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FINDING STRUCTURE KERNEL AND SHELL
WITH PREDETERMINED CARDINALITY OF KERNEL SET,
USING EVOLUTIONARY ALGORITHM

Abstract: The theory of logistic transportation systems deals with models of phenomena con-
nected with movement of goods and persons. The developed model of the transportation sys-
tem is expected to simulate a real system, but also should help us to solve given transportation
tasks. In order to describe transportation system (rail, bus or air), as a routine a connection
graph would be used. Vertices of the graph can be train stations, bus stops etc. The edges show
direct connections between vertices. Its direct application can be difficult and computational
problems can occur while one would try to organize or optimize such a transportation system.
Therefore, a method of aggregation of such graph was introduced, using the general kernel
and shell structure and its particular instance the α-clique structured graphs of connections.
In the present approach, we use a predetermined number of communication hubs with the
possibility of direct determining which nodes should become hubs or selecting them by the
solving method. This structure allows to concentrate and order the transport of goods/persons
among vertices and enables to reduce the number of analyzed vertices as well as arcs/edges
of the graph. To obtain the desired structure, an evolutionary algorithm (EA) was applied.

Keywords: kernel and shell, clique, logistic network, evolutionary algorithm.

1. Introduction
The idea of kernel and shell structure of connection graph deals with the problem of
separation of some highly bounded structures of a graph corresponding to same real
logistic or transportation system defined in general by three essential components
(O’Kelly 1987, Coyle et al. 1994, Leszczyński 1994, Ambroziak 2000, Jacyna 2001,
Mażbic-Kulma, Sęp 2005, Mażbic-Kulma et al. 2008, Mażbic-Kulma et al. 2009):

– work task – necessity to relocate objects (cargo or/and persons),
– composition – type and number of elements describing the equipment and

crew systems,
– organization – methods of system’s elements reaction during task realization.
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The tasks of the freight-transport system are determined by the system cus-
tomers’ needs and they are described by the type and number of objects to freight,
route for relocation of objects and the time of delivery.

There are many transport systems classifications, based, for instance, on:

– kind of transported objects (cargo, persons);
– quantity of transported objects;
– route of transported objects;
– transport means (railway, aircraft, vessel. . . ).

The theory of transportation systems does not directly investigate physical phe-
nomena connected with this domain, but its aim is to model and test models of
transport systems. The model of transportation system should be accurate enough
to replace the real system during the process of a solving particular problem. Mathe-
matical description of transportation system is usually based on the notion of a con-
nection graph. The vertices of this graph are railway stations, bus stations or airports,
depending on the means of transport considered. Edges of this graph determine the
presence of connections among vertices.

As it can be easily noticed, a connection graph may have a big number of ver-
tices and/or a big number of edges. The form of this graph has a big influence on
transport organization. In this paper we propose the evolutionary method for opti-
mization a logistic network introducing a kernel and shell structure, which is a gener-
alization of well known hub and spoke structure and also similar approaches, includ-
ing our α-clique structure (Potrzebowski et al. 2008, Potrzebowski et al. 2006a, 2007,
2008, Mażbic-Kulma, Sęp 2005).

Fig. 1. Input structure Fig. 2. Relevant kernel and shell structure

The kernel and shell structure of a connection graph enables to concentrate flows
of transported persons/goods among vertices. Figure 1 presents initial structure of
connections before concentration. An adequate choice of several transit nodes and
local connections could improve the transport system, reducing costs and increasing
service efficiency. After the concentration process (Fig. 2), the graph of connections
turned into a kernel and shell structure.
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The graph presented in Figure 1 may represent a structure of an existing traffic
system, where the set of vertices corresponds to the set of traffic nodes and the set
of edges correspond to the set of traffic connections. The kernel and shell structure
reduces the complexity of the management problem.

The advantages of such transport structure are:

– more frequent connections among points;
– lower average times of journeys;
– lower costs of transport;
– lower number of required transport means to assess all connections.

In the present approach we use a predetermined number of communication hubs
with the possibility of direct determining which nodes should become hubs or select-
ing them by the solving method. This approach can be more applicable in real-world
situations, than described in previous papers method when the number of commu-
nication hubs is determined indirectly by imposed program parameters (mainly the
parameter of α) [10].

The evolutionary algorithm is responsible for selecting the optimized configura-
tion of shell nodes attached to their communication hubs and the best candidates for
hubs, if they are not predefined by the user. The evolutionary method and obtained
results are presented further in this paper.

2. Graphs
Notions described below are based on Wilson (1996).

A graph is a pair G = (V ,E), where V is a non-empty set of vertices and E is a set of
edges. Each edge is a pair of vertices v1, v2 with v1 �= v2 (Fig. 3).

 
Fig. 3. An example of a graph with marked α-clique
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Two vertices in graph G = (V ,E) are called incident if for vi, vj ∈ V there is
vi, vj ∈ E. One vertex is incident to itself.
A sub-graph of graph G = (V ,E) is a graph G′ = (V ′,E′), where V ′ ⊆ V ,V ′ �= ∅
and E′ ⊆ E such that for all e ∈ E and e = v1, v2 if v1, v2 ∈ V ′ then e ∈ E′.

A degree of vertex is the number of edges to which this vertex belongs.

Graph G = (V ,E) is a complete graph, if for each pair of vertices there is an edge
e ∈ E between them.

A clique (a complete sub-graph)Q = (Vq,Eq) in graphG = (V ,E) is a graph such that
Vq ⊆ V and Eq ⊆ E and Card(Vq) = 1 or each pair of vertices v1, v2 ∈ Vq fulfills the
condition v1, v2 ∈ Eq (Hansen et al. 1994). Each sub-graph of clique is a clique.

An α-clique (Potrzebowski et al. 2007).
LetA = (V ′,E′) be a sub-graph of graphG = (V ,E),V ′ ⊆ V ,E′ ⊆ E, k = Card(V ′)
and let ki be a number of vertices vj ∈ V ′ that vi, vj ∈ E′:

1) for k = 1 the sub-graph A of graph G is an α-clique(α);

2) for k > 1 the sub-graphA of graphG is anα-clique(α) if for all vertices vi ∈ V ′
fulfill the condition α � (ki + 1)/k, where α ∈ (0, 1].

Fig. 4. An example of α-clique(0.8) Fig. 5. A sub-graph of graph from Figure 4
which is not α-dywiz clique(0.8)

Further we will use notion α-clique in meaning α-clique(α) for earlier estab-
lished α. As it can be seen in Figures 4 and 5, a sub-graph of an α-clique(0.8) is not
an α-clique(0.8), thus the property of being α-clique(α) may not be preserved by the
sub-graphs of an α-clique. Let α-clique A = (V ′,E′) be a graph with α > 0.5, thus,
for all vertices vi belonging to α-clique(α) ki + 1 > 0.5k.
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The set theory implies the fact that for each pair of vertices, the sets of vertices in-
cident with them have a non-empty intersection, so the α-clique(α) with α > 0.5 con-
stitutes a connected graph. If α = 0.5, the obtained sub-graph may be disconnected.

A structure kernel and shell in graph G(V ,E) is composed of two graphs:

1) kernel – a sub-graph, which constitutes a group of strongly connected vertices
K(Vk,Ek), depending on actual needs it can be a clique, α-clique or at last
a connected sub-graph;

2) shell – a graph S(Vs,Es) where Vs = V − Vk and Es = E −Ek.
An α-clique structure (Fig. 6b) of connection graph is also an instance of more

general kernel and shell form. It consists of several peripheral (shell) α-cliques Gα
with desired values of α, connected with central (kernel) α-clique Gc of strongly con-
nected nodes with α ≈ 1.

 
(a)

 
(b)

Fig. 6. A source graph (a); the shell and kernel structure obtained from the source graph (b)

The α-clique structure should be considered when connections within selected
sub-graph are also very important. The flow of goods among local nodes is too high to
burden central nodes of Gc and also local connections must be assured. For logistic
modeling we propose evolutionary methods that transform connection graph into
an instance of the shell and kernel structure leading to the hub-and-spoke or α-clique
structures according to problem-specific restrictions.

3. The evolutionary method to find the kernel and shell structure
of connection graph

Standard evolutionary algorithm (EA) works in the manner shown in Algorithm 1,
but this simple scheme requires many problem specific improvements to work ef-
ficiently. The adjustment of the genetic algorithm to the solved problem requires
a proper encoding of solutions, specialized genetic operators for the problem, an ac-
cepted data structure and a fitness function to be optimized by the algorithm.
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Algorithm 1
Step 1. Random initialization of the population of solutions.
Step 2. Reproduction and modification of solutions using genetic operators.
Step 3. Valuation of the obtained solutions.
Step 4. Selection of individuals for the next generation.
Step 5. If a stop condition is not satisfied, go to step 2.

3.1. Individual representation of kernel and shell structure
The problem encoding or in different words the individual representation depends
on the desired graph structure to be obtained using EA. In our approach the infor-
mation about the problem is stored in an array of data that describes all connections
among graph nodes. This array can be binary (an adjacency matrix of undirected
graph: 0 – no connection, 1 – presence of connection) or non-negative (undirected
graph) real-valued and in this case the stored value denotes the strength of the con-
nection. The ”kernel and shell” representation of one solution is encoded in a manner
presented in Figure 7.

 
Fig. 7. Structure of the population member

The accepted data structure contains a table of predetermined number of
α-cliques which constitute a shell of ordinary nodes. Each element of this table
(α-clique) has a list of nodes attached to this α-clique and an element chosen as an



Finding structure kernel and shell . . . 59

representative of this α-clique in the kernel structure – a communication hub. Each
node is considered only once in one solution (population member), thus α-cliques are
separate structures.

The kernel subgraph is an α-clique with as big value of α as possible – ideally
hubs should constitute a complete subgraph (clique), but in very difficult conditions,
where connections between nodes are very sparse, it is admissible that the kernel
constitutes simply a connected graph. This condition is checked during computa-
tions and if is not satisfied, the penalty function significantly decreases a value of
such solution. Besides a member of the population contains several more data items
including: a vector of real numbers, which describe its knowledge about genetic op-
erators and the number of the operator chosen to modify the solution in the current
iteration. More details about genetic operators and the method of their evaluation
will be given later in this paper.

3.2. Fitness functions

The problem’s quality function is responsible for obtaining the proper graph struc-
ture. The quality function is a little artificial formulae, because solved problem is
not a pure optimization task and the quality function must precisely direct EA to
find desired graph structure. Thus, many different formulae can be applied to obtain
probably similar results.

In EA the fitness function is closely connected with problem’s specific quality
function. The fitness function evaluates the members of the population, it is a modi-
fied (scaled, moved, etc.) problem’s quality function, prepared for computations pur-
poses in EA. In the considered problem, several quality functions may be used, de-
pending on input data (binary, integer or real) or what set of α-cliques one wants to
obtain (equal size or maximal size etc.). The fitness function has to possess a punish-
ment part for the potential not connected kernel subgraph constraint violation. For
computer simulations we used the following quality function:

Q1 = αmin − (1− αK)− 1
k

n∑
i=1

(ki − li)

maxQ =

{
Q1
m

if Q1 � 0
Q1m if Q1 < 0

(1)

where:
n – imposed number of α-cliques in the solution evaluated,
k – the number of nodes in the considered graph,
ki – number of nodes in the ith α-clique,
li – number of connections between the hub from ith α-clique and other

nodes in this α-clique,
m – number of connected subgraphs in kernel subgraph,

αmin – the minimum value of α in derived shell α-cliques,
αK – the value of α in derived kernel α-clique.
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The fitness function (1) promotes the kernel α-clique with the value of αK as
close to 1 as possible or if the transformed graph is very sparse, as a connected sub-
graph (with m = 1). The shell α-cliques should have their values of α as high as
possible (maximization of αmin – the smallest value of α of all shell α-cliques) and as
many as possible of their nodes should be connected with their communication hub.

3.3. Specialized operators
The described data structure requires specialized genetic operators, which modify
the population of solutions.

The designed genetic operators are:

– mutation – an exchange of randomly chosen nodes in different α-cliques;
– movement of a randomly chosen node to a different α-cliques;
– “intelligent” movement – performed only if this modification gives a better

value of the fitness function;
– concatenation – attempt to concatenate (mainly small) α-cliques;
– also multiple versions of operators are applied.

Additionally, each operator modifies elements selected as communication hubs
for all α-cliques, using a simple mutation method.

3.4. Evolutionary algorithm used to solve the problem
Use of specialized genetic operators requires having a method of selecting
and executing them in all iterations of the algorithm. In the approach used
(Potrzebowski et al. 2007) it is assumed that an operator that generates good results
should have bigger probability and more frequently effect the population. But it is
very likely that the operator, that is proper for one individual, gives worse effects
for another, for instance because of its location in the domain of possible solutions.
Thus, every individual may have its own preferences. Every individual has a vector
of floating point numbers, besides the encoded solution. Each number corresponds
to one genetic operation. It is a measure of quality of the genetic operator (a qual-
ity factor). The higher the factor, the higher the probability of using the operator.
The ranking of quality factors becomes a basis for computing the probabilities of ap-
pearance and execution of genetic operators. Simple normalization of the vector of
quality coefficients turns it into a vector of operator execution probabilities. This set
of probabilities is also a basis of experience of every individual and according to it,
an operator is chosen in each epoch of the algorithm. Due to the experience gathered
one can maximize chances of its offspring to survive.

The method of computing quality factors is based on reinforcement learning
(Cichosz 2000) (one of algorithms used in machine learning). An individual is treated
as an agent, whose role is to select and call one of the evolutionary operators. When
the selected ith operator is applied, it can be regarded as an agent action ai leading to
a new state si, which, in this case, is a new solution. Agent (genetic operator) receives
reward or penalty depending on the quality of the new state (solution).
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The aim of the agent is to perform the actions, which give the highest long term
discounted cumulative reward V ∗:

V Π = EΠ

∞∑
k=0

γkrt+k+1 (2)

V ∗ = max
Π

(
V Π
)

(3)

The following formula can be derived from (3) and (4) and is used for evaluation
purposes:

V (st+1) = V (st) + αrt+1 + γV
∗ (st+1)− V (st) (4)

where:
Π – the strategy of the agent,
V Π – discounted cumulative reward obtained using strategy Π,
E – expected value,
k – consecutive time steps,
t – current time,

V (St) – a quality factor or discounted cumulative reward,
V ∗(St+1) – estimated value of the best quality factor (in our experiments we take

the value attained by the best operator),
α – a learning factor,
γ – a discount factor,

rt+1 – the reward for the best action, which is equal to the improvement of
the quality of a solution after execution of the evolutionary operator.

In the presented experiments the values of α and γ were set to 0.1 and 0.2 re-
spectively.

4. Obtained results of computer simulations

4.1. The testing data
Unfortunately, we did not have a real traffic data, thus we used a testing example
from BHOSLIB: Benchmarks with Hidden Optimum Solutions for Graph Problems
(Maximum Clique, Maximum Independent Set, Minimum Vertex Cover and Vertex
Coloring) – Hiding Exact Solutions in Random Graphs (BHOSLIB 2009). The chosen
problems were graphs with 450 vertices and 83 198 edges with the maximum clique
size equal 30 (frb30-15-clq.tar.gz) and two complementary graphs the first with 4000
vertices and 572 774 with the maximum clique size equal 100 edges (frb100-40.mis.gz)
and graph with 4000 vertices and 7 425 226 edges with Maximum Independent Set =
100 and Minimum Vertex Cover = 3900 (frb100-40.clq.gz). The size of the problem is
relatively big, but its complexity is similar to problems encountered during planning
connections among bigger European cities.
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4.2. Results obtained for the kernel and shell method
In this approach the results depend on the accepted value of number of shell struc-
tures (α-cliques). The results were obtained using the EA method and the results were
as follows (Tab. 1).

Table 1. Comparison of obtained results

the desired number min max mediana αmin αK /conn1

of α-cliques

file name vertices edges

frb30-15-mis.tar.gz 450 83 198

5 Card of shell 53 149 77 0.79 1.00

kernel’s node degree in shell 51 142 74

kernel’s node degree in kernel 5 5 5

10 Card of shell 28 69 40 0.81 1.00

kernel’s node degree in shell 28 67 40

kernel’s node degree in kernel 10 10 10

20 Card of shell 16 29 22 0.86 0.95

kernel’s node degree in shell 16 29 22

kernel’s node degree in kernel 19 20 19

30 Card of shell 7 23 15 0.91 0.90

kernel’s node degree in shell 7 23 15

kernel’s node degree in kernel 27 30 28

35 Card of shell 1 22 15 1.00 0.89

kernel’s node degree in shell 1 22 15

kernel’s node degree in kernel 31 34 33

40 Card of shell 1 20 13 1.00 0.85

kernel’s node degree in shell 1 20 13

kernel’s node degree in kernel 34 39 36

file name vertices edges

frb100-40.mis.gz 4000 572 774

5 Card of shell 265 1818 520 0.03 1.00

kernel’s node degree in shell 54 197 76

kernel’s node degree in kernel 5 5 5

10 Card of shell 80 1561 181 0.03 0.40/+

kernel’s node degree in shell 31 189 45

kernel’s node degree in kernel 4 6 4

20 Card of shell 96 829 132 0.03 0.15/+

kernel’s node degree in shell 28 109 64

kernel’s node degree in kernel 3 7 4

30 Card of shell 59 394 130 0.04

kernel’s node degree in shell 26 54 42 0.10/+

kernel’s node degree in kernel 3 8 5

40 Card of shell 48 178 90 0.10

kernel’s node degree in shell 23 85 47 0.10/+

kernel’s node degree in kernel 4 8 6
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Table 1. (cont.)

file name vertices edges

frb100-40.clq.gz 4000 7 425 226

5 Card of shell 224 1859 566 0.90 1.00

kernel’s node degree in shell 219 1800 547

kernel’s node degree in kernel 5 5 5

10 Card of shell 80 1586 178 0.90 1.00

kernel’s node degree in shell 80 1535 175

kernel’s node degree in kernel 10 10 10

20 Card of shell 60 1253 74 0.90 0.90

kernel’s node degree in shell 60 1213 74

kernel’s node degree in kernel 18 20 19

30 Card of shell 60 944 67 0.90 0.97

kernel’s node degree in shell 60 911 67

kernel’s node degree in kernel 29 30 29

40 Card of shell 55 668 64 0.90 0.93

kernel’s node degree in shell 55 652 64

kernel’s node degree in kernel 37 40 39

1The value of α > 0.5 assures graph connectivity

5. Conclusions

It is well known that for problems with large-scale complexity, there are no effective
algorithms to solve them, specialized evolutionary methods are very efficient and
give satisfying results.

The results of the series of conducted experiments are rather optimistic, the pa-
rameter α introduced into the traditional notion of a clique gives rise a flexible tool
that enables solving of the kernel and shell structure problem using α-cliques. Also
traditional hub and spoke structure, which can be also treated as an instance of ker-
nel and shell, can be easily obtained using evolutionary method. Presented methods
can be very useful for developing logistic-transportation systems.
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