PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mikrobiologiczny rozkład alkanów ropopochodnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Microbiological degradation of petroleum alkanes
Języki publikacji
PL
Abstrakty
PL
W środowisku naturalnym występują mikroorganizmy odznaczające się zdolnością do biodegradacji alkanów ropopochodnych; zarówno w warunkach tlenowych, jak i beztlenowych. W środowisku aerobowym rozkład prostołańcuchowych alkanów zachodzi trzema drogami: poprzez oksydację terminalną, subterminalną i diterminalną. Utlenianie cyklicznych alkanów przebiega poprzez utlenienie do formy laktonowej, której hydroliza prowadzi ostatecznie do kwasów dikarboksylowych. Degradacja w warunkach beztlenowych wymaga w środowisku obecności alternatywnych akceptorów elektronów. Utlenianie alkanów w środowisku anaerobowym prowadzi – podobnie jak w środowisku aerobowym – do produktów włączanych w centralny metabolizm.
EN
Numerous microorganisms able to utilizing of saturated hydrocarbons as a carbon and energy source under aerobic as well as anaerobic conditions in natural environment was observed. Degradation of aliphatic hydrocarbons in aerobic environment proceeds by terminal, subterminal or diterminal oxidation. Cycloalkanes are transformed by oxidase system to corresponding cyclic alcohols, which are then dehydrated. Monooxygenase lactonises the ring of ketone, subsequently opened by a lactone hydrolase. Product of hydrolysis, dicarboxylic acid is degraded further by beta-oxidation. For degradation under anaerobic conditions of aliphatic hydrocarbons presence of alternative electron acceptors in environment is necessary. Alkanes have to be activated by addition of a fumarate molecule to the alkane. Alkyl-succinate derivative is then linked to CoA and converted into an acyl-CoA, which can be further metabolized by the beta-oxidation.
Czasopismo
Rocznik
Strony
1019--1027
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
autor
autor
autor
  • Uniwersytet Śląski, Katedra Biochemii, Katowice
Bibliografia
  • [1] Abed R.M.M., Safi N.M.D., Köster J., de Beer D., El-Nahhal Y., Rullkötter J., Garcia-Pichel F.: Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds, Applied and Environmental Microbiology, 68, 1674–1683, 2002.
  • [2] Aitken C.M., Jones D.M., Larter S.R.: Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs, Letters of Nature, 431, 291–294, 2004.
  • [3] Amouric A., Quemeneur M., Grossi V., Liebgott P.P., Auria R., Casalot L.: Identification of different alkane hydroxylase systems in Rhodococcus ruber strain SP2B, an hexane-degrading actinomycete, Journal of Applied Microbiology, 6, 1903–1916, 2010.
  • [4] Ayala M., Torres E.: Enzymatic activation of alkanes: constraints and prospective, Applied Catalysis A, 272, 1–13, 2004.
  • [5] Baek K.H., Yoon B.D., Oh H.M., Kim H.S., Lee I.S.: Biodegradation of aliphatic and aromatic hydrocarbons by Nocardia sp. H17-1, Geomicrobiology Journal, 23, 253–259, 2006.
  • [6] Bardi L., Mattei A., Steffan S., Marzona M.: Hydrocarbon degradation by a soil microbial population with β-cyclodextrin as surfactant to enhance bioavailability, Enzyme and Microbial Technology, 27, 709–713, 2000.
  • [7] Beam M.P., Bosserman M.A., Noinaj N., Wehenkel M., Rohr J.: Crystal structure of Baeyer-Villiger monooxygenase MtmOIV, the key enzyme of the mithramycin biosynthetic pathway, Biochemistry, 48, 4476–4487, 2009.
  • [8] Bertrand E., Sakai R., Rozhkova-Novosad E., Moe L., Fox B.G.: Reaction mechanisms of non-heme diiron hydroxylases characterized in whole cells, Journal of Inorganic Biochemistry, 99, 1998–2006, 2005.
  • [9] Blazyk J.L., Gassner G.T., Lippard S.J.: Intermolecular electron-transfer reactions in soluble methane monooxygenase: a role for hysteresis in protein function. Journal of the American Chemical Society, 127(49), 17364–17376, 2005.
  • [10] Cheng Q., Thomas S.M., Rouviere P.: Biological conversion of cyclic alkanes and cyclic alcohols into dicarboxylic acids: biochemical and molecular basis. Applied Microbiology and Biotechnology, 58, 704–711, 2002.
  • [11] Funhoff E.G., Bauer U., Garcia-Rubio I., Witholt B., van Beilen J.B.: CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. Journal of Bacteriology, 188, 5220–5227, 2006.
  • [12] Hamamura N., Yeager Ch.M., Arp D.J.: Two distinct monooxygenase for alkane oxidation in Nocardioides sp. strain CF8. Applied and Environamental Microbiology, 67, 4992–4998, 2001.
  • [13] Iwaki H., Wang S., Grosse S., Bergeron H., Nagahashi A., Lertvorachon J., Yang J., Konishi Y., Hasegawa Y., Lau P.C.K.: Pseudomonad cyclopentadecanone monooxygenase displaying an uncommon spectrum of Baeyer-Villiger oxidations of cyclic ketones. Applied and Environmental Microbiology, 72, 2707–2720, 2006.
  • [14] Klimiuk E., Łebkowska M.: Biotechnologia w ochronie środowiska. Państwowe Wydawnictwo Naukowe PWN, Warszawa 2004.
  • [15] Koma D., Hasumi F., Yamamoto E., Ohta T., Chung S.-Y., Kubo M.: Biodegradation of long-chain n-paraffins from waste oil of car engine by Acinetobacter sp. Journal of Bioscience and Bioengineering, 91, 94–96, 2001.
  • [16] Kostichka K., Thomas S.M., Gibson K.J., Nagarajan V., Cheng Q.: Cloning and characterization of a gene cluster for cyclododecanone oxidation in Rhodococcus ruber SC1. Journal of Bacteriology, 183, 6478–6486, 2001.
  • [17] Kwapisz E.: Szlaki tlenowej biodegradacji węglowodorów ropy naftowej. Biotechnologia, 2(73), 166–188, 2006.
  • [18] Lattuati A., Metzger P., Acquaviva M., Bertrand J.-C., Largeau C.: n-Alkane degradation by Marinobacter hydrocarbonoclasticus strain SP 17: long chain β-hydroxy acids as indicator of bacterial activity. Organic Geochemistry, 33, 37–45, 2002.
  • [19] Lippard S.J.: Hydroxylation of C-H bonds at carboxylatebridged diiron centres. Philosophical Transactions of the Royal Society A: Biological Sciences, 363, 861–877, 2005.
  • [20] Liu L., Schmidt R.D., Urlacher V.B.: Engineering cytochrome P450 monooxygenase CYP 116B3 for high dealkylation activity. Biotechnology Letters, 2010, DOI 10.1007/ s10529-010-0233-9.
  • [21] Murrell J.C., Gilbert B., McDonald I.R.: Molecular biology and regulation of methane monooxygenase. Archives of Microbiology, 173, 325–332, 2000.
  • [22] Nguyen H.T., Elliott S.J., Yip J.H., Chan S.I.: The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-cantaining three-subunit enzyme. The Journal of Biological Chemistry, 273(14), 7957–7966, 1998.
  • [23] Okoh A.I.: Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnology and Molecular Biology Review, 1, 38–50, 2006.
  • [24] Rahman K.S.M., Rahman T.J., Kourkoutas Y., Petsas I., Marchant R., Banat I.M.: Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology, 90, 159–168, 2003.
  • [25] Rinaldo D., Philipp D.M., Lippard S.J., Friesner R.A.: Intermediates in dioxygen activationby methane monooxygenase: a QM/MM study. Journal of the American Chemical Society, 129(11), 3135–3147, 2007.
  • [26] Rojo F.: Degradation of alkanes by bacteria. Environmental Microbiology, 11(10), 2477–2490, 2009.
  • [27] Silva R.M.P, Rodriguez A.Á., de Oca G.M., Moreno D.C.: Biodegradation of crude oil by Pseudomonas aeruginosa AT18 stain. Tecnología Química, 26, 70–77, 2006.
  • [28] Smits T.H.M., Balada S.B., Witholt B., van Beilen J.B.: Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. Journal of Bacteriology, 184, 1733–1742, 2002.
  • [29] Spormann A.M., Widdel F.: Metabolism of alkylbenzenes, alkanes and other hydrocarbons in anaerobic bacteria. Biodegradation, 11, 85–105, 2000.
  • [30] Stone K.R., Borovik A.S.: Lessons from nature: unraveling biological C-H bound activation. Current Opinion in Chemical Biology, 13(1), 114–118, 2009.
  • [31] Throne-Holst M., Wentzel A., Ellingsen T.E., Kotlar H.-K., Zotchev S.B.: Identification of novel genes involved in longchain n-alkane degradation by Acinetobacter sp. Strain DSM 17874. Applied and Environmental Microbiology, 73, 3327–3332, 2007.
  • [32] Torres Pazmiño D.E., Winkler M., Glieder A., Fraaije M.W.: Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. Journal of Biotechnology, 146, 9–24, 2010.
  • [33] Townsend G.T., Prince R.C., Suflita J.M.: Anaerobic biodegradation of alicyclic constituents of gasoline and natural gas condensate by bacteria from an anoxic aquifer. FEMS Microbiology Ecology, 49, 129–135, 2004.
  • [34] Urlacher V.B., Eiben S.: Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends in Biotechnology, 24, 324–330, 2006.
  • [35] van Beilen J.B., Funhoff E.G.: Alkane hydroxylases involved in microbial alkane degradation. Applied Microbiology and Biotechnology, 74, 13–21, 2007.
  • [36] van Beilen J.B., Funhoff E.G.: Expanding the alkane oxygenase toolbox: new enzymes and applications. Current Opinion in Biotechnology, 16, 308–314, 2005.
  • [37] van Beilen J.B., Li Z., Duetz W.A., Smits T.H.M., Wiltholt B.: Diversity of alkane hydroxylase systems in the environment. Oil & Gas Science and Technology, 58(4), 427–440, 2003.
  • [38] van Beilen J.B., Wubbolts M.G., Witholt B.: Genetics of alkane oxidation by Pseudomonas oleovoran. Biodegradation, 5, 161–174, 1994.
  • [39] van Berkel W.J.H., Kamerbeek N.M., Fraaije M.W.: Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. Journal of Biotechnology, 124, 670–689, 2006.
  • [40] Watkinson R.J., Morgan P.: Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation, 1, 79–92, 1990.
  • [41] Wentzel A., Ellingsen T.E., Kotlar H.K., Zotchev S.B., Throne-Holst M.: Bacterial metabolism of long-chain n-alkanes. Applied Microbiology and Biotechnology, 76, 1209–1221, 2007.
  • [42] Whyte L.G., Schultz A., van Beilen J.B., Luz A.P., Pellizari V., Labbe D., Greer C.W.: Prevalence of alkane monooxyegnase genes in Arctic nad Antarctic hydrocarbon- contaminated and pristine soils. FEMS Microbiology Ecology, 41, 141–150, 2002.
  • [43] Whyte L.G., Smits T.H.M., Labbe D., Withoult B., Greer C.W., van Beilen J.B.: Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Applied and Environmental Microbiology, 68, 5933–5942, 2002.
  • [44] Widdel F., Rabus R.: Anaerobic biodegradation of saturated and aromatic hydrocarbons. Current Opinion in Biotechnology, 12, 259–276, 2001.
  • [45] Wilkes H., Kühner S., Bolm C., Fischer T., Classen A., Widdel F., Rabus R.: Formation of n-alkane- and cycloalkane- derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil. Organic Geochemistry, 34, 1313–1323, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH8-0011-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.