Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
An application of fuzzy logic in interpretation of petrophysical properties of reservoir rocks
Języki publikacji
Abstrakty
Przedstawiona praca jest wstępnym opracowaniem metody obliczeniowej opartej na logice rozmytej (ang. fuzzy logic). Przedstawiono w niej podstawowe pojęcia używane w logice rozmytej oraz działania na zbiorach rozmytych, których znajomość konieczna jest do stworzenia rozmytego systemu wnioskującego. Zaprezentowano działanie takiego modelu na laboratoryjnych danych doświadczalnych.
The paper presents initially works due to new calculation method supported on fuzzy logic. Base fuzzy logic definitions and operations on fuzzy classes are reviewed as well as a proof of creation proposal system in fuzzy logic. This model applied to petrophysical laboratory data is described and discussed.
Czasopismo
Rocznik
Tom
Strony
305--314
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
Bibliografia
- [1] Consonni et al.: Interval and fuzzy kriging techniques applied to geological and geophysical variables. Soft computing for reservoir characterization and modeling., Physica-Verlag, 80, p.73-104, 2002.
- [2] Cuddy S.J., Glover P.W.J.: The application of fuzzy logic and genetic algorythms to reservoir characterization and modeling. Soft computing for reservoir characterization and modeling., Physica-Verlag, 80 p. 219-242, 2002.
- [3] Demicco R.V., Klir G.J.: Stratigraphic simulations using fuzzy logic to model sediment dispersal. Journal of Petroleum Science and Engineering, v. 31, Issue 2-4, p. 135-155, 2001.
- [4] Finol J. et al.: A rule based fuzzy model for the prediction of petrophysical rock parameters. Journal of Petroleum Science and Engineering, v. 29, Issue 2, p. 97-113, 2001.
- [5] Finol J., Xu-Dong Jing: Permeability prediction in shaly formations: the fuzzy modeling approach. Geophysics 67, Issue 3, p. 817- 829, 2002.
- [6] Finol J. Xu-Dong Jing: Predicting Petrophysical parameters in a fuzzy environment. Soft computing for reservoir characterization and modeling., Physica-Verlag, 80, p. 183-218, 2002.
- [7] Garrouch A.A., et al.: Development of an expert system for underbalanced drilling using fuzzy logic. Journal of Petroleum Science and Engineering, v. 31, Issue 1, p. 23-39.
- [8] Janakirman K.K., Konno M.: Cross-borehole geological interpretation model based on a fuzzy neural network and geotomography. Geophysics 67, Issue 4, p. 1177-1183, 2002.
- [9] Jong-Se Lim: Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea. Journal of Petroleum Science and Engineering, v. 49, Issue 3-4, p. 182-192, 2005.
- [10] Kamali M.R., Mirshady A.A.: Total organic carbon content determined from well logs using DlogR and Neuro Fuzzy techniques. Journal of Petroleum Science and Engineering, v. 45, Issue 3-4, p. 141-148, 2004.
- [11] Mihailow V. et al.: Application of artificial intelligence for Euler solution clustering. Geophysics 68, Issue 1, p. 168-180, 2003.
- [12] Nikravesh M., Aminzadeh F.: Mining and fusion of petroleum data with fuzzy logic and neural network agents. Journal of Petroleum Science and Engineering, v. 29, Issue 3-4, p. 221-238. 2001.
- [13] Paasche H., et al.: Integration of diverse physical - property models: Subsurface zonation and petrophysical parameter estimation based on fuzzy c-means cluster analyses. Geophysics 71, Issue 3, p. 33-44, 2006.
- [14] Piegat A.: Modelowanie i sterowanie rozmyte. Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999.
- [15] Piegat A.: Fuzzy modeling and control. ISBN 3-7908, p. 1385-90, 200L
- [16] Rutkowska D., Piliński M., Rutkowski L.: Sieci neuronowe; algorytmy genetyczne i systemy rozmyte. PWN 1997.
- [17] Rutkowski L.: Filtry adaptacyjne i adaptacyjne przetwarzanie sygnałów. WN-T, Warszawa 1994.
- [18] da Silva H.V. et al.: Leak detection in petroleum pipelines using a fuzzy system. Journal of Petroleum Science and Engineering, v. 49, Issue 3-4, p. 223-238, 2005.
- [19] Shyllon et al.: Litho-seismic data handling for hydrocarbon reservoir estimate: fuzzy system modelling approach. Journal of Petroleum Science and Engineering, v. 31, Issue 2-4, p. 165-173, 2001.
- [20] Soto R.B. et al.: How to improve reservoir characterization models using intelligent systems. Soft computing for reservoir characterization and modeling., Physica-Verlag, 80, p. 387-418, 2002.
- [21 ] Wong K. W. et al.: The use of soft computing techniques as data preprocesing and postprocessing in permeability determination from well log data. Soft computing for reservoir characterization and modeling., Physica-Verlag, 80, p. 243-272, 2002.
- [22] Wong P.M. et al.: Intelligent reservoir characterization. Soft computing for reservoir characterization and modeling., Physica-Verlag, 80, p. 3-12, 2002.
- [23] Zadeh L.A.: Fuzzy sets. Information and Control, p. 338-353, 1965.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH5-0011-0077