger demand occurs when vehicle schedules are constructed
so that the observed passenger demand is accommodated while the number of ve-
hicles in use is minimized. The subject of this work is related to the third and fourth
steps of the transit operations planning process; thus, in this section, these two steps
will be briefly described below following a literature review.

The vehicle-scheduling step is aimed at creating chains of trips; each is referred
to as a vehicle schedule according to given timetables. This chaining process is often
called vehicle blocking (a block is a sequence of revenue and non-revenue activities
for an individual vehicle). A transit trip can be planned either to transport passengers
along its route or to make a deadheading trip in order to connect two service trips
efficiently. The scheduler’s task is to list all daily chains of trips (some deadheading)
for each vehicle so as to ensure the fulfillment of both timetable and operator require-
ments (refueling, maintenance, etc.). The major objective of this step is to minimize
the number of vehicles required. Ceder and Stern (1981) and Ceder (2002, 2003, 2007a,
2007b) describe a highly informative graphical technique for the problem of finding
the least number of vehicles. This technique is explicated in the following section
concerning background materials. It is also to note that the main parts of this work
appear in the book by Ceder (2007b), but without the tests and case studies.

The goal of the crew scheduling step is to assign drivers according to the out-
come of vehicle scheduling. This step is often called driver-run cutting (splitting and
recombining vehicle blocks into legal driver shifts or runs). This crew-assignment
process must comply with some constraints, which are usually dependent on a la-
bor contract. Any transit agency wishing to utilize its resources more efficiently has
to deal with problems encountered by the presence of various pay scales (regular,
overtime, weekends, etc.) and with human-oriented dissatisfaction. The purpose of
the assignment function is to determine a feasible set of driver duties in an optimal
manner. Usually the objective is to minimize the cost of duties so that each duty piece
is included in one of the selected duties.
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1.2. Literature review of vehicle scheduling

Vehicle scheduling refers to the problem of determining the optimal allocation of
vehicles to carry out all the trips in a given transit timetable. A chain of trips is as-
signed to each vehicle although some of them may be deadheading (DH) or empty
trips in order to reach optimality. The number of feasible solutions to this problem
is extremely high, especially in the case in which the vehicles are based in multiple
depots. Much of the focus of the literature on scheduling procedures is, therefore, on
computational issues.

Löbel (1998, 1999) discussed the multiple-depot vehicle scheduling problem and
its relaxation into a linear programming formulation that can be tackled using the
branch-and-cut method. A special multi-commodity flow formulation is presented,
which, unlike most other such formulations, is not arc-oriented. A column-generation
solution technique is developed, called Lagrangean pricing; it is based on two differ-
ent Lagrangean relaxations. Heuristics are used within the procedure to determine
the upper and lower bounds of the solution, but the final solution is proved to be the
real optimum.

Mesquita and Paixao (1999) used a tree-search procedure, based on a multi-
commodity network flow formulation, to obtain an exact solution for the multi-depot
vehicle scheduling problem. The methodology employs two different types of deci-
sion variables. The first type describes connections between trips in order to obtain
the vehicle blocks, and the other relates to the assignment of trips to depots. The
procedure includes creating a more compact, multi-commodity network flow formu-
lation that contains just one type of variables and a smaller amount of constraints,
which are then solved using a branch-and-bound algorithm.

Banihashemi and Haghani (2000) and Haghani and Banihashemi (2002) focused
on the solvability of real-world, large-scale, multiple-depot vehicle scheduling prob-
lems. The case presented includes additional constraints on route time in order to
account for realistic operational restrictions such as fuel consumption. The authors
proposed a formulation of the problem and the constraints, as well as an exact so-
lution algorithm. In addition, they described several heuristic solution procedures.
Among the differences between the exact approach and the heuristics is the replace-
ment of each incorrect block of trips with a legal block in each iteration of the heuris-
tics. Applications of the procedures in large cities are shown to require a reduction
in the number of variables and constraints. Techniques for reducing the size of the
problem are introduced, using such modifications as converting the problem into a
series of single-depot problems.

Freling et al. (2001) and Huisman et al. (2005) presented an integrated approach
for vehicle and crew scheduling for a single bus route. The two problems are first
defined separately; the vehicle scheduling problem is formulated as a network-flow
problem, in which each path represents a feasible vehicle schedule, and each node
a trip. In the combined version, the network problem is incorporated into the same
program with a set partitioning formulation of the crew scheduling problem.

Hasse et al. (2001) formulated another problem that incorporated both crew and
vehicle scheduling. For vehicle scheduling, the case of a single depot with a homoge-
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nous fleet is considered. The crew scheduling problem is a set partitioning formula-
tion that includes side constraints for the bus itineraries; these constraints guarantee
that an optimal vehicle assignment can be derived afterwards.

Haghani et al. (2003) compared three vehicle scheduling models: one multiple-
depot (presented by Haghani and Banihashemi, 2002) and two single-depot formula-
tions which are special cases of the multiple-depot problem. The analysis showed that
a single-depot vehicle scheduling model performed better under certain conditions.
A sensitivity analysis with respect to some important parameters is also performed;
the results indicated that the travel speed in the DH trip was a very influential pa-
rameter.

Huisman et al. (2004) proposed a dynamic formulation of the multi-depot vehi-
cle scheduling problem. The traditional, static vehicle scheduling problem assumes
that travel times are a fixed input that enters the solution procedure only once; the
dynamic formulation relaxes this assumption by solving a sequence of optimization
problems for shorter periods. The dynamic approach enables an analysis based on
other objectives except for the traditional minimization of the number of vehicles;
that is, by minimizing the number of trips starting late and minimizing the overall
cost of delays. The authors showed that a solution that required only a slight increase
in the number of vehicles could also satisfy the minimum late starts and minimum
delay-cost objectives. To solve the dynamic problem, a “cluster re-schedule” heuris-
tic was used; it started with a static problem in which trips were assigned to depots,
and then it solved many dynamic single-depot problems. The optimization itself was
formulated through standard mathematical programming in a way that could use
standard software.

1.3. Literature review of crew scheduling

The crew-scheduling problem has been discussed abundantly both in and out the
transportation literature; relevant papers are found in journals related to mathe-
matics, computing, operations research, and specialized scheduling resources. This
section will focus here mainly on the latest developments in this field. The crew-
scheduling problem is often formulated as a set covering problem (SCP). For this
purpose, a large set of driver-workdays is defined, and a subset is then chosen that
attempts to minimize costs, subject to constraints that make sure that all the neces-
sary driving duties are performed. Most crew-scheduling problem formulations also
verify that the labor-agreement rights of all drivers are maintained.

Paias and Paixao (1993) formulate the crew-scheduling problem using dynamic
programming. The search for solutions employs a state-space relaxation method us-
ing a lower-bound solution. Carraresi et al. (1995) propose another column-generation
approach, one that starts with a feasible set of workdays and iteratively replaces some
workdays to obtain a better solution. The pre-constructed workdays are built of duty
pieces, and the solution uses a Lagrangean-relaxation method. Another, somewhat
similar column-generation method is proposed by Fores et al. (1999).

Clement and Wren (1995) introduce a solution for the crew-scheduling problem
using a genetic algorithm: a group of chromosomes, each of which represents a fea-
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sible crew schedule, is subject to repeated mutations, crossovers, and other actions,
based on the idea that the search for an optimal solution can follow rules similar to
a genetic survival mechanism. Several ”greedy” algorithms are used for assigning
duties to pieces of work. Another solution procedure based on a genetic algorithm is
presented by Kwan et al. (1999).

The approach demonstrated by Beasley and Cao (1996) does not follow a SCP
concept; only a single type of workday is considered rather than attempting to search
a broader range. A Lagrangean-relaxation method provides a lower-bound solution,
which is later improved by using sub-gradient optimization. Next, a tree-search al-
gorithm is used to obtain the final optimum. Beasley and Cao (1998) again use a sim-
ilar approach but, instead of the Lagrangean-relaxation tool, seek the optimal lower
bound by using a dynamic programming algorithm.

Another method that does not rely on SCP is suggested by Mingozzi et al. (1999).
The authors describe two different duty-based heuristic solution procedures in which
relaxed problems are formulated; their solutions also solve the original CSP. A third
proposed solution procedure is based on set partitioning problem (SPP). The dual
concept of linear relaxation programming is used to obtain a lower-bound solution.
The number of variables in this problem is then reduced by using this lower bound;
finally, the reduced-size problem is solved through a branch-and-bound technique.

Lourenco et al. (2001) bring a multi-objective crew-scheduling problem, led by
the concept that in practice there is need to consider several conflicting objectives
when determining the crew schedule. The multi-objective problem is tackled using
meta-heuristics, a Tabu-search technique, and genetic algorithms. Shen and Kwan
(2001) introduce a process that involves partitioning a predetermined vehicle sched-
ule into a set of driver duties. The focus is on refining an existing small set of work-
days; hence, the methodology does not include the common stage of generating all
feasible solutions. A Tabu search is used to improve the given crew schedule. Tabu
search is a class of meta-heuristic that tries to avoid being trapped in a local opti-
mum solution by basing the solution choice in each iteration on a few-iterations-back
analysis; sometimes, this means that a solution is chosen even if it leads to a poorer
performance than the previous iteration.

Fores et al. (2001) describe a traditional integer linear programming formulation
of the crew-scheduling problem, with some added flexibility. The formulation ac-
cepts different objective functions (minimize the number of duties, minimize costs,
or a combination), different optimization techniques (primal column- generation or
dual-steepest edge techniques), and different criteria for reducing the number of fea-
sible workdays. The optimization technique chosen is used to solve a relaxed non-
integer problem; a branch-and-bound process then finds an integer solution. Finally,
Kroon and Fischetti (2001) present an crew-scheduling problem for railway crews that
allows some flexibility in specifying penalties for undesirable types of workdays. A
dynamic column-generation procedure is used; hence, duties are not generated a pri-
ori but in the course of the solution process. Re-generation and re-selection of work-
days are carried out in each iteration. Generation is preformed in a network in which
trips are represented by arcs. To solve the SCP, a Lagrangean-relaxation method and
sub-gradient optimization are used instead of the common linear programming.
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Finally, a more recent contributions of integrated multi-depot vehicle and crew
scheduling can be found by Mesquita et al. (2009), Borndorfer et al. (2008) and Gint-
ner et al. (2008) that use integer mathematical formulation, relaxation methods and
heuristics to overcome the basic NP-Hard problem. Other related recent studies
search for relief opportunities in the attempt to approach optimal crew scheduling
at public-transit stops where the drivers can be switched. Such studies are presented
by Laplagne et al. (2009) and Kwan and Kwan (2007).

2. Background on the deficit function (DF) approach

Following is a description of a step function approach described first by Ceder and
Stern (1981) and also by Ceder (2002, 2003, 2007a, 2007b), for assigning the minimum
number of vehicles to allocate for a given timetable. The step function is termed deficit
function (DF), as it represents the deficit number of vehicles required at a particular
terminal in a multi-terminal transit system. That is, DF is a step function that increases
by one at the time of each trip departure and decreases by one at the time of each
trip arrival. To construct a set of deficit functions, the only information needed is a
timetable of required trips. The main advantage of the DF is its visual nature. Let
d (k, t,S) denote the DF for the terminal k at the time t for the schedule S. The value
of d (k, t,S) represents the total number of departures minus the total number of trip
arrivals at terminalk, up to and including timet. The maximal value of d (k, t,S) over
the schedule horizon [T1,T2] is designatedD (k,S).

2.1. Fixed schedule

Let tis and tie denote the start and end times of tripi, i ∈ S. It is possible to partition
the schedule horizon of d (k, t,S) into sequence of alternating hollow and maximal
intervals. The maximal intervals

[
ski , e

k
i

]
, i = 1, ...,n (k) define the interval of time

over which d (k, t) takes on its maximum value. Note that the S will be deleted when
it is clear which underlying schedule is being considered. Index i represents the ith
maximal intervals from the left and n (k) represents the total number of maximal
intervals ind (k, t). A hollow interval Hk

l , l=0,1,2,. . . ,n(k) is defined as the interval be-
tween two maximal intervals including the first hollow from T1 to the first maximal
interval, and the last hollow-from the last interval to T2 . Hollows may consist of only
one point, and if this case is not on the schedule horizon boundaries(T1 or T2), the
graphical representation of d (k, t) is emphasized by clear dot.

If the set of all terminals is denoted as T , the sum of D (k) for all k ∈ T is equal
to the minimum number of vehicles required to service the set T . This is known as
the fleet size formula. Mathematically, for a given fixed schedule S:

D (S) =
∑
k∈T

D (k) =
∑
k∈T

max
t∈[T1,T2]

d (k, t) (1)

where D (S) is the minimum number of buses to service the set T .
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When deadheading (DH) trips are allowed, the fleet size may be reduced be-
low the level described in Equation 1. Ceder and Stern (1981) described a procedure
based on the construction of a unit reduction DH chain (URDHC), which, when in-
serted into the schedule, allows a unit reduction in the fleet size. The procedure con-
tinues inserting URDHCs until no more can be included or a lower boundary on the
minimum fleet is reached. The lower boundary G(S) is determined from the overall
deficit function defined as g (t,S) =

∑
k∈T d (k, t,S) where G(S) = max

t∈[T1,T2]
g (t,S).

This function represents the number of trips simultaneously in operation. Initially,
the lower bound was determined to be the maximum number of trips in a given
timetable that are in simultaneous operation over the schedule horizon. Stern and
Ceder (1983) improved this lower bound, to G (S′) > G (S) based on the construc-
tion of a temporary timetable, S′, in which each trips is extended to include potential
linkages reflected by DH time consideration in S. This lower bound was even further
improved by Ceder (2002) by looking into artificial extensions of certain trip-arrival
points without violating the generalization of requiring all possible combinations for
maintaining the fleet size at its lower bound.

The algorithms of the deficit function theory are described in detail by Ceder
and Stern (1981) and Ceder (2003, 2007b). However, it is worth mentioning the next
terminal (NT) selection rule and the URDHC routines. The selection of the NT in
attempting to reduce its maximal deficit function may rely on the basis of garage ca-
pacity violation, or on a terminal whose first hollow is the longest, or on a terminal
whose overall maximal region (from the start of the first maximal interval to the end
of the last one) is the shortest. The rationale here is to try to open up the greatest
opportunity for the insertion of the DH trip. In the URDHC routines there are four
rules: R=0 for inserting the DH trip manually in a conversational mode, R=1 for in-
serting the candidate DH trip that has the minimum travel time, R=2 for inserting
a candidate DH trip whose hollow starts farthest to the right, and R=3 for inserting
a candidate DH trip whose hollow ends farthest to the right. In the automatic mode
(R=1, 2, 3), if a DH trip cannot be inserted and the completion of a URDHC is blocked,
the algorithm backs up to a DH candidate list and selects the next DH candidate on
that list.

2.2. Constructing vehicle schedules (chains/blocks) and an example

At the end of the heuristic algorithm, all trips, including the DH trips, are chained for
constructing the vehicle schedule (blocks). Two rules can be applied for creating the
chains: first in-first out (FIFO) and a chain-extraction procedure described by Gerts-
bach and Gurevich (1977). The FIFO rule simply links the arrival time of a trip to the
nearest departure time of another trip (at the same terminal); it continues to create a
schedule until no connection can be made. The trips considered are deleted, and the
process continues.

The chain-extraction procedure allows an arrival-departure connection for any
pair within a given hollow (on each DF). The pairs considered are deleted, and the
procedure continues. Figure 1 illustrates one DF at k. This d(k,t) has four hollows,
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Hkj , j=0,1,2,3, withHk1having arrivals of Trips 1, 2, and 3 and departures of Trips 4, 5,
and 6. Below Figure 1 are the FIFO connections (within this hollow) as well as other
alternatives; in all, the minimum fleet size at k, D(k), is maintained.
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Fig. 1. Example of creating trips connections within one hollow, Hk1 , using the FIFO rule and all
other possibilities while maintaining the minimum fleet size attained

A nine-trip example with four terminals (a, b, c, and d) is presented in Table 1
and Figure 2; Table 1 shows the data required for this simple example.

Table 1. Input data for the problem illustrated in Figure 2

Trip
No.

Departure
Terminal

Departure
Time

Arrival
Terminal

Arrival
Time

Deadheading (DH) Trips

Between
Terminals

DH Time
(same for both

directions)

1 a 06:00 c 06:30 a – b 20 min
2 a 06:20 b 06:50
3 b 06:40 a 07:10 a – c 10 min
4 a 07:00 a 07:20
5 c 07:10 a 07:30 a – d 60 min
6 c 07:40 a 08:10
7 d 07:50 d 08:10 b – c 30 min
8 d 08:00 c 08:30
9 b 08:30 d 09:00 b – d 30 min

c - d 20 min
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Four DFs are constructed along with the overall DF. According to the NT proce-
dure, terminal d (whose first hollow is the longest) is selected for a possible reduction
in D(d). The DH-insertion process continues using the criterion R=2. The first UR-
DHC is DH1+DH2, and the second DH3. The result is that D(c) and D(d) are reduced
from 1 to 0 and from 2 to 1, respectively; hence, N = D(S) = 5, and G is increased
from 3 to 4 using three inserted DH trips. The five FIFO-based blocks are as follows:
[1-5-DH2-9], [2-DH1-7], [3-DH3-6], [4], [8].
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Fig. 2. Nine-trip example with DH trip insertions for reducing fleet size
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2.3. Variable scheduling

A small amount of shifting in scheduled departure times becomes almost common in
practice when attempting to minimize fleet size or the number of vehicles required.
However, the transit scheduler who employs shifting in trip-departure times is not al-
ways aware of the consequences that could arise from these shifts. Ceder (2003, 2007b)
presented methods, mostly according to the DF, to realize a variable trip schedule in
an efficient manner.

Let [ti-∆i(−), ti+∆i(+)] be the tolerance time interval of the departure time of trip
i, in which: ∆i(−)= maximum advance of the trip’s scheduled departure time (the case
of an early departure), and ∆i(+)= maximum delay from the scheduled departure
time (the case of a late departure).
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Fig. 3. The nine-trip example (of Figure 2), first with shifting and second with DH trip insertion, for
reducing fleet size
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The nine-trip example illustrated in Figure 2 is used for possible shifting depar-
ture times in Figure 3, which employs the DF display. The tolerances of this example
are ∆i(+) = ∆i(−) = 5minutes for all trips in the schedule. Starting with shifting Trip
3 backward and Trip 4 forward by 5 minutes results in reducing D(a) from 3 to 2. This
may be continued with shifting Trips 7 and 8 to reduce D(d) from 2 to 1.

Because no further shifting in departure times is feasible for the given tolerances,
the process becomes one of searching for URDHC using DH trip insertion. This yields
three DH trips resulting in Min N = G (Snew) = metricconverterProductID3, in3, in
which Snewis the new schedule. The three blocks are determined by FIFO: [1-5-DH2-
9], [2-DH1-7-8], and [3-4-DH3-6]. In case a DH trip insertion is not allowed, the shift-
ing process will end with Min N = 5 and the FIFO-based blocks: [1-5], [2-9], [3-4],
[7-8], [9].

3. Vehicle-chain construction using crew-cost approach

There are two predominant characteristics in transit-operations planning: (a) differ-
ent resource requirements between peak and off-peak periods, and (b) working dur-
ing irregular hours. These characteristics result in split duties (shifts) with unpaid in-
between periods. Often it called swing time. The inconvenience accompanying split
duties led driver (crew) unions to negotiate for an extension of the maximum allowed
driver’s idle time for which the driver can still get paid. It is common, therefore, to
have a constraint in a labor union agreement specifying this maximum paid idle time
(swing time), to be termed Tmax.

The crew-scheduling problem from the agency’s perspective is known to be the
minimum crew-cost problem. With this minimum-cost orientation in mind, the DF
(deficit function) properties can be used to construct vehicle chains (blocks) that take
into account Tmax.In other words, to maximize idle times (swing times) that are larger
than Tmax, and hence to reduce crew costs.

3.1. Arrival-departure joinings within hollows

The following description uses the notation and definitions associated with the DFs.
Each hollow of a DF, d(k,t) at terminal k, contains the same number of departures and
arrivals, except for the first and last hollow at the beginning and end of the schedule
horizon. This is due to the fact that each arrival reduces d(k,t) by one and each depar-
ture increases it by one, so that the hollow starts and ends at D(k).

For a given hollow,Hk
m, let Ikm be the set of all arrival epochs tie inHk

m, and let Jkm
be the set of all departure epochs tjs inHk

m. The difference in time between departure
and arrival is defined as ∆ij = tjs − tie for tjs > tie in Hk

m. The joining (connection)
between tie and tjs in a vehicle block is effectively the idle time between trips; hence,
∆ij may represent this idle time. In addition a local peak uv is defined within hollow
Hk
m as d(k,tuv) between tus and tve in which ekm < tus ¬ tuv ¬ tve < skm+1, where

Hk
m starts and ends at ekm and skm+1, respectively. Note that if the start and/or end
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of a local peak, uv, has more than one departure or arrival, then it suffices to refer to
only one of them (as u or v). Let dk,muv be the number of departures in Hk

m before and
including tus , and ak,muv be the number of arrivals in Hk

m before tus .

Lemma 1. The number of arrival-departure joinings in hollow Hk
m before tus must be dk,muv .

Proof. If some departure epochs before a local peak, uv, are left without a joining, it
will be impossible to connect them with arrival epochs after tve . That is, each departure
epoch before and including tus must have a joining to an earlier arrival time within
Hk
m. This can be seen in Figure 4(a).

Lemma 2. The number of arrival-departure joinings that can be constructed after tve within
Hk
m is

(
ak,muv − dk,muv

)
.

Proof. Given hollow Hk
m and local peak uv, then based on Lemma 1 and the charac-

teristics of local peaks in hollows, dk,muv , departure epochs must and can be joined to
earlier arrival epochs in Hk

m; hence, the number of arrival epochs left over without
joinings is

(
ak,muv − dk,muv

)
for all local peaks. Figure 4(b) displays this explanation.

Lemma 3. The sum of all idle times within any hollow is a fixed number and independent of
any procedure aimed at joining arrival and departure epochs; that is

∑
i,j ∆ij = constant.

Proof. LetHk
m haven arrivals andndepartures. It is noted previously that the number

of departures and arrivals are the same within each middle hollow (i.e., excluding the
first and last hollows). Let two different n-joining arrangements with idle times ∆1ij
and ∆2ij for all joinings between i ∈ Ikm and j ∈ Jkm be expressed as follows:

∑
i,j

∆1ij =
∑
i,j

(
tjs1 − t

i
e1

)
=
∑
j

tjs1 −
∑
i

tie1; and similarly

∑
i,j

∆2ij =
∑
j

tjs2 −
∑
i

tie2
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Fig. 4. Part (a) describes examples of arrival-departure joining to support Lemma 1; part (b) interprets
Lemma 2; part (c) shows two 4-joining examples of Lemma 3

It is known that the sum of all departure or arrival times in a hollow is a fixed
number; hence

∑
i,j ∆1ij =

∑
i,j ∆2ij = constant. Figure 4(c) further clarifies this argu-

ment.
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3.2. Objective function and formulation
In constructing the blocks at each DF, the aim is to maximize the number of times in
which ∆ij  Tmax; in other words, to reduce crew cost. At the same time, however, for
cases in which ∆ij < Tmax, from a crew’s fairness perspective, it will be reasonable to
attempt to have equitable paid idle times. This was for a simple reason, to eliminate
a situation in which some drivers will have long and some short paid idle times. In
what follows is a formulation of the main objective and then a secondary objective.

For a given hollow Hk
m at terminal k, let xij be a 0− 1 variable associated with a

trip-joining between the arrival of the ith trip to Hk
m and the departure from Hk

m of
the jth. The problem of finding the maximum number of idle times greater than or
equal to Tmax in hollow Hk

m is as follows:
Problem P1.

Max Z4 =
∑
i∈Ikm

∑
j∈Jkm

xij (2)

Subject to:
∑
j∈Jkm

xij ¬ 1, i ∈ Ikm (3)

∑
i∈Ikm

xij ¬ 1, j ∈ Jkm (4)

xij = {0, 1}, i ∈ Ikm, j ∈ Jkm (5)

The binary decision variables are determined by:

xij =

1, t
j
s − tie  Tmax

0, otherwise

A solution with xij=1 indicates that joining trips i (arrival epoch) and j (depar-
ture epoch) results in an idle time larger than or equal Tmax. Constraints (3) and (4)
insure that each trip in Hkm may be joined with, at most, one successor trip, and one
predecessor trip, respectively.

Trips that were not joined in the solution of P1 are subject to a secondary objec-
tive: equitable paid idle times. It is shown below that joinings with this secondary
objective are based on the FIFO rule. Balancing∆ijfor∆ij< Tmax is the same as mini-
mizing the difference between each∆ijand its average∆̄ijeither by absolute difference
or by least-square difference. The FIFO rule used for this balancing is stated in the fol-
lowing theorem.

Theorem 1. Minimizing the least-square differences between ∆̄ij and each ∆ij for all i ∈ Ikm
and j ∈ Jkmin Hku is accomplished by constructing joinings using the FIFO rule.

Proof. It is sufficient to prove Theorem 1 on a simple, but generalized example, as
illustrated in Figure 5, with a hollow containing two arrivals and two departures.
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D(k) 
Non − FIFO 

FIFO 

Fig. 5. Example of a comparison of joinings based on FIFO and other rules

It may be shown that(
∆1 − ∆

)2
+
(
∆2 − ∆

)2
<
(
∆3 − ∆

)2
+
(
∆4 − ∆

)2 (6)

where ∆ is the average arrival-departure joining length in the example. Using an al-
gebraic expression, then (6) becomes

∆21 + ∆22 − ∆23 − ∆24 < 2∆ (∆1 + ∆2 − ∆3 − ∆4) (7)

Lemma 3 states that ∆1 + ∆2 = ∆3 + ∆4, and hence the right-hand side of expression
(7) is zero. From Lemma 3 one can further obtain (∆1 + ∆2)

2 = (∆3 + ∆4)
2or ∆21 +

∆22 − ∆23 − ∆24 = 2∆3∆4 − 2∆1∆2. The latter is inserted into (7) to yield

∆3∆4 < ∆1∆2 (8)

Based, again, on Lemma 3, let ∆3−∆1 = ∆2−∆4 = B or ∆1 = ∆3−B and ∆4 = ∆2−
B; these last two equations are inserted into (8) to obtain∆3 (∆2 −B) < ∆2 (∆3 −B),
which yields∆3 > ∆2. The last result must be correct from Figure 5, and therefore it
agrees with expression (6).

4. Maximum unpaid idle times

The mathematical programming formulation in Equations (2)–(5) is aimed at max-
imizing the number of idle times that are longer than or equal to Tmax. However,
this formulation may involve a very large number of computations (NP-Complete),
hence entailing the use of another (more simplified) procedure. Such a procedure is
described in a flow diagram in Figure 6 and contains both Tmax and FIFO rule con-
siderations; the latter is for joining arrivals and departures with paid idle times. Let
us call this procedure algorithm TmF.
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Fig. 6. Flow diagram of algorithm TmF
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The input for algorithm TmF for each terminal k consists of two arrays, the arrival
and departure arrays, and a given Tmax. This input enables constructing DF at k and
obtaining D(k) following the insertion of DH trips and the shifting of departure times
for minimizing fleet size (see Section 2). Because D(k) vehicles are required at k , we
assume their arrivals there to be at (or before) T1 ( the start of the schedule horizon).
Algorithm TmF moves by steps on d(k,t), in which each step refers to a change in d(k,t)
or the detection of a dot on d(k,t); the dot means that arrival and departure epochs at
k overlapped at t.

Algorithm TmF continues with a check of the end of the schedule horizon and
detects the nature of the change (or dot) in d(k,t). For each departure epoch, ∆ij is
examined to determine whether it is greater than or equal to Tmax; if greater, then an
unpaid joining array is added, otherwise a disjoined departure time array is added.
Each arrival epoch (detected in a step move in Figure 6) is added as a disjoined arrival
array. If a departure epoch is identified in a step move, the algorithm looks for a
possible dot on d(k,t), adding its arrival epoch to the list of disjoined arrival arrays.
At the end of the process, the algorithm constructs joining arrays from the disjoined
arrival and departure arrays, using the FIFO rule. The complete process is shown in
Figure 6.

5. Real-life examples

An example of constructing vehicle chains (blocks), including the employment of
algorithm TmF, is shown in Figures 7–9. This example is based on real-life schedul-
ing data from EGGED the large national bus carrier of Israel. The example, consist-
ing of three terminals and a 24-trip schedule, is exhibited in Figure 7, including DH
travel time matrix, shifting tolerance, Tmax, and schedule horizon. It should be noted,
though, that DH travel time between terminals b and c is considered in both directions
although there is only a service route between c and b. The fleet-reduction procedure,
involving the shifting of departure times and DH trip insertions, is shown in Figure 3;
here it is applied to the example of Figure 7 in Figure 8. Two DH trips and two shifts
are introduced into the process to reduce D(a) and D(c) from four to three, resulting
in a fleet size of eleven vehicles. The shifts are shown in Figure 8 by their shifting
length and trip number. It can be seen from this Figure that the only middle hollow
containing more than a single departure is the second hollow of d(b,t); hence, only
this hollow is subject to the process of algorithm TmF.

Figure 9(a) describes the solution for algorithm TmF in comparison with a so-
lution based only on the FIFO rule in Figure 9(b). The trip numbers of the example,
appearing in Figure 7 are added to Figure 9. AlgorithmTmF results in two unpaid
joinings between the arrivals of trips 11 and 12 and the departures of trips 15 and
17, respectively. In both cases, ∆ij > Tmax = 40 minutes. The remaining joinings in
Figure 9(a) are based on the FIFO rule. The use of only the FIFO rule for the entire
process results in only one unpaid joining (that between trips 11 and 15) as is shown
in Figure 9(b).
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Fig. 7. Example consisting of 24 trips and 3 terminals for constructing vehicle chains with the Tmax
constraint
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terminal b, utilizing in (a) the TmF algorithm, and in (b) the FIFO rule
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The final phase of the arrival-departure joining process is to construct vehicle
blocks. This will contain the joinings created and other FIFO-based joinings in order
to make a complete set of blocks. The eleven blocks of the 24-trip-schedule example,
based on algorithm TmF (at terminal b), are given by their numbers in the following
list: [1-DH1-22-7], [10-4-24], [11-15], [2-23], [12-17], [13-5], [3-DH2-9], [14-6], [19-16],
[20-8], [21-18]. The process based only on the FIFO rule results in the same blocks,
except for the 5th and 9th blocks, which become [12-16] and [19-17], respectively.

Finally it is worth noting that the idea presented turned to be very useful in
practice. It allows the scheduler to do things both manually and automatically. In
addition of using this idea in the EGGED bus carrier, with about 3000 buses, it was
implemented by the large KMB bus company in Hong Kong with about 4000 buses.
In both cases this implementation resulted in a significant cost reduction.

6. Concluding remark

The criteria for transit crew scheduling are based on an efficient use of manpower re-
sources while maintaining the integrity of any work-rule agreements. The construc-
tion of the selected crew schedule is usually a result of the following sub-functions: (i)
duty piece analysis; (ii) work-rules coordination; (iii) feasible duty construction; and
(iv) duty selection. The duty-piece analysis partitions each vehicle block at selected
relief points into a set of duty pieces. These duty pieces are assembled in a feasible
duty-construction function. Other required information: travel times between relief
points and a list of relief points designated as required duty stops and start locations.
The focus of this work is related indirectly to the assembling of duty pieces using a
practical minimum-cost approach in the process of constructing vehicle schedules.

From the transit agency’s perspective, the largest single cost item in the budget is
the driver’s wage and fringe benefits. Because of the important implications of crew
scheduling for providing good transit service, practitioners ought to comprehend the
root of the problem, and be equipped with basic tools to be able to arrive at a solution.
This work provides a useful tool using the characteristics of split crew duties (shifts)
with unpaid in-between periods; these split duties are the result of different resource
requirements between peak and off-peak periods. The analysis presented provides an
optimal solution for maximizing the unpaid shift periods, hence reducing the crew
costs, with the assurance of maintaining the minimum number of vehicles required.
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