PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wiek i geneza rud Fe-Ti-V i skał towarzyszących w Suwalskim masywie anortozytowym (północno-wschodnia Polska)

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Age and the genesis of Fe-Ti-V ores and related rocks in the Suwałki Anorthosite Massif (northeastern Poland)
Języki publikacji
PL
Abstrakty
PL
Suwalski masyw anortozytowy wraz ze skałami osłony należy do powszechnie występującej na świecie facji skał magmowych typu AMCG (anortozyty-mangeryty-czarnokity-granity), związanych ze strefami głębokich rozłamów w skorupie proterozoicznej. W ostatnich latach, dzięki intensywnym badaniom w ramach międzynarodowych programów badawczych, np. IGCP-290, NATO, EUROBRIDGE-EUROPROBE, przeprowadzono w różnych ośrodkach na świecie (głównie w Kanadzie, USA i w Belgii) wiele nowych badań i eksperymentów laboratoryjnych, które poszerzyły wiedzę dotyczącą genezy i ewolucji anortozytów masywowych i skał z nimi związanych. Możliwość wykorzystania nowoczesnych, wyspecjalizowanych technik badawczych, geochemicznych (XRF, ICP MS i analiz w mikroobszarze), katodoluminescencji, metod geochronologicznych Re-Os i U-Pb oraz stosunków izotopowych 186Os/187Os, 143Nd/186144Nd i 86Sr/87Sr, pozwoliło również na weryfikację istniejących poglądów dotyczących genezy anortozytowej intruzji suwalskiej. Zastosowany do datowań siarczków i tlenków kruszcowych, rozproszonych w anortozytach i norytach, chronometr Re-Os pozwolił na określenie nie tylko wieku mineralizacji kruszcowej Fe-Ti-V, lecz pośrednio także wieku intruzji. Było to pierwsze w świecie zastosowanie metody Re-Os do datowań anortozytów masywowych. Wiek izochronowy dla rud z rejonu Krzemianka i Jezioro Okrągłe wynosi 1559-37 mln lat, a dla rud z Udrynia 1556-94 mln lat. Uzyskane stosunki izotopowe 186Os/187Os (1,16-0,06 mln lat dla złoża Krzemianka i 0,87-0,20 mln lat dla złoża Udryń) oraz Nd (-2,5 do -5,3) wskazują na dolnoskorupowe pochodzenie magmy macierzystej dla anortozytów. Prawdopodobnym protolitem dla anortozytów były skały o składzie gabronorytów przetapiane na głębokości odpowiadającej ciśnieniom 10-13 kbar oraz temperaturom ok. 1300 stopni Celsjusza. Badania geochemiczne i mikroskopowe jotunitów (monzodiorytów hiperstenowych) z masywów Suwałk i Sejn oraz obserwacje deformacji fenokryształów plagioklazów i piroksenów w anortozytach wskazują, że magma macierzysta przemieszczała się ku powierzchni w stanie zawiesiny plagioklazów i piroksenów. Umiejscowienie półplastycznego diapiru plagioklazowego odbywało się w warunkach ciśnień ok. 3-5 kbar. Mineralizacja rudna Fe-Ti-V została skoncentrowana w strefach brzeżnych masywu (złoże Krzemianka, Jezioro Okrągłe i Jeleniewo) w wyniku procesów granulacji i poligenizacji anortozytów z centralnych części masywu i wciskania plastycznej substancji rudnej w strefy spękań tektonicznych (złoże Udryń). Wyniki badań izotopów stabilnych rho34S i rho13C wskazują na magmową genezę siarczków: pirotynu, pentlandytu i chalkopirytu oraz grafitu. Piryt natomiast jest typowym minerałem wtórnym, pochodzenia hydrotermalnego. Wartości rho18O dla próbek całych skał oraz magnetytu i plagioklazu świadczą o braku wpływu procesów metamorficznych na skały i minerały z intruzji suwalskiej.
EN
Suwałki Anorthosite Massif (SAM) and associated rocks belong to the widespread, magmatic AMCG suite (anorthosite-mangerite-charnockite-granite "rapakivi"), related to Proterozoic deep crustal structures. Due to intensive research work (mainly in Canada, Belgium and the USA), carried out within international scientific programs e.g. IGCP-290, NATO, EUROBRIDGE-EUROPROBE, a large number of the new laboratory experiments and investigations has been performed in the recent years. This research constrained the geological and petrological evolution model of massif-type anorthosites which occur in Proterozoic rocks worldwide. Availability of modern, sophisticated research techniques, such as geochemical ones (XRF, ICP MS, and microprobe analyses), cathodoluminescence, geochronological Re-Os, U-Pb methods and application of osmium, neodymium and strontium initial isotope ratios, let us better understand the origin and verify existing genetical concepts concerning the Suwałki Anorthosite Massif. Application of a new Re-Os chronometer for direct dating of sulphides and ore-oxides, dispersed in the Suwałki anorthosites and norites, resulted in precise age determination for the Fe-Ti-V ores and Fe-Cu-Co-Ni sulphide mineralisation, as well as dating indirectly the age of the SAM. It was the first use of the Re-Os radiogenic method to anorthosite dating in the world. The isochrone age of the Krzemianka and Jezioro Okrągłe ores is 1559-37 Ma and for Udryń ores yields 1556-94 Ma. The obtained initial isotope 186Os/187Os ratios (1.16-0.06 Ma for Krzemianka and 0.87-0.20 Ma for Udryń) and Nd (-2.5 to -5.3) indicate lower crustal source of the parental Suwałki anorthosite magma. The gabbro-norite composition of rocks, remelted at the depth interval corresponding to 10-13 kbars of pressure and ca. 1300 degrees of Celsius, are believed to be the most probable protholith for anorthosites. The geochemical and microscope investigations of jotunites (hyperstene monzodiorites) from the Suwałki and Sejny massifs and observed plagioclase and pyroxene phenocrysts deformations in medium-grained anorthosite matrix highlight that parental magma was channeled to the surface as a plagioclase crystal mush, lubricated by a minor amount of interstitial liquids. Diapiric emplacement of plagioclase mushes on the final level took place in pressure conditions of ca. 3-5 kbars. Fe-Ti-V ore mineralization was concentrated in the marginal parts of the massif (Krzemianka, Jezioro Okrągłe and Jeleniewo ore fields), as a result of granulation and polygenization processes of anorthosites from the central part of the massif, as well as filter-pressing and squeezing out the ore-minerals` mush into the tectonic cracks and faults. The stable isotope rho34S and rho13C results confirm magmatic origin of sulphides: pyrrhotite, pentlandite, chalcopyrite and graphite. On the contrary, pyrite is a typical secondary mineral of the hydrothermal provenance. The low rho18O value for the whole rock samples, magnetite and plagioclase provides an evidence for normal magmatic origin and lack of metamorphic overprints in the Suwałki intrusion.
Rocznik
Tom
Strony
114--114
Opis fizyczny
Bibliogr. 191 poz., rys., tab., wykr.
Twórcy
  • Państwowy Instytut Geologiczny ul. Rakowiecka 4, 00-975 Warszawa
Bibliografia
  • [1] ANDERSON А.Т., 1966 — Mineralogy of the Labrieville anorthosite. Quebec. Amer. Miner., 51: 1671-1711.
  • [2] ANDERSSON M., LIE J.E., HUSEBYE E.S., 1996 — Tectonic setting of post-orogenic granites within S W Fennoscandia based on deep seismic and gravity data. Terra Nova, 8: 558-566.
  • [3] ASHWAL L.D., 1993 — Anorthosites: 422 p. Springer-Verlag, New York-Berlin.
  • [4] BACHLIŃSK1 R., 1998 — Preliminary results of rubidium-strontium isotopic analysis of diorites from the Suwałki Anor¬thosite Massif. In: Geology of the Suwałki Anorthosite Massif (Northeastern Poland) (eds. W. Ryka, M. Podemski). Pr. Inst. Geol., 161: 113-116.
  • [5] BAGIŃSKI В., DUCHESNE J.C., MARTIN H., VANDER AUWERA J., WISZNIEWSKA J., 2001 — Petrology and geochemistry of rapakivi-type granites from the crystalline basement of NE Poland. Geol. Quart., 45, 1: 33-52.
  • [6] BLANC P., ROGER G., COUTO H., 1994 — Distinction between magmatic and hydrothermal signatures in apatites from north Portugal: CL, SEM and electron microprobe study. Bull. Soc. Geol. France, 165, 4.
  • [7] BOGDANOVA S.V., 1993 — Segments of the East European Craton. In: EUROPROBE in Jabłonna 1991 (eds. D.G. Gee, M. Beckholmen): 33-38. Institute of Geophysics, Polish Academy of Sciences—European Science Foundation, Warszawa.
  • [8] BOGDANOVA S.V., 1999 — The Paleoproterozoic terrane pattern in the western part of the East European Craton. Seventh EUROBRIDGE Workshop. Abstracts. 26-30 May, Szelment near Suwałki, Poland: 69-91. Państw. Inst. Geol., Warszawa.
  • [9] BOGDANOVA S.V., BIBIKOVA E., GORBATSCHEV R., 1994 — Paleoproterozoic U-Pb zircon ages from Belorussia: New geodynamic implications for the East European Craton. Precambrian Res., 68: 231—240.
  • [10] BOGDANOVA S.V., PAGE L.M., SKRIDLAITE G., TARAN L.N., 1996 — The Proterozoic tectonothermal history of the western part of the East European Craton: Implications from '40Ar/39Argeochronology. GFF. Sztokholm, Szwecja.
  • [11] BOGDANOVA S., GORBATSCHEV R., 1998 — EUROBRIDGE-1998: Results and outlooks. Geophys. J., 4,20:60-63.
  • [12] BOLOGNEG., DUCHESNE J.C., 1991 —Analyses des roches silicates par spectrometrie de fluorescence X: precision et exactitude. Professional paper of the Service Geologique de Belgique, 249: 11 p.
  • [13] BOTTINGA Y., 1968 — Calculation of fractionation factors for carbon and oxygen exchange in the system calcite-carbon dioxide-water. J. Phys.Chem., 72: 800-808.
  • [14] BOWDEN P., BATCHELOR R.A., CHAPPELL B.W., DIDIER J., LAMEYERE J., 1984 — Penological, geochemical and source criteria for classification of granitic rocks: a discussion. Phys. Earth Planet. Int., 35: 1-11.
  • [15] BUDDIGTON A.F., LINDSLEY D.H., 1964 — Iron-titanium oxide minerals and synthetic equivalents. J. Petrol., 5, 2: 310-357.
  • [16] CABRI L.J., 1973 —New data on phase relations in the Cu-Fe-S system. Econ. Geol., 68: 443—154.
  • [17] CABRI L.J., HALL S.R., 1972 — Mooihoekite and haycockite, two new copper-iron sulfides, and their relationship to chalcopyrite and talnakhite. Amer. Miner., 57: 689-708.
  • [18] CIEŚLA E., WYBRANIEC S., 1998 — Geophysical studies of the Suwałki Anorthosite Massif. In: Geology of the Suwałki Anorthosite Massif (Northeastern Poland) (eds. W. Ryka, M. Podemski). Pr. Państw. Inst. Geol., 161:27-38.
  • [19] CLAESSON S., 1987—Nd isotope data on 1.9-1.2 Ga old basic rocks and metasediments from the Bothnian Basin, Central Sweden. Prec. Res., 35: 115-126.
  • [20] CLAESSON S., 1996 — U-Pb age determinations from the Precambrian of Lithuania and Poland. In Abstracts of EURO- BRIDGE workshop, 8-15 June, Oskarshamn, Sweden: 11 p. Lund Univ., Sweden.
  • [21] CLAESSON S., LUNDQUIST TH., 1995 — Origin and age of Proterozoic granitoids in the Bothnian basin, Central Sweden: isotopic and geochemical constraints. Lithos, 36: 115-140.
  • [22] CLAESSON S., RYKA W., 1999—Nd model ages of the Precambrian crystalline basement of NE Poland. Seventh EURO- BRIDGE Workshop "Between EUROBRIDGE and TESZ". Abstracts. 26-30 May, Szelment near Suwałki, Poland: 17-19. Państw. Inst. Geol., Warszawa.
  • [23] CLAESSON S„ SUNBLAD K., RYJCA W., MOCZYDŁOWSKA M., REINFRANK R., 1995 — Proterozoic ages from the precambrian of Poland — Results and implications. In: Precambrian of Europe: stratigraphy, structure, evolution and mineralization (ed. V.A. Glebovitsky, A.B. Kotov). St. Petersburg, 4-15 September 1995: 21 p.
  • [24] CREASER R.A., PAPANASTASSIOU D.A., WASSERBURG G.J., 1991 — Negative thermal ion mass spectrometry of osmium, rhenium, and iridium: Geochim. Cosmochim. Acta, 55: 397401,
  • [25] CYMERMAN Z., 2001 — Prekambr platformy wschodnioeuropejskiej na obszarze Polski: tektonika i rozwój skorupy. Centr. Arch. Geol. Państw. Inst. Geol., Warszawa.
  • [26] CYMERMAN Z., WISZNIEWSKA J„ 1999 — Precambrian of the Polish part of the East European Craton. Seventh EUROBRIDGE workshop "Between EUROBRIDGE and TESZ". 26-30 May, Szelment near Suwałki, Poland. Państw. Inst. Geol., Warszawa.
  • [27] DARLING R.S., FLORENCE F.P., 1995 — Apatite light rare elements chemistry of the Port Leyden nelsonite, Adirondack Highlands, New York: Implications for the origin of nelsonite in anorthosite suite rocks. Econ. Geol., 90: 964-968.
  • [28] DEMAIFFE D., MOREAU С., BROWN W.L., WEIS D., 1991 —Geochemical and isotopic (Sr,Nd and Pb) evidence on the origin of the anorthosite-bearing anorogenic complexes of the Aar province, Niger. Earth Planet. Sei. Let., 105:28^16.
  • [29] DEMAIFFE D., WEIS D„ MICHOT J., DUCHESNE J.C., 1986 — Isotopic constraints on the genesis of the Rogaland anorthositic suite (Southwest Norway). Chem. Geol., 57: 167-179.
  • [30] DE PAOLO D.J., 1981 — Neodymium isotopes in the Colorado Front Range and implications for crust formations and mantle evolution in the Proterozoic. Nature, 291: 193-197.
  • [31] DE PAOLO D.J., 1988 — Neodymium isotope geochemistry. An introduction: 187 p. Springer-Verlag, Berlin.
  • [32] DEPCIUCH Т., LIS J., SYLWESTRZAK H., 1975 — Wiek izotopowy K-Ar podłoża krystalicznego północno-wschodniej Polski. Kwart. Geol., 19: 759-779.
  • [33] DICKIN A.P., HIGGINS M., 1992—Sm-Nd evidence for a major 1.5 Ga crust-forming event in central Grenville Province. Geology, 17: 299-302.
  • [34] DÖRR W., VALVERDE-VAQUERO P., MARHAINE D„ SCHASTOK J., WISZNIEWSKA J., 2001 — U-Pb and Ar-Ar geochronology of rapakivi-type granites from the Mazury Complex, Poland. Journal of Conference Abstracts, 4, 1, EUG 11, Strasbourg. Cambridge Publications, Cambridge.
  • [35] DUCHESNE J.C., 1970 — Microtextures of Fe-Ti oxide minerals in the south Rogaland anorthositic complex (Norway). Annales de la Societe Geologique de Belgique, 93: 527-544.
  • [36] DUCHESNE J.C., 1972 — Iron-titanium oxide minerals in the Bjerkreim-Sokndal Massif (south-western Norway). J. Pe¬trol., 13: 57-81.
  • [37] DUCHESNE J.C., 1978 — Quantitative modeling of Sr, Ca, Rb and К in the Bjerkreim-Sokndal lopolith (SW Norway). Contrib. Miner. Petrol., 66: 175-184.
  • [38] DUCHESNE J.C., 1990 — Origin and evolution of monzonorites related to anorthosites. Schweizrische Mineralogische Petrographische Mitteilungen, 70: 189-198.
  • [39] DUCHESNE J.C., 1996 — Liquid ilmenite or liquidus ilmenite: a comment on the nature of ilmenite vein deposits. In: Pe¬trology and geochemistry of magmatic suites of rocks in the continental and oceanic crusts (ed. D. Demaiffe): 73-82. Univ. Libre de Bruxelles, Bruxelles.
  • [40] DUCHESNE J.C., 1999 — Fe-Ti deposits in Rogaland anorthosites (South Norway): geochemical characteristics and problems of interpretation. Miner. Deposita, 34, 2: 182-198.
  • [41] DUCHESNE J.C. (ed.), 2001 — The Rogaland Intrusive Massifs — an excursion guide. NGU report 2001.29. Geological Survey of Norway. 137p. Geol. Soc., Trondheim.
  • [42] DUCHESNE J.C., LIEGOIS J.P., VANDER AUWERA J., LONGHI J., 1999 — The crustal tongue melting model and the origin of massive anorthosites. Terra Nova, 11, 2/3: 100-105.
  • [43] DUCHESNE J.C., VANDER AUWERA J., WISZNIEWSKA J., 1998 — Geochemical evidence of a crustal derivation of the Suwałki anorthosites (NE Poland). EUROBRIDGE. Abstract. In: Anorogenic and other granites of Proterozoic Domains. Workshop. 4-5 June 1998, Tallin-Arbavere, Estonia: 15 p. Geol. Survey of Estonia, Estonia.
  • [44] DUCHESNE J.C., WILMART E., DEMAIFFE D., HERTOGEN J., 1989 — Monzonorites from Rogaland (southwest Norway): a series of rocks coeval but not comagmatic with massif-type anorthosites. Precambrian Res., 45: 111-128.
  • [45] DYMEK R.F., GROMET L.P., 1984 — Nature and origin of orthopyroxene megacrysts from the St-Urbain anorthosite massif, Quebec. Canad. Miner., 22: 297-326.
  • [46] DYMEK R.F., SCHIFFRIES C.M., 1987 — Calcic myrmekite: possible evidence for the involvment of water during the evolution of andesine anorthosite from St. Urbain, Quebec. Canad. Miner., 25: 291-319.
  • [47] EGLINGTON B.M., HARMER R.E., 1991 —Geodate2.2: a program for processing and regression of isotope data. Divi¬sion of earth, marine and atmospheric science and technology: 1-70. Pretoria.
  • [48] EMSLIE R.F., 1975 — High pressure pyroxene megacrysts from anorthositic rocks and their bearing on the genesis of the parent magma. Geol. Soc. Amer., Abstract with program, 7: 752-753.
  • [49] EMSLIE R.F., 1978 — Anorthosite massifs, Rapakivi granites and the late Proterozoic rifting of North America. Precambrian Res., 7: 61-98.
  • [50] EMSLIE R.F., 1985 — Proterozoic anorthosite massifs. In: The deep Proterozoic crust in the North Atlantic provinces (eds. A.C. Tobi, J.L.R. Tourest): 39-50. Proc. NATO Adv. Study Inst., Norway, 1984 Reidel: 39-50. Amsterdam.
  • [51] EMSLIE R.F., HUNT P.A., 1990 — Ages and petrogenetic significance of igneous mangerite-charnockite suites associa¬ted with massif anorhosites, Grenville Province. J. Geol., 98: 213-231.
  • [52] EMSLIE R.F., HAMILTON M.A., THERIAULT R.J., 1994 — Pedogenesis of a mid-Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) complex: isotopic and chemical evidence from the Nain Plutonic Suite. J. Geol., 102: 539-558.
  • [53] ESSER B.K., TUREKIAN K.K., 1993 — The osmium isotopic composition of the continental crust: Geochim. Cosmochim. Acta, 57: 3093-3104.
  • [54] FAURE G., POWELL J.L., 1972 — Strontium isotope geology. Springer-Verlag, Berlin.
  • [55] FORCE E.R., 1991 — The geology of titanium-mineral deposits. Geol. Soc. Amer. Sp. Paper, 259: 112 p.
  • [56] FOWLER K.S., 1930 — The anorthosite area of the Laramie Mountains, Wyoming. Part II. Petrographic and structural discussion. Am. J. Sei., 219: 373-403.
  • [57] FRAM M.S., LONGHI J., 1992 — Phase equilibria of dikes associated with Proterozoic anorthosite complexes. Amer. Miner., 77: 605-616.
  • [58] FROST B.R., L1NDSLEY D.H., 1991 — Occurrence of iron-titanium oxides in igneous rocks. In: Oxide minerals: their petrologic and magnetic significance. Rev. Miner., 25: 433-468.
  • [59] GEIST D .J., FROST C.D., KÖLKER A., 1990 — Sr and Nd isotopic constraints on the origin of the Laramie Anorthosite Complex, Wyoming. Amer. Miner., 75: 13-20.
  • [60] GHIORSO M.S., SACK R.O., 1991a — Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas. Contrib. Miner. Petrol., 108: 485-510.
  • [61] GHIORSO M.S., SACK R.O., 1991b — Thermochemistry of the oxide minerals. In: Oxide minerals: their petrologic and magnetic significance. Rev. Miner., 25: 221-264.
  • [62] HANCHAR J.M., MILLER C.F., 1993 —Zircon zonation patterns as revealed by cathodoluminescence and back scatte¬red electron images: Implications for interpretation of complex crustal histories. Chem. Geol., 110: 1-13.
  • [63] JACOBSEN S.B., WASSERBURG G.J., 1980 — Sm-Nd isotopic systematics of chondrites, Lunar Planet. Sei., 11:502-504.
  • [64] JAFFEY A.H., FLYNN K.F., GLENDENIN L.E., BENTLEY W.C., ESSLING A.M., 1971 — Precision measurements of half-lifes and specific activities of235U and 238U. Physical Rev. Ser. С, 4: 1889-1906.
  • [65] JARMOLOWICZ-SZULC К., 1990 — Dane geochronologiczne suwalskiego masywu anortozytowego. Arch. Miner.. 44, 2: 59-68.
  • [66] JĘDRYSEK M.O., 1990 — Isotope effects in geological systems. In: Course-book of isotope geology. Third School on Phyics of Minerals. Part I — Isotopes (ed. M.O. Jędrysek): 19—41. Wroclaw University and Com. Miner. Sc., Wroclaw.
  • [67] JUSKOWIAK 0., 1971 — Skały plutoniczne północno-wschodniej Polski. Biul. Inst. Geol., 245: 7-172.
  • [68] JUSKOWIAK O., 1993 — Podłoże krystaliczne Suwalszczyzny. Przewodnik LXIV Zjazdu PTG na Ziemi Suwalskiej: 16-28. Państw. Inst. Geol., Warszawa.
  • [69] JUSKOWIAK O., 1998 — Occurrence, structure and mineral diversity of rocks from the Suwałki Anorthosite Massif. In: Geology of the Suwałki Anorthosite Massif (Northeastern Poland) (eds. W. Ryka, M. Podemski). Pr. Państ. Inst. Geol., 61: 53-80.
  • [70] JUSKOWIAKOWA M., JUSKOWIAK О., 1990 — On the ortho- and clinopyroxene assemblage in the basic rocks of the Suwałki Massif (NE Poland). Arch. Miner., 46, 1/2: 5-17.
  • [71] KAJIWARA Y., KROUSE H.R., 1971 — Sulphur isotopic partitioning in metalic sulfide systems. Can. J. Earth Sci., 8: 1397-1408.
  • [72] KOLKER A., 1982 — Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis. Econ. Geol., 77: 1146-1158.
  • [73] KOZŁOWSKA A., 1989 — Występowanie i geneza millerytu w skałach suwalskiego masywu zasadowego. Arch. Miner., 43,2: 91-99.
  • [74] KOZŁOWSKA A., WISZNIEWSKA J., 1990 — Aspekty genetyczne tekstur i struktur minerałów kruszcowych w masywie suwalskim. Arch. Miner., 44, 2: 69-87.
  • [75] KOZŁOWSKI A., WISZNIEWSKA J., 2000 — Fluid inclusion study of jotunites from Suwałki and Sejny anorthosite in¬trusion — northeastern Poland. Abstract. Abstract Volume of the 31 IGC in Rio de Janeiro 6-17 August 2000.
  • [76] KOZŁOWSKI A., WISZNIEWSKA J., 2001a — The nelsonite problem: the origin by melt immiscibility. In: NGU Report no. 2001.042. — GEODE field workshop 8-12 July 2001. Rogaland anorthosite province, S. Norway (ed. A. Korneliussen: 71-81. NGU, Trondheim.
  • [77] KOZŁOWSKI A., WISZNIEWSKA J., 2001b — Phosphate and Silicate melt immiscibility in the Mazury Complex, Poland. Abstract volume of the SGA-SEG Meeting in Cracov, 15-20 August 2001. Balkema, Lisse-Abington-Exton (Pa)-Tokyo.
  • [78] KROGH Т.Е.,1973 — Alow contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta, 37: 485—494.
  • [79] KRZEMIŃSKI L., 1990 — Plagioclase-quartz symplektites in anorthosites of the Suwałki massif (NE Poland). Arch. Miner., 44, 2: 37-46.
  • [80] KRZEMIŃSKI L., TYDA R., WISZNIEWSKA J., 1988 — Mineralogie and geochemical study of ore-bearing apatite rocks (nelsonites) from the Suwałki Massif (NE Poland). Miner. Pol., 19: 35-54.
  • [81] KUBICKI S., 1984 — Mineralization in the crystalline basement of north-eastern Poland. Biul. Inst. Geol., 347: 49-54.
  • [82] KUBICKI S., RYKA W. (red.), 1982 — Atlas geologiczny podłoża krystalicznego polskiej części platformy wschodnioeuropejskiej. Wyd. Geol., Warszawa.
  • [83] KUBICKI S., SIEMIĄTKOWSKI J., 1979 — Mineralizacja kruszcowa suwalskiego masywu zasadowego. Biul. Inst. Geol., 316: 5-136.
  • [84] KUCHA H., 1982 — Haycockite andmooihoekite from titanomagnetite ores, Krzemianka, Poland. Miner. Pol., 13:27-31.
  • [85] KUCHA H., KWIECIŃSKA В., PIESTRZYŃSKI A., WIECZOREK A., 1979a — On the genesis of graphite from magnetite rocks of Krzemianka (NE Poland). Miner. Pol., 10, 81-88.
  • [86] KUCHA H., PIESTRZYŃSKI A., 1977 — Mineralogical and geochemical study of some spinels and ilmenites from basic rocks of NE Poland. Miner. Pol., 7: 51-56.
  • [87] KUCHA H., PIESTRZYŃSKI A., SALAMON W., 1978 — Geochemical and mineralogical study of sulphide minerals occurring in magnetite rocks of NE Poland. Miner. Pol., 8. 2: 23-37.
  • [88] KUCHA H„ PIESTRZYŃSKI A., SALAMON W., 1979b — Wyniki badań geochemiczno-mineralogicznych magnetytów ze skał zasadowych NE Polski. Pr. Miner., 54: 41—47.
  • [89] KULLERUD G., YUND R.A., MOH G.H., 1969 — Phase relations in the Cu-Fe-S, Cu-Ni-S, and Fe-Ni-S systems. In: Magmatic ore deposits (ed. H.D.N. Wilson). Econ. Geol. Monograph, 4: 323-343.
  • [90] LAFRANCE В., JOHN B.E., SCOATES J.S., 1996 — Syn-eplacement recrystallization and deformation microstructures in the Рое Mountain anorthosite, Wyoming. Contr. Miner. Petrol., 122: 431-440.
  • [91] LINDNER M., LEICH D.A., RUSS G.P., BAZAN J.M., BORG R.J., 1989—Direct determination of the half-life of 187Re. Geochim. Cosmochim. Acta, 53: 1597-1606.
  • [92] LINDSLEY D.H., 1981 — Some experiments pertaining to the magnetite-ulvöspinel miscibility gap. Amer. Miner., 66: 759-762.
  • [93] LISTER G.F., 1966 — The composition and origin of selected iron-titanium deposits. Econ. Geol., 61: 275-310.
  • [94] LONGHI J., FRAM M.S., VANDER AUWERA J., MONTIETH J.N., 1993 — Pressure effects, kinetics, and rheology of anorthositic and related magmas. Amer. Miner., 78: 1016-1030.
  • [95] LONGHI J., VANDER AUWERA J., FRAM M.S., DUCHESNE J.C., 1999 — Some phase equilibrium constraints on the origin of Proterozoic (Massif) anorthosites and related rocks. J. Petrol., 40: 339—362.
  • [96] LORENC M.W., WISZNIEWSKA J., 1999 — The Mazury Complex: one magmatic influx or more? Seventh EURO- BRIDGE Workshop "Between EUROBRIDGE and TESZ". Abstracts. 26-30 May, Szelment near Suwałki, Poland: 66-68. Państw. Inst. Geol., Warszawa.
  • [97] LUDWIG K.R., 1980 — Calculation of uncertainties of U-Pb isotope data. Earth Planet. Sei. Let., 46: 212-220.
  • [98] LUDWIG K.R., 1991 — PbDat version 1.23.
  • [99] LUDWIGK.R., 1994 — ISOPLOT: a plotting and regression program for radiogenic-isotope data, version2.80. U.S. Geological Survey Open-File Report, 40: 91 -445.
  • [100] LUDWIG K.R., 1999 — Isoplot/Ex version 2.00: A geochronological toolkit for Microsoft Exel. Berkeley Geochronolc Center Sp. Pub., la: 1-46.
  • [101] MARSHALL D.J., 1988 — Cathodoluminescence of geological materials. Unwins, Hymen, Londres.
  • [102] MAQUIL R., DUCHESNE J.C., 1984 — Geothermometrie par les pyroxenes et mise en place du massif anorthositiq d'Egersund-Ogna (Rogaland, Norvege meridionale). Ann. Soc. Geol. Belg., 107: 21-49.
  • [103] McCANDLES Т.Е., RUIZ J., 1993 — Rhenium-osmium evidence for regional mineralization in southwestern Noi America. Science, 261: 1282—1286.
  • [104] McINTYRE G.A., BROOKS A.C., COMPSTON W., TUREK A., 1966 — The statistical assessment of Rb-Sr isochror J. Geophys. Res., 71: 5459-5468.
  • [105] MICHARD A., GURRIET P., SOUDANT, M., ALBAREDE F., 1985—Nd isotopes in French Phanerozoic shales: external vs. internal aspects of crustal evolution. Geochim. Cosmochim. Acta, 49: 601-610.
  • [106] MISARA K.G., FLEET M.E., 1973 — The chemical composition of synthetic and natural pentlandite assemblages. Eco Geol., 68.
  • [107] MITCHELL J.N., SCOATES J.S., FROST C.D., 1995 — High-Al gabbros in the Laramie Anorthosite Complex, Wyoming implications for the composition of melts parental to Proterozoic anorthosite. Contrib. Miner. Petrol., 119: 166-180.
  • [108] MITCHELL J.N., SCOATES J.S., FROST C.D., KÖLKER A., 1996—The geochemical evolution of anorthosite residual magmas in the Laramie Anorthosite Complex, Wyoming. J. Petrol., 37: 637-660.
  • [109] MORGAN J.W., LOVERING J.F., FORD R.J., 1968 — Rhenium and non-radiogenic osmium in Australian molybdenite and other sulphide minerals by neutron activation analysis. J. Geol. Soc. Australia, 15, 2: 189-194.
  • [110] MORGAN J.W., STEIN H.J., HANNAH J.L., MARKEY R.J., WISZNIEWSKA J., 2000 — Re-Os study of Fe-Ti-V oxide and Fe-Cu-Ni sulfide deposits, Suwałki Anorthosite Massif, Northeast Poland. Miner. Deposita, 35: 391-401.
  • [111] MORSE S.A., 1982 — A partisan review of Proterozoic anorthosites. A mer. Miner., 67: 1087-1100.
  • [112] NEJBERT K., 1999 — Spinele intruzji suwalskiej i ich rozwój na tle paragenezy minerałów rudnych: 1-203. Praca doktorska. Arch. Wydz. Geol. UW, Warszawa.
  • [113] NEJBERT K, SPECZIK S., 1992 — Spinele szeregu spinel-hercynit z magnetytów i ilmenitów intruzji suwalskiej. Arch. Miner., 48. 1/2: 61-80.
  • [114] NEJBERT K., WISZNIEWSKA J., 1994 — The ore mineralization in the Jezioro Okrągłe region, Suwałki anorthosite massif (NE Poland). Arch. Miner., 50, 1: 13-32.
  • [115] OWENS В.E., DYMEK R.F., 1992 — Fe-Ti-P-rich rocks and massif anorthosite: problems of interpretation illustrated from the Labrieville and St-Urbain plutons, Quebeck. Canad. Miner., 30: 163-190.
  • [116] OWENS B.E., DYMEK R.F., 1995 — Significance of pyroxene megacrysts for massif anorthosite pedogenesis: constraints from the Labrieville, Quebec, pluton. Amer. Miner., 80: 144-161.
  • [117] OWENS B.E., DYMEK R.F., TUCKER R.D., BRANNON J.C., PODOSEK F.A., 1994 - Age and radiogenic isotopic compo¬sition of a late- to post-tectonic anorthosite in the Grenville Province: the Labrieville massif, Quebec. Lithos, 31:189-206.
  • [118] OWENS B.E., ROCKOW M.W., DYMEK R.F., 1993 — Jotunites from Grenville Province, Quebec: petrological characteristics and implications for massif anorthosite pedogenesis. Lithos, 30: 57-80.
  • [119] PARECKI A., 1998—Geological structure of the Krzemianka and Udryń deposits. In: Geology of the Suwałki Anorthosite Massif (Northeastern Poland) (eds. W. Ryka, M. Podemski). Pr. Państ. Inst. Geol., 161: 123-136.
  • [120] PHILPOTTS A.R., 1967 — Origin of certain iron-titanium oxide and apatite rocks. Econ. Geol., 62: 303-315.
  • [121] RAMDOHR P., 1966 — The ore minerals and their intergrowths. Pergamon Press, London-Haidelberg.
  • [122] ROEDDER E., 1979 — Silicate liquid immiscibility in magma. In: The evolution of the igneous rocks (ed. H.S. Yoder). Fi¬ftieth Anniversary Perspectives: 15-57. Princeton University Press, Princeton.
  • [123] RYKA W., 1968 — The charnockites of the crystalline basement in the north-eastern part of the Polish lowland. Biul. Inst. Geol., 237: 57-63.
  • [124] RYKA W., 1979 — On the origin of anorthosites and associated ores of the Suwałki massif (northeastern Poland). Biul. Inst. Geol., 318: 11-24.
  • [125] RYKA W., 1984 — Precambrian evolution of the East-European Platform in Poland. In: Geology of Poland. Biul. Inst. Geol.,Ml: 17-28.
  • [126] RYKA W., 1993a —Fundament krystaliczny Suwalszczyzny. Prz. Geol., 8: 546-551.
  • [127] RYKA W., 1993b — Crystalline basement of the Polish part of the Baltic Sea. Kwart. Geol., 37, 3: 329-344.
  • [128] RYKA W., 1998 —Views on the origin of the Suwałki Anorthosite Massif. In: Geology of the Suwałki Anorthosite Massif (Northeastern Poland) (eds. W. Ryka, M. Podemski). Pr. Państw. Inst. Geol., 161: 161-170.
  • [129] RYKA W., PODEMSKI M. (eds.), 1998 — Geology of the Suwałki Anorthosite Massif (Northeastern Poland). Pr. Państw. Inst. Geol., 161: 5-194.
  • [130] RYKA W., WALEŃCZAK Z., 1987 — Ślady organizmów w archaicznej strukturze Sejn. Kwart. Geol., 31: 15^12.
  • [131] SALAMON W., BANAŚ M., 2000 — Przejawy mineralizacji: Au-Ag, Pd-Pt-Te, Pb-Se w złożu rud tytanomagnetytowych „Krzemianka" (suwalski masyw zasadowy). Prz. Geol., 2, 48: 120-121.
  • [132] SCHÄRER U., 1991 — Rapid continental crust formation at 1.7 Ga from a reservoir with chondritic isotope signatures, ea¬stern Labrador. Earth Planet. Sc. Let., 102: 110-133.
  • [133] SCHÄRER U., WILMART E., DUCHESNE J.C., 1996 — The short duration and anorogenic character of anorthosite magmatism: U-Pb dating of the Rogaland complex, Norway. Earth Planet. Sc. Let., 139: 335-350.
  • [134] SCHIELLERUP H., LAMBERT D.D., PRSTVIK Т., ROBINS В., McBRIDE J.S., LARSEN R.B., 2000 — Re-Os isoto¬pic evidence for a lower crustal origin of massif-type anorthosites. Nature, 1.
  • [135] SCOATES J.S., CHAMBERLAIN K.R., 1997 — Orogenic to postorogenic origin for the 1.76 Ga Horse Creek Anorthosite Complex, Wyoming, USA. J. Geol., 105: 331-343.
  • [136] SCOATES J.S., FROST C.D., 1996 — A strontium and neodymium isotopic investigation of the Laramie anorthosites, Wyoming, USA: Implications for magma chamber processes and the evolution of magma conduits in Proterozoic anorthosites. Geochim. Cosmochim. Acta, 60: 95-107.
  • [137] SHEN J.J., PAPANASTASSIOU D.A., WASSERBURG G.J., 1996 — Precise Re-Os determinations and systematics of iron meteorites. Geochim. Cosmochimi. Acta, 60: 2887-2900.
  • [138] SHIREY S.B., WALKER R.J., 1998 — The Re-Os isotope system in cosmochemistry and high temperature geochemistry. Ann. Revi. Earth Planet. Sc., 26: 423-500.
  • [139] SIEMIĄTKOWSKI J., 1970 — Automorficzne wrostki tytanonośnych magnetytów w piroksenach skał masywu suwalskiego. Kwart. Geol., 14, 1: 1-8.
  • [140] SIEMIĄTKOWSKI J., 1976—Grafit w skałach suwalskiej intruzji norytowo-anortozytowej. Prz. Geol., 4,24:212-213.
  • [141] SIMMON E.C., HANSON G.N., 1978 — Geochemistry and origin of massif-type anorthosites. Contrib. Miner. Petrol., 66,2: 119-135.
  • [142] SKRIDLAITE G., WISZNIEWSKA J., DUCHESNE J.C., 2000 — Rapakivi granite-anorthosite suite in NE Poland and southern Lithuania. The Abstract Volume of the 31 IGC in Rio de Janeiro 6-17 August 2000.
  • [143] SKRIDLAITE G., WISZNIEWSKA J., DUCHESNE J.C., w druku — Rapakivi granites and related rocks in NE Poland and southern Lithuania: western part of the East European Craton. Prec. Research.
  • [144] SMOLIAR M.I., WALKER R.J., MORGAN J.W., 1996 — Re-Os ages of group IIA, IIIA, IVA and IVB iron meteorites. Science, 271: 1099-1102.
  • [145] SPECZIK S., 1990 — Distribution of vanadium in ore minerals of the Suwałki massif (Northeastern Poland). Arch. Miner., 44, 2: 19-36.
  • [146] SPECZIK S., WISZNIEWSKA J., DIEDEL R., 1988 — Minerals, exsolution features and geochemistry of Fe-Ti ores of the Suwałki district (North-East Poland). Miner. Deposita, 23: 200-210.
  • [147] SPECZIK S., WISZNIEWSKA J., ŚNIEŻEK E., 1980 — O mineralizacji kruszcowej intruzji suwalskiej w rejonie Udrynia. Arch. Miner., 36: 85-97.
  • [148] STACEY J.S., KRAMERS J.D., 1975 — Approximation of terrestrial lead isotope evolution by a two stage model. Earth Planet. Sei. Let., 26: 207-221.
  • [149] STEIGER R.H., JÄGER E., 1977 — Subcommission on geochronology: convention of the use of decay constants in geo- and cosmochronology. Earth Planet. Sc. Let., 36: 359-362.
  • [150] STEIN H.J., MORGAN J.W., HANNAH J.L., MARKEY R.J., WISZNIEWSKA J., 1999 —Crustal origin for oxide-sulphide ores and anorthosite: Re-Os evidence from the Suwałki Massif, Northeast Poland. Journal of Conference. Abs¬tracts, 4, 1: 688. EUG 10, Strasbourg.
  • [151] STEIN H.J., MORGAN R.J., MARKEY R., WISZNIEWSKA J., 1998b — A Re-Os study of the Suwałki Anorthosite Massif. Abstract. In: GAC-MAC Annual Meeting in Toronto, Canada, October 1998. CGS, Ottawa.
  • [152] STEIN H.J., SUNDBLAD K, MARKEY R.J., MORGAN J.W., 1995 — Re-Os ages for Precambrian molybdenites from Kuittila, Finland and Kabeliai, Lithuania: In: Mineral deposits: from their origin to their environmental impacts (ed. J. Pasava, B. Kribek, K. Zäk). Proceedings of the Third Biennial SGA (Society for Geology Applied to Mineral Deposits) Meeting, 28-31 August 1995, Prague, Czech Republic: 525-530.
  • [153] STEIN H.J., SUNDBLAD K., MARKEY R.J., MORGAN J.W., MOTUZA G., 1998a — Re-Os ages forArchean molibdenite and pyrite, Kuittila-Kivisou, Finland and Proterozoic molybdenite, Kabeliai, Lithuania: testing the chronome¬ter in a metamorphic and metasomatic setting. Miner. Deposita, 33: 329-345.
  • [154] SUNDBLAD K, MANSFELD J., MOTUZA G., AHL M., CLAESSON S., 1994 — Geology, geochemistry and age of a Cu-Mo-bearing granite at Kabeliai, southern Lithuania. Miner. Petrol., 50: 43-57.
  • [155] SUZUKI К., LU Q., SHIMIZU H., MASUDA А., 1993 — Reliable Re-Os age for molybdenite. Geochim. Cosmochim. Acta, ST. 1625-1628.
  • [156] ŚNIEŻEK E., WISZNIEWSKA J., 1981 — Mineralizacja na kontaktach z granitoidami i w strefach spękań w rejonie Udrynia. Prz. Geol., 6: 281-293.
  • [157] TATARATA M., 1987 — O mineralizacji kruszcowej masywu suwalskiego w rejonie Jeleniewa. Arch. Miner., 42:43-57.
  • [158] TAYLOR H.P., 1968 — The oxygen isotope geochemistry of igneous rocks. Contrib. Miner. Petrol., 19: 1—71.
  • [159] TAYLOR S.R., CAMPBELL I.H., McCULLOCH M.T., McLENNAN S.M., 1984 — A lower crustal origin for massif-type anorthosites. Nature, 311: 372-374.
  • [160] TOPLIS M.J., LIBOUREL G., CARROL M.R., 1994 —The role of phosphorus in crystallization processes of basalts: An experimental study. Geochim. Cosmochim. Acta, 58: 797-810.
  • [161] VAN BREEMEN 0„ HIGGINS M.D.. 1993 — U-Pb zircon age of the southwest lobe of the Havre-Saint Pierre anorthosite complex, Grenville province, Canada. Lithos, 30: 1453-1457.
  • [162] VANDER AUWERA J., BOLOGNEG., ROELANDTS I., DUCHESNE J.C., 1998a—Inductively coupled plasma-mass spectrometry (ICP-MS) analysis of silicate rocks and minerals. Annales de la Societe Geologique de Belgique.
  • [163] VANDER AUWERA J., DUCHESNE J.C., 1996 — Petrology and geochemistry of the noritic Hogstad layered body (Rogaland, SW Norway): implications for the nature of the andesine anorthosite parent magma. In: Petrology and geochemistry of magmatic suites of rocks in the continental and oceanic crust (ed. D. Demaiffe): 111-127. Univ. Libre de Bruxelles, Bruxelles.
  • [164] VANDER AUWERA J., LONGHIJ., 1994—Experimental study of a jotunite(hypersthenemonzodiorite): constraints on the parent magma composition and crystalization conditions (P, T, /о2) of the Bjerkreim-Sokndal layered intrusion. Contrib. Miner. Petrol., 118: 60-78.
  • [165] VANDER AUWERA J., LONGHI J., DUCHESNE J.C., 1993 — Jotunites from the Rogaland Province (Norway): con¬straints from experimental data and the partitioning of Sr (plag/melt) and Cr (opx/melt). EOS, 74: 659.
  • [166] VANDER AUWERA J., LONGHI J., DUCHESNE J.C., 1998b — A liquid line of descent of the jotunite (hyperstene monzodiorite) suite. J. Petrol., 39: 439^168.
  • [167] WASSERBURG I., JACOBSEN S.B., DE PAOLO D„ McCULLOCH M„ WEN Т., 1981 — Precise determination of Sm/Ndratios, Sm andNd isotopic aboundances in standart solution. Geochim. Cosmochim. Acta,45:2311-2323.
  • [168] WHITE J.R., CHAPPELL B.W., 1977 — Ultrametamorphism and granitoid genesis. Tectonophysics, 43: 7-22.
  • [169] WIEBE R.A., 1992 — Proterozoic anorthosite complexes. In: Proterozoic crustal evolution (ed. K.C. Condie): 215-261. Elsevier, Amsterdam.
  • [170] WISZNIEWSKA J., 1993a — Złoże rudy ilmenitowo-magnetytowej Udryń (suwalski masyw anortozytowy). Prz. Geol., 41, 8: 565-567.
  • [171] WISZNIEWSKA J., 1993b — Mineralizacja kruszcowa w skałach masywu suwalskiego. Przewodnik LXIV Zjazdu PTG na Ziemi Suwalskiej: 29-36. Państw. Inst. Geol., Warszawa.
  • [172] WISZNIEWSKA J., 1996 — Application of cathodoluminescence method to ore-apatite rocks from the Suwałki basic massif (NE Poland). Abstract. In: International Conference on Cathodoluminescence and Related Techniques in Geosciences and Geomaterials. 2—4 September 1996, Nancy, France: 167-168. SGA, Nancy.
  • [173] WISZNIEWSKA J., 1997 — Nelsonity suwalskie — nowe dane mineralogiczne i geochemiczne. Prz. Geol., 45. 9: 883-892.
  • [174] WISZNIEWSKA J. (red.), 1998a — Udryń. Prof. Głąb. Otw. Wiert. Państw. Inst. Geol., 90: 149p.
  • [175] WISZNIEWSKA J., 1998b — Mineralogy of Fe-Ti-V ores of the Suwałki Anorthosite Massif (SAM), northeast Poland. In: Geology of the Suwałki Massif—NE Poland (eds. W. Ryka, M. Podemski). Pr. Państw. Inst. Geol., 161:137-150.
  • [176] WISZNIEWSKA J., 2000a — Strontium isotope ratios and REE geochemistry in the Suwałki anorthosites, NE Poland. Geol. Quart., 44, 2: 183-186.
  • [177] WISZNIEWSKA J., 2000b — Zastosowanie metody izotopowej Re-Os w badaniach złóż rud metali. PTG Prace Sp., 16: 105-119.
  • [178] WISZNIEWSKA J„ CLAESSON S, STEIN H., VANDER AUWERA J., DUCHESNE J.C., 2002a —The north-eastern Polish anorthosite massifs: petrological, geochemical and isotopic evidence for a crustal derivation. Terra Nova (w druku).
  • [179] WISZNIEWSKA J., DUCHESNE J.C., CLAESSON S„ STEIN H.J., MORGAN J.W., 1999 — Geochemical constraints on the origin of the Suwałki Anorthosite Massif and related Fe-Ti-V ores, NE Poland. Journal of Conference. Abs¬tracts, 4, 1: 686. EUG 10, Strasbourg.
  • [180] WISZNIEWSKA J., DUCHESNE J.C., DÖRR W., 2002b—Titanomagnetite and Cu-Co-Ni sulfide mineralization in the Suwałki and Sejny mafic massifs (NE Poland). Abstract vol. of 11th Quandrennial Symposium of the International Association on the Genesis of Ore Deposits (IAGOD) and GEOCONGRESS 2002. "Sedimentary, Magmatic and Ore-Forming Responses to Compressional and Extensional Tectonics: A Focus on Africa", 22-26 July 2002. Windhoek, Namibia (w druku).
  • [181] WISZNIEWSKA J., DUCHESNE J.C., STEIN H.J., JĘDRYSEK M.O., 2001 — Petrologic and isotope evidence for crustal source of ore-bearing Suwałki Anorthosites, Poland. In: Mineral deposits at the beginning of the 2151 century (ed. A. Piestrzyński et al.). Proceedings of the Joint Sixth Biennial SGA-SEG Meeting. 26-29 August 2001, Kraków, Poland: 635-638. Balkema.
  • [182] WISZNIEWSKA J., JĘDRYSEK M.O., 1998 — Wstępne wyniki badań izotopowych 5 l3C i 534S nad genezą mineralizacji siarczkowej, węglanowej i grafitowej w skałach zasadowych w masywie suwalskim (NE Polska). Prz. Geol.. 46, 4: 359-364.
  • [183] WISZNIEWSKA J., KOZŁOWSKI A., 1999 — Fluid inclusions in apatite from nelsonites of the Suwałki intrusion, NE Poland. Miner. Soc. Pol. Sp. Papers, 14: 137-139.
  • [184] WISZNIEWSKA J., NEJBERT К., 1995 — Origin of the ore-bearing apatite veins (nelsonites) in the Suwałki Anorthosite Massif, NE Poland. Abstract. In: Precambrian of Europe: stratigraphy, structure, evolution and mineralization (ed. V.A. Glebovitsky, A.B. Kotov). MAEGS 9,4-15 September 1995, St. Petersburg, Russia: 128-129. Russian Academy of Science, St. Petersburg.
  • [185] WISZNIEWSKA J., STEIN H., 2000 — Re-Os ages for the Suwałki ore deposits, NE Poland. Zastosowanie izotopów w geologii. Ogólnopolska Konferencja. Kraków 12 lutego 2000. PAN, Kraków.
  • [186] WISZNIEWSKA J.,WYBRANIEC S., BOGDANOVA S., 2000 — Combined geological and geophysical characteristics of AMCG complexes in NE Poland. Abstract. The Abstract Volume of the 31IGC in Rio de Janeiro 6-17 August 2000.
  • [187] WYBRANIEC S., CIEŚLA E., PETECKI Z., 1993 — Badania geofizyczne obszaru suwalskiego. Przewodnik LXIV Zjazdu PTG na Ziemi Suwalskiej: 7-15. Państw. Inst. Geol., Warszawa.
  • [188] XUE S., MORSE S.A., 1994 — Chemical characteristics of plagioclase and pyroxene megacrysts and their significance to the petrogenesis of the Nain anorthosites. Geochim. Comsmochim. Acta, 58: 4317—4331.
  • [189] YOUND R.A., KULLERUD G„ 1966 —Thermal stability of assambleges in the Cu-Fe-S system. J. Petrol., 7, 3.
  • [190] ZNOSKO J., 1973 — Budowa geologiczna północno-wschodniej Polski. Przewodnik XLV Zjazdu PTG na Ziemi Suwalsko-Augustowskiej: 11-25. Państw. Inst. Geol., Warszawa.
  • [191] ZNOSKO J., 1998 — Tectonic atlas of Poland. Państw. Inst. Geol., Warszawa.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH5-0023-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.