PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of chemical structure of aliphatic polyesters on adhesion and growth of osteoblast-like MG63 cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Degradable copolymers of glycolide and L-lactide (PGLA), glycolide and epsylon-caprolactone (PGCap) and terpolymer of glycolide, L-lactide and epyslon-caprolactone (PGLCap) were synthesized by ring opening polymerization using zirconium acetylacetonate (Zr(acac)4) as a biocompatible initiator. The structure and physicochemical surface properties of the materials were studied by NMR spectroscopy, gel permeation chromatography, X-ray photoelectron spectroscopy and senssile drop. The interaction of polymeric films produced by slip-casting with osteoblast-like MG63 cells were tested in vitro. The number of adhering cells, their shape and the size of cell-material contact area were evaluated from day 1 to 7 after seeding. It was found that the cell behaviour on PGLA and PGLCap was very similar as on control tissue culture polystyrene (TCPS). On PGCap, however, the number of initially adhering cells was significantly lower (by 84% than on TCPS) and cell spreading area smaller (by 50% than on TCPS). On day 7 after seeding, these cells reached the lowest population density (by 30% smaller than TCPS). We hypothesize that the lower cell adhesion and growth of MG63 cells on PGCap was caused by the highest hydrophobicity of this material among all studies samples.
Słowa kluczowe
Rocznik
Strony
14--17
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, 30 Mickiewicza Ave., 30-059 Kraków, Poland
autor
  • Dept. of Growth and Diffrentiation of Cell Populations, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska1083, 142 20 Prague 4 - Krc, Czech Republic
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, 30 Mickiewicza Ave., 30-059 Kraków, Poland
autor
  • Dept. of Growth and Diffrentiation of Cell Populations, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska1083, 142 20 Prague 4 - Krc, Czech Republic
autor
  • Dept. of Growth and Diffrentiation of Cell Populations, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska1083, 142 20 Prague 4 - Krc, Czech Republic
  • Polish Academy of Sciences, 34/20 Curie-Skłodowskiej St., 41-819 Zabrze, Poland
autor
  • Polish Academy of Sciences, 34/20 Curie-Skłodowskiej St., 41-819 Zabrze, Poland
Bibliografia
  • [1] Seal B.L., Otero T.C., Panitch A. Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering R. 34 (2001), 147-230
  • [2] Lysaght M., Hazlehurst A., Tissue engineering: the end of the beginning. Tissue Engineering 10 (2004), 309-320
  • [3] Li S., Molina I., Martinez M.B., Vert M., Hydrolytic and enzymatic degradations of physically crosslinked hydrogels prepared from PLA/PEO/PLA triblock polymers. J. Mat. Sci.: Mat. In Med., 13 (2002) 81-86
  • [4] Dobrzyński P., Kasperczyk J., Janeczek H., Bero M., Synthesis of biodegradable glycolide/L-lactide copolymers using iron compounds as initiators, Polymer, 43 (2002), 2595-2601
  • [5] Dobrzyński P., Kasperczyk J., Bero M., Applications of calcium acetylacetonate to polymerization of glycolide and copolymerization of glycolide with e-carrolactone and L-lactide, Macromolecules, 32 (1999), 4735
  • [6] Dobrzyński P., Kasperczyk J., Janeczek H., Bero M., Synthesis of biodegradable copolymers with the use of low toxic zirconium compounds. 1, Copolymerization of glycolide with L-lactide initiated by Zr)(Acac)4, Macromolecules, 34 (2001), 5090
  • [7] Yang S., Leong K.-F., Du Z., Chua C.-K., The design of scaffold for use of tissue engineering. Part I. Traditional factors. Tissue Engineering, 7 (20010, 697-689
  • [8] Bacakova L., Lapcikova M., Kubies D., Rypacek F., Adhesion and growth of rat aortic smooth muscle cells on lactide-based polymers. Adv. Exp. Med. Biol., 534 (2003), 179-89
  • [9] Dobrzyński P., Synthesis of biodegradable copolymers with the use of low toxic zirconium compounds. 3, Synthesis and chain-microstructure analysis of terpolymer obtained from L-lactide, glycolide and e-caprolactone initiated by Zirconium (IV) Acetylacetonate. J. Polym. Sci, part A: Polym Chem, 40 (2002), 3129-3143
  • [10] Pamuła E., De Cupere V., Dufrene Y., Rouxhet P., Nanoscale organization of adsorbed collagen: influence of substrate hydrophobicity and adsorption time. J. Coll. Interface Sci., 271 (2004), 80-91
  • [11] Perego G., Preda P., Pasquinelli G., Curti T., Freyrie A., Cenni E.: Functionalization of poly-L-lactic-co-epsilon-caprolactone: effects of surface modification on endothelial cell proliferation and hemocompatibility. J. Biomater. Svi. Polym. Ed., 14 (2003), 1057-1075
  • [12] Cheng Z., Teoh S.H.: Surface modification of ultra thin poly (epsilon-caprolactone) films using acrylic acid and collagen. Biomaterials, 25 (2004), 1991-2001
  • [13] Hsu S.H., Tang C.M., Lin C.C.: Biocompatibility of poly(-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation. Biomaterials, 25 (2004), 5593-5601
  • [14] Bacakova L., Walachova K., Svorcik V., Hnatowitz V.: Adhesion and proliferation of rat vascular smooth cells (VSMC) on polyethylene implanted with O(+) and C(+) ions. J. Biomater. Sci. Polym. Ed 12 (2001), 817-834
  • [15] Thapa A., Webster T.J., Haberstroh K.M.: Polymers with nano-dimensional surface features enhance bladder smooth muscle cell adhesion. J. Biomed. Mater. Res., 67A (2003), 1374-1383.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH5-0017-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.