PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Odzysk metali ze zużytych katalizatorów uwodorniania stosowanych w przemyśle petrochemicznym

Identyfikatory
Warianty tytułu
EN
Metals recivery from spent hydroprocessing catalysts used in the petrochemical industry
Języki publikacji
PL
Abstrakty
PL
Przedstawiono przegląd wyników badań nad odzyskiem metali ze zużytych katalizatorów uwodorniania stosowanych w procesach rafineryjnych. Uwagę skoncentrowano na procesach hydropirometalurgicznych i hydrometalurgicznych z uwzględnieniem bioługowania, ługowania elektrochemicznego oraz ługowania w mediach w stanie nadkrytycznym. W procesach hydropirometalurgicznych etap ługowania poprzedzony jest prażeniem chlorującym (z CI2, NaCl, NH4CI), kalcynującym (Na2CO3 lub Na2O), lub wypalaniem zużytego katalizatora. Wykazano, że prażenie chlorujące w mieszaninie CI2 + N2 + CO jest wysoce efektywne i pozwala na odzysk metali z katalizatora w ilości: 99 % Mo, 74 % V, 75 % Co oraz 85 % Ni. W przypadku Mo porównywalne wyniki (97 %) można otrzymać stosując kalcynację z dodatkiem Na2COj w 450 °C i czasie 2 godzin i następnie ługowanie NaOH. W procesach hydrometalurgicznych do ługowania stosuje się szereg reagentów nieorganicznych i organicznych lub ich kombinacji. Stosowano takie reagenty, jak: NaOH, Na2CO3, H2SO4, NH3xH2O, H2C2O4 z dodatkiem utleniaczy (Fe3+, H2O2). Najwyższe stopnie wyługowania Mo (90 %) i V (94 %) uzyskano w roztworze 0,5 M H2C2O4 z dodatkiem 3,0 M H2O2 w czasie 4 godzin, w temperaturze 50 °C. Przedstawiono także wyniki lugowań ciśnieniowych w roztworach kwaśnych i alkalicznych. W omówionych procesach bioługowania zużytych katalizatorów stosowano grzyby Aspergillus niger w 2,0 M roztworze H2C2O4 w czasie 30 dni, uzyskano w roztworze 82,3 % Mo, 78,5 % Ni oraz 65,2 % Al. Metoda elektrochemicznego roztwarzania zużytych katalizatorów w przestrzeni anodowej elektrolizera z użyciem jonów Ce4+ jako utleniacza pozwala na całkowite roztworzenie zużytego katalizatora w roztworze zawierającym 0,5 M jonów Ce4+ w 2,0 M HNO3 w temperaturze 110 °C w czasie 14 godzin.
EN
Recycling of spent catalysts has become recently an unavoidable task not only due to catalysts costs but also in order to prevent the environmental pollution. The results of studies on the recovery of metals from spent hydroprocessing catalysts used in the refinery processes have been reviewed. The following processes have been discussed: hydropyrometallurgical, hydrometallurgical, biohydrometallurgical, leaching by supercritical media, as well as electrochemicał dissolution. The hydropyrometallurgical processes reąuire pretreatment of roasting with CI2, NaCl and NH4Cl, calcination with Na2CO3 and Na2O or combustion of spent catalysts followed by water leaching. Generally, chlorination has disadvantages sińce it is connected with corrosion and gas handling problems. It was found that the chlorination with CI2+N2+CO turns to be highly effective and leads to recovery of 99 % Mo, 74 %V, 75 % Co, and 85 % Ni. The comparable results of Mo leaching (97 %) were achieved using the calcination with Na2CO3 at temperaturę 450 °C during 2 hours followed by NaOH leaching. In turn, the hydrometallurgical processes involve leaching with inorganic and organie agents or their combustion. Many reagents such as: NaOH, Na2CO3, H2SO4, NH3xH2O, H2C2O4 in the presence of oxidizing agents (Fe3+, H2O2) were tested. The most promising results have been achieved for the chelating agents being able to form soluble metal complexes. The highest leaching efficiency of Mo (90 %) and V (94 %) were reached after 4 hours leaching in the solution containing 0.5 M H2C2O4 and 3.0 M H2O2- The alkali and acid leaching processes under high pressure have been also presented. Comparing to the conventional techniąues the biohydrometallurgical methods seem to be more attractive for the recovery of metals from spent catalysts. In fact they are simpler, cheaper and more environmentally friendly. In bioleaching one of the most widely used fungus is Aspergillus niger. Its application has advantages over bacterial leaching sińce this particularfungus reveals the ability of metal leaching under higher pH conditions and gives thefaster leaching rate. Bioleaching results of the spent refinery catalysts with Aspergillus niger fungus in 0.2 M H2C2O4 solution showed that 82.3 % Mo, 78.5 % Ni and 65.2 % Al were extracted after 30 days. Another techniąue is the supercritical fluid extraction may provide a clean and efficient method for removing metal species from contaminated solid materials. Conceptually, such a process would entail loading a spent catalyst into a pressure vessel and leaching it with supercritical CO2 containing 5 % methanol and a smali ąuantity ofa chelating reagent. In particularly, the recovery o noble metals from spent catalysts is possible by supercritical water leaching at 400 °C and 250 atm (Aqua Cat process). Finally, the results of experiments investigating the electrochemical dissolution showed that 0.5 M Ce4+ solution as an oxidant in 2.0 M HNO3 at 110 °C would completely dissolve a spent hydrosulphurization catalyst (HDS) in 14 hours.
Rocznik
Strony
482--490
Opis fizyczny
Bibliogr. 45 poz., tab., wykr., rys.
Twórcy
autor
autor
  • Politechnika Wrocławska, Wydział Chemiczny, Wrocław
Bibliografia
  • 1. Trimm D. L.: Deactivation, regeneration and disposal of hydroprocessing catalyst, in: Catalysts in Petroleum Refining 1989. Trim D.L., Akasha S., Absi-Halabi M. and Bishara A. (Editors), Elsevier, Amsterdam, 1990, s. 41-60.
  • 2. Marafi M, Stanislaus A.: Studies on rejuvenation of spent residue hydroprocessing catalyst by leaching of metal foulants. Journal of Molecular Catalysis A: Chemical 2003, t. 202, s. 117-125.
  • 3. Furimsky E., Massoth F. E.: Deactivation of hydroprocessing catalysts. Catalysis Today 1999, t. 52, s. 381-495.
  • 4. Gray M. R., Zhao Y., McKnight С. М.: Coke and minerals removal bitumen hydroconversion catalysts. Fuel 2000, t. 79 s. 285--294.
  • 5. Trimm D. L.: The regeneration or disposal of deactivated heterogeneous catalyst. Applied Catalysis A: General 2001, t. 212, s. 153-160.
  • 6. Yoo J. S.: Metal recovery and rejuvenation of metal-loaded spent catalysts. Catalysis Today 1998, t. 44, s. 27-46.
  • 7. Biswas R. K, Wakihara M., Taniguchi M.: Recovery of vanadium and molybdenum from heavy oil desulphurization waste catalyst. Hydrometallurgy 1985, t. 14, s. 219-230.
  • 8. Furimsky E.: Spent refinery catalysts: environment, safety and utilization. Catalysis Today 1996, t. 30, s. 223-286.
  • 9. Gaballah I., Djona M, Mulica Iraola J. C, Solozabal Echevaria R., Donate M, Meregalli L., Sentiment! E.; Novel method from recovering metals from materiale containing refraktory and/or transition metals. Patent FR 9300755 (WO 9402653), 1994.
  • 10. Gaballah J., Kanari N., Djona M.: Use of chlorine for mineral processing, metal extraction and recycling via synthesis of new reagent. Chloride Metallurgy 2002, vol. 1. 32nd Annual Hydrometallurgy Meeting. Peek E., G. van Weert (Editors), Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, 2002, s. 203-225.
  • 11. Gaballah I., Djona M.: Recovery- of Co, Ni, Mo and V from Unroasted Spent Hydrorefming Catalysts by Selective Chlorination. Metallurg. Mater. Trans. B. 1995, t. 26B, nr 1, s. 41-50.
  • 12. Kar В. В., Murthy В. V. R., Misra V. N.: Extraction of molybdenum from spent catalyst by salt-roasting. Int. J. Miner. Process. 2005, t. 76, s. 143-147.
  • 13. Angelidis T. N., Tourasanidis E., Marinou E., Stalidis G. A.: Selective dissolution of critical metals from diesel and naptha spent hydrodesulphurization catalysts. Resources, Conservation and Recycling 1995, t. 13, s. 269-282.
  • 14. Kar В. В., Datta P., Misra V. N.: Spent catalyst: secondary source for molybdenum recovery. Hydrometallurgy 2004, t. 72, s. 87-92.
  • 15. Chen Y, Feng Q., Shao Г., Zhang G, Ou L, Lu Y.: Investigations on the extraction of molybdenum and vanadium from ammonia leaching residue of spent catalyst. Int. J. Miner. Process. 2006, t. 79, s. 42-48.
  • 16. Chen Y, Feng Q., Shao Y, Zhang G, Ou L, Lu Y: Research on the recycling of valuable metals in spent A12O3 — based catalyst. Minerals Engineering 2006, t. 19, s. 94-97.
  • 17. Beuther H., Flinn R. A.: Technique for removing metal contaminants from catalysts. I&EC Product Research and Development 1963, t. 2, nr 1, s. 53-57.
  • 18. Marafi M., Stanislaus A., Mumford C. J., Fahim M.: Regeneration of Spent Hydroprocessing Catalysts: Metals Removal. Applied Catalysis 1989, t. 47, s. 85-96.
  • 19. Stanislaus A., Marafi M., Absi-Halabi M.: Studies on the rejuvenation of spent catalysts: effectiveness and selectivity in the removal of foulant metals from spent hydroprocessing catalysts in coked and decoked forms. Applied Catalysis A: General 1993, t. 105, s. 195+203.
  • 20. Marafi M., Stanislaus A., Absi-Halabi M.: Heavy oil hydrotreating catalyst rejuvenation by leaching of foulant metals with ferric nitrate-organic acid mixed reagents. Applied Catalysis B: Environmental 1994, t. 4, s. 19-27.
  • 21. Marafi M, Stanislaus A.: Options and processes for spent catalyst handling and utilization. Journal of Hazardous Materials В 2003, t. 101, s. 123-132.
  • 22. Mulak W., Szymczycha A. Leśniewicz A.: Characterization of spent hydrodesulphurization catalyst. Proceedings of 10th Conference on Environmental and Mineral Processing. Ed. P. Fečko, VSB-TU Ostrava, Czech Republic 2006, Part I, s. 181-186.
  • 23. Mulak W., Szymczycha A, Leśniewicz A., Żyrnicki W.: Preliminary results of metals leaching from a spent hydrodesulphurization (HDS) catalyst. Physicochemical Problems of Mineral Processing 2006, t. 40, s. 69-76.
  • 24. Siemens R. E., Jong B. W, Russel J. H.: Potential of spent catalysts as a source of critical metals. Conservation & Recycling 1986,1. 9, nr 2, s. 189-196.
  • 25. Rokukawa N.: Extraction of rare metals from spent desulfurization catalyst with hydrogen peroxide. J. Mining Metali, lnst. Jpn. 1987, nr 103, s. 593-595.
  • 26..GrzechowiakJ., Ostrowski A., Radomyski В., Walendziewski J.: Odzyskiwanie metali ze zużytego katalizatora hydroodsiarczania — CoMo/AI2O3. Przemysł Chemiczny 1986, t. 65, s. 413-415.
  • 27. Grzechowiak J., Grysiewicz W, Ostrowski A., Radomyski В., Walendziewski J.: Sposób wydzielania glinu, żelaza, kobaltu i niklu ze zużytych katalizatorów zawierających metale grupy żelaza i ewentualnie molibden na nośniku glinowym. Patent PL 136713, 1987.
  • 28. Grzechowiak J., Grysiewicz W., Ostrowski A., Radomyski В., Walendziewski J.: Sposób wydzielania glinu i molibdenu ze zużytych katalizatorów zawierających obok glinu molibden, kobalt, nikiel i żelazo. Patent PL 136788, 1988.
  • 29. de Lima T. S., Campos Р. С, Afonso J. C: Metals recovery from spent hydrotreatment catalysts in a fluoride-bearing medium. Hydrometallurgy 2005, t. 80, s. 211-219.
  • 30. Brombacher C, Bachofen R, Brandl H.: Biohydrometallurgical processing of solids: a patent review. Appl. Microbiol. Biotechnol. 1997, t. 48, s. 577-587.
  • 31. Blaustein В., Hauck J. Т., Olson G. J., Bal trus J. P.: Bioleaching of molybdenum from coal liquefaction catalyst residues. Fuel 1993, t. 72, nr 12, s. 1613-1618.
  • 32. Brombacher C, Bachofen R, Brandl H.: Development of a laboratory-scale leaching plant for metal extraction from fly ash by Thiobacillus strains. Appl. Environ. Microbiol. 1998, t. 64, s. 1237-1241.
  • 33. Burgstaller W., Schinner R: Mini review: leaching of metals with fungi. J. Biotechnol. 1993, t. 27, s. 91-116.
  • 34. Schinner E, Burgstaller W: Extraction of zinc from industrial waste by a Penicillum sp. Appl. Environ. Microbiol. 1989, t. 55, s. 1153-1156.
  • 35. Castro I. M, Fietto J. L R., Vieira R. X., Tropia M. J. M, Campos L. M. M, Paniago E. В., Brandao R. L.: Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy 2000, t. 57, s. 39-49.
  • 36. Aung K. M. M., Ting Y. P.: Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger. J. Biotechnol. 2005, t. 116, ,s. 159-170.
  • 37. Santhiya D., Ting Y. P.: Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. J. Biotechnol. 2005, t. 116, s. 171-184.
  • 38. Magyarosy A., Laidlaw R. D., Kilaas R., Echer C, Clark D. S., KeaslingJ. D.: Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Appl. Microbiol. Biotechnol. 2002, t. 59, s. 382-388.
  • 39. Santhiya D., Ting Y. P.: Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst. J. Biotechnol. 2006, t. 121, s. 62-74.
  • 40. Grumett P.: Precious Metal Catalysts from Spent Catalyst. Platinum Metals Rev., 2003, t. 40, nr47, s. 163-166.
  • 41. McPartland J. S., Bautista R. G: Extraction of cobalt from hydrotreating catalysts using supercritical ammonia. Separation Science and Technology 1990, t. 25, s. 2045-2057.
  • 42. Lin Y, Wai Ch. M, Jean F M., Brauer R. D.: Supercritical fluid extraction of thorium and uranium ions from solid and liquid materials with fluorinated (3-diketones and tributyl phosphate. Environ. Sci. Technol. 1994, t. 28, s. 1190-1193.
  • 43. Laintz K. E., Wai С M, Yonker С R., Smith R. D.: Extraction of metal ions from liquid and solid materials by supercritical carbon dioxide. Anal.Chem. 1992, t. 64, s. 2875-2878.
  • 44. Lin Y, Brauer R. D., Laintz К. Е., Wai С. М.: Supercritical fluid extraction of lanthanldes and actinldes from solid materials with a fluorinated p-diketone. Anal. Chem. 1993, t. 65, s. 2549-2551.
  • 45. Silva L. J., Bray L A., Matson D. W.: Catalyzed electrochemical dissolution from spent catalyst recovery. Ind. Eng. Chem. Res. 1993, t. 32, s. 2485-2489.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH6-0008-0061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.