Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Constraint Satisfaction Problems typically exhibit strong combinatorial explosion. In this paper we present some models and techniques aimed at improving efficiency in Constraint Logic Programming. A hypergraph model of constraints is presented and an outline of strategy planning approach focused on entropy minimization is put forward. An example cryptoaritmetic problem is explored in order to explain the proposed approach.
Rocznik
Tom
Strony
69--78
Opis fizyczny
Bibliogr. [7] poz., rys.
Twórcy
autor
- AGH University of Science and Technology, Krakow, Poland
Bibliografia
- Apt, K.R., 2006. Principles of Constraint Programming. Cambridge University Press, Cambridge, UK.
- Bratko, I., 2000. Prolog Programming for Artificial Intelligence. Addison Wesley, 3rd edition.
- Dechter, R., 2003. Constraint Processing. Morgan Kaufmann Publishers, San Francisco, CA.
- Ligęza, A. 2009a. And-or graph with knowledge propagation rules as a model for constraint satisfaction problems. Automatyka, 13(2), 411–419.
- Ligęza, A. 2009b. A constraint satisfaction framework for diagnostic problems. In Zdzisław Kowalczuk, editor, Diagnosis of processes and systems, volume 7 of Control and Computer Science : information technology, control theory, fault and system diagnosis, Pomeranian Science and Technology Publishers PWNT, Gdańsk, Poland, pp. 255–262.
- Ligęza, A., Kościelny, J. M., 2008. A new approach to multiple fault diagnosis. combination of diagnostic matrices, graphs, algebraic and rule-based models. the case of two-layer models. Int. J. Appl. Math. Comput. Sci., 18(4), 465–476.
- Russell, S., Norvig, P., 2003. Artificial Intelligence: A Modern Approach. Prentice-Hall, 2nd edition.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH8-0010-0014