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Introduction

One of the most frequently encountered models in 
anisotropic medium is the model of Transverse Isotropy 
(TI). If the symmetry axis of model TI coincides with 
the vertical axis of right-angle coordinates, then we 
receive horizontal thin-layered system proposed by 
G. Postma [12] and called VTI (Vertical Transversely 
Isotropic). The application of algorithms of propaga-
tion and migration of „isotropic” waves in anisotropic 
medium VTI results in deformations and relocation 
of reproduced structures [6, 10], and the higher the 

anisotropic parameters are, the greater their extent is. 
(parameters by L. Thomsen [14]).

In the domain of wavenumbers and frequencies, the al-
gorithm of migration MG(F-K) was presented in anisotropic 
medium type VTI [11]. This algorithm uses approximative 
version of vertical wavenumber  [5] with reference to me-
dium VTI. This article presents the algorithm of migration 
MG(F-K) in monoclinal medium marked as TTI (Tilted 
Transversely Isotropic) model, whose symmetry axis is 
tilted at θ angle to the vertical axis (Fig. 1).

Algorithmic solutions

In case of a thin-layered arrangement, arbitrarily  
oriented in relation to the Cartesian coordinate system  
x, y, z, it is appropriate to use general law of tensor rotation 
in Bond`s formulation [2, 3, 13] which allows to obtain 
relation between matrix Dφθ of elastic modules in measur-
ing coordinate system x, y, z, and appropriate matrix C of 
these modules in coordinate system x’, y’, z’.

The is the ensuing relation:

( ) ( )
TCRRD ϕθϕθ

ϕθ =  
                   

(1)

where φ denotes the angle of rotation of system x’, y’, z’ 
with regard to axis z, whereas θ is the tilt angle of the 
symmetry plane of isotropy TI.

The dimensions of matrices Rφθ and TRϕθ   are 6 × 6 and 
they transform the matrix of elastic modules C into sym-
metric matrix Dφθ. Matrices Rφθ and TRϕθ   transpose the 
vectors of stress and strain from system x’, y’, z’ to system 
x, y, z by means of rotational matrix:
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Fig. 1. Geometrical model of monoclinal thin-layered 
system, angle θ is the tilt angle between axis x’ and 

horizontal plane. Rotation angle φ of system x’, y’, z’ 
towards the axis is 90o
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The subject of discussion will be the situation when the 
rotation angle φ = 90o, i.e. when the coincidence of axis 
y and y’ occurs (Fig. 1). Then, similarly as for the medium 
VTI [4] the shear waves of type SH may be separated from 
longitudinal waves P and shear waves SV. It means that 
displacements Uy of oscillating particles of the medium 
towards axis y are independent from displacements Ux and 
Uz in directions x and z respectively. Thus, only compo-
nents Ux and Uz can be discussed, assuming that Uy and 
its derivatives equal zero.

Symmetrical matrix C, dimensions 6 × 6, represents 
components of tensor Cijlk in the medium of transverse 
isotropy TI. In abbreviated notation by Voigt [14] this 
matrix can be presented in this way:
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(3)

Matrix Dφ=90o,θ = D (omitting indices φ and θ) in dis-
cussed case may be presented in the following way:
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D =            (4)

and the elements can be expressed by means of components 
of tensor Cijkl (in Voigt`s notation) and the tilt angle θ as 
follows:

d11 = C11 cos4 θ + 2C13 cos2 θ sin2 θ  + C33 sin4 θ + 
+ 4C44 (sin θ cos θ)2 (5)

d21 = d12 = C12 cos2 θ + C13 sin2 θ                  (6)

d31 = d13 = (C11 cos2 θ + C13 sin2 θ) sin2 θ + (C13 cos2 θ + 
+ C33 sin2 θ) cos2 θ – 4C44 sin2 θ cos2 θ (7)

d51 = d15 = [C13 cos2 θ + C33 sin2 θ – C11 cos2 θ – 
–  C13 sin2 θ + 2C44 (cos2 θ – sin2 θ –
– sin2 θ)] sin θ cos θ (8)

d22 = C11                                       (9)

d32 = d23 = C12 sin2 θ + C13 cos2 θ                  (10)

d25 = d52 = (C13 – C12) sin θ cos θ                  (11)

d33 = (C11 sin2 θ + C13 cos2 θ) sin2 θ + (C13 sin2 θ + 
+ C33 cos2 θ) cos2 θ + 4C44 sin2 θ cos2 θ (12)

d35 = d53 = [C13 sin2 θ +C33 cos2 θ – C11 sin2 θ – 

– C13 cos2 θ – 2C44 (cos2 θ – sin2 θ)] sin θ cos θ (13)

d44 = C44 cos2 θ + C66 sin2 θ                        (14)

d46 = d64 = (C44 – C66) sin θ cos θ                  (15)
 
d55 = (C11 – 2C13 + C33) sin2 θ cos2 θ + C44 (cos2 θ – sin2 θ)2 (16)
 

d66 = C44 sin2 θ + C66 cos2 θ                    (17)

and other remaining components are equal zero.
For small tilt angles, when θ → o0 we have:

d11 → C11

d12 = d21 → C12

d13 = d31 → C13

d51 = d15 → 0
d23 = d32 → C13

d25 = d52 → 0
d33 → C33  (18)
d35 = d53 → 0
d44 → C44

d46 = d64 → 0
d55 → C44

d66 → C66

So for small tilt angles θ → 0, as expected, matrix

CD →
→0θ

 
                               (19)

The initial point in the discussion on construction of 
algorithmic solutions will be Hook`s law – basic relation 
between the tensor of stress Tij and strain Eij, which results 
in a conclusion that each stress component is a linear func-
tion of strain, i.e.:

Tij = dijkl Ekl = dijkl Elk                          (20)

While the tensor of strain is

 ( )l,kk,llk UUE +=
2
1                         (21)

Presenting the relation (20) in detail, we receive:
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Tij = dij11E11+dij22E22+dij33E33+2dij23E23+
+2dij13E13+2dij12E12 (22)

Substituting i,j = 1, 2, 3, we obtain all the components 
of stress tensor: T11, T22, T33, T23 = T32, T13 = T31, T12 = T21. 
In the matrix notation this is as follows:
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        (23)

In relation (23) it has been considered that derivatives 
of the field with regard to coordinate y equal zero. Start-
ing with the general law of movement (disregarding the 
external force)
 

2

2

t
UT i

j,ij ∂
∂

= ρ                          (24)

where ρ is the medium density, and t denotes time, let 
us write equations for the horizontal Ux(U1) and vertical 
Uz(U3) component
 

2
1

2

313111 t
UTT ,, ∂

∂
=+ ρ                 (25a)

 

2
3

2

333131 t
UTT ,, ∂

∂
=+ ρ                 (25b)

Using the matrix equation (23) with relation to equa-
tions (25), the following relations are received:
 

++++ xxz,xzx,zzx,xxx, UdUdUdUd 15155511 2   

( ) 2

2
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UUdUdd x

zzz,zxz, ∂
∂
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( ) +++++ zzz,zzx,xzx,xxx, UdUdUddUd 3335553151  
 

2

2

55352
t
UUdUd z

xxz,xzz, ∂
∂

=++ ρ  
               (26b)

Adopting for small tilt angles θ d15 = d51 ≈ 0 and 
d53 = d35 ≈ 0 and applying Fourier`s transformation 
(x → kx,z→ kz,t → ω) z for equations (26) we obtain matrix 
equation analogical to Christoffel`s relation:
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  (27)

In equation (27), kx and kz denote wavenumbers in 
horizontal and vertical direction, whereas ω is frequency.

It should be noted that matrix equation (27) for medium 
VTI, i.e. in the case when the tilt angle θ = 0 transforms into 
analogical equation derived by Q. Han and R.S. Wu [5]. 
Equation (27) results in dispersion relation

02
2

1
4

0 =++ bkbkb zz                       (28)

where: 
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   (29)

In general, equation (28) has four solutions correspond-
ing to longitudinal wave qP and shear wave qSV (polarized 
in plane x-z) forward and backward propagation. Q. Han 
and R.S. Wu [5] concluded on the basis of numerous experi-
ments that wave velocity qSV does not provide significant 
contribution in the quantity of vertical wavenumber of 
longitudinal wave qP, therefore it can be assumed that 
velocity of wave qSV equals zero [1]. On assumption that 
b0 = 0, we receive:
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2
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2
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22

133311
2

1

x
'

x
'
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ρωωρ

ρω

−=

−−=
 

              (30)

Let expressions 'b1   and 'b2   be represented by parameters 
analogical to Thomsen`s, i.e.:
 

33

3311

2d
dd −

=ε                             (31)
 

( ) ( )
( )553333

2
5533

2
5513

2 ddd
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−
−−+

=∂                (32)

hence

33

1121
d
dq =+= ε  

and for d55 = 0
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2
1321
d
d

=∂+  

Assuming that the velocity of longitudinal wave 
21
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⎞
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⎝

⎛
=

ρ
CVp  

 
a d33 = C33cos2θ we receive: 

 222
33 ppp VcosVd ρθρ ==                   (33)
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Similarly, using parameters ε and q = 1 + 2ε and 
η = 2(ε – δ) we have:
 ( ) 424422

333311 21 ppp VqcosVqddd ρθρε ==+=      (34)

where: Vpp = Vp cos θ denotes the velocity of longitudinal 
wave along the vertical axis
 

( ) ( ) 422
33

2
13 2121 ppVdd ρ∂+=∂+=               (35)

 
( ) 2

11 21 ppVd ρε+=                          (36)

From relation (29) and relations (30)-(35) we obtain 
the expression for vertical component of wavenumber kz
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                (37)

where: 
pp

p V
S 1

=   denotes vertical slowness.

It is not difficult to notice that parameters q and η which 
can be seen in expression (37) are represented by their 
values in model VTI, therefore for horizontally laminated 
medium

q = qVTI � cos2 θ       
η = ηVTI � cos2 θ                           (38)

where: qVTI and ηVTI denote the values of these parameters 
in VTI medium.

Thus relation (37) for medium TTI is analogical to 
the relation derived by Q. Han and R.S. Wu [5] for the 
horizontally laminated medium VTI. In order to use it in 
the process of propagation and migration of compressional 
waves one should know parameters q and η, the velocity 
of P waves along the axis and the tilt angle – θ, the plane 
of isotropy. We will apply received wavenumber kz for 

migration MG(F-K) in the domain of wavenumbers and 
frequencies and spatial coordinates x and time t [8, 11]. 
Migration process performed in this way occurs in two 
stages. At the first stage, the relocation of the wave field 
takes place 
 ( ) ( )ω,z,kUezz,kU jx

zikz
jx

∆−=∆+ 0,' ω  
        

(39)

from the level of zj to zj + ∆z by means of exponential 
operator with vertical wavenumber kz0 corresponding to 
a homogeneous medium. At the second stage, correc-
tion of the wave field follows U′(x, zj + ∆z, ω) – Fourier 
transforms (kx → x) of the field U′(kx, zj + ∆z, ω) by way 
of spatial filter Fj(x, ω) = [1 – i/2∆zMj(x)]–1, which is the 
sum of Neumann’s power series

( ) ( ) x
xik

zzzxj dkekkkM x221
00
−Σ= −                  (40)

This relation may be represented in this way:

Uzj + ∆z + = Fj (x, ω)U′(x, zj + ∆z, ω)            (41)

The correction positions the wave field in the function 
of spatial coordinates, taking into account the differences 
between parameters of a homogenous medium and para-
meters of heterogeneous medium in the function of lateral 
coordinates. For the prestack migration, the algorithm of 
extrapolation will be the product of corrective functions 
F related to the sources and receivers, while corrected 
field U′ will be a function of coordinates of sources and 
receivers. With the zero-offset migration in relation (37) 
slowness Sp must be multiplied by 2. Further steps follow 
in an analogical way as in model VTI and it was discussed 
in detail in the article by A. Kostecki [11]. It should be 
noted that even when the elastic parameters are indepen-
dent from the spatial coordinates, it is essential to take into 
consideration the differences in vertical wavenumbers as 
a result of different tilt angles of the laminated medium.

Artykuł nadesłano do Redakcji 17.09.2009. Przyjęto do druku 29.10.2009.

Recenzent: dr Anna Półchłopek
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 – maksymalne ciśnienie badania: 120 MPa
 – maksymalna temperatura badania: 180°C 
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 – rejestracja ciągła ciśnienia i temperatury,
 – możliwe wykonywanie badań „do zniszczenia” w przypadku urządzeń o niewielkiej objętości,
 – możliwość wyprowadzenia sygnału elektrycznego z badanego urządzenia linią 2-przewodową.

Kierownik: mgr inż. Antoni Frodyma
Adres: ul. Bagrowa 1, 30-733 Kraków
Telefon: 12 653-25-12 wew. 137
Faks: 12 653-16-65
E-mail: antoni.frodyma@inig.pl


