[Engineering of Biomaterials, 38-43, (2004), 13]

BIOASORBABLE OSTEOFIXATION USED DEVICES IN 165 CRANIAL AND MAXILLOFACIAL CASES: A MULTICENTER REPORT

Nureddin Ashammakhi*, Dominique Renier**, Eric Arnaud**, Daniel Marchac**, Milomir Ninkovic***, David Donaway****, Barry Jones****, Willy Serlo****, Kari Laurikainen*****, Pertti Törmälä*, Timo Waris******

^^^^LINVATEC BIOMATERIALS LTD., TAMPERE, FINLAND.
*******DEPARTMENT OF SURGERY, OULU UNIVERSITY HOSPITAL,
OULU, FINLAND.

Abstract

Bioabsorbable osteofixation devices were developed to avoid problems associated with metals. Bioabsorbable devices are mostly made of the polymers polylactide (PLA), polyglycolide (PGA) and their copolymers (PLGA and P(L/DL)LA). Using the technique of self-reinforcement of bioabsorbable materials, it is possible to manufacture osteofixation devices with ultra high strength. Self-reinforced (SR) polyglycolide-co-polylactide (SR-PLGA) 80/20 was selected to make devices (BiosorbTM PDX) for this study because of its favorable degradation characteristics. The aim of this study was to evaluate the efficacy of using SR-PLGA (BiosorbTM) plates and screws in the fixation of osteotomies in craniomaxillofacial (CMF) surgery. In a prospective study, 165 patients (161 children and 4 adults) were operated on in four EU centers (Paris, Innsbruck, London and Oulu) from May 1st, 1998 to January 31st, 2002. Indications included correction of dyssynostotic deformities (n=159), reconstruction of bone defects following trauma (n=2), tumor removal (n=2), and treatment of encephalocoele (n=2). Plates used were 0.8, 1 or 1.2 mm thick and screws had an outer (thread) diameter of 1.5 or 2 mm and a length of 4, 6 or 8 mm. Tacks had an outer diameter of 1.5 or 2 mm and a length of 4 or 6 mm. Intraoperatively the devices were easy to handle and apply and provided stable fixation apart from two cases. Postoperative complications occurred in 12 cases (7.3%), comprising infection (n=6), bone resorption (n=4), diabetes insipidus (n=1). delayed skin wound healing/skin slough (n=2), and liquorrhea (n=1). Accordingly, SR-PLGA 80/20 (Biosorb) plates and screws can be used safely and with favorable outcome in corrective cranioplasties,

Acknowledgements

Research funds from The Technology Development Center in Finland (TEKES, 90220), The European Commission (Biomedicine and Health Programme, European Union Demonstration Project BMH4-98-3892 and R&D Project QLRT-2000-00487) and The Academy of Finland (Project 37726 and 73948) are greatly appreciated.

.

INVESTIGATION OF THE EFFECT OF CIPROFLOXACIN-RELEASING BIOABSORBABLE IMPLANT ON STAPHYLOCOCCUS EPIDERMIDIS ATTACHMENT AND BIOFILM FORMATION IN VITRO

Sanna-Mari Niemelä*, Irma Ikäheimo**, Markku Koskela**, Minna Veiranto***, Esa Suokas****, Pertti Törmälä***, Timo Waris*, Nureddin Ashammakhi*, Hannu Syrjälä*****

Keywords: Antibiotic, bioabsorbable, biofilm, ciprofloxacin, polylactide-co-glycolide [Engineering of Biomaterials, 38-43, (2004), 13-14]

Background

Antibiotic coating systems have been successfully used to prevent bacterial attachment and biofilm formation. Our purpose was to evaluate whether bioabsorbable polylactide-co-glycolide (PLGA) 80/20 on its own, and PLGA together with ciprofloxacin (PLGA+AB) have any advantages over titanium in preventing Staphylococcus epidermidis attachment and biofilm formation in vitro.

^{*}Institute of Biomaterials, Tampere University of Technology, Tampere, Finland.

^{**}Craniofacial Unit, Hopital Necker-Enfants Malades, Paris, France.

^{***}DEPARTMENT OF PLASTIC AND RECONSTRUCTIVE SURGERY, UNIVERSITY OF INNSBRUCK, AUSTRIA.

^{*****}Craniofacial Unit, Great Ormond Street Hospital for Sick Children, London, UK.

^{*****}DEPARTMENT OF PEDIATRICS, OULU UNIVERSITY HOSPITAL, OULU, FINLAND.

^{*}DEPARTMENT OF SURGERY, OULU UNIVERSITY HOSPITAL, OULU, FINLAND.

^{**}CLINICAL MICROBIOLOGY LABORATORY OF OULU UNIVERSITY HOSPITAL, OULU, FINLAND.

^{***}Institute of Biomaterials, Tampere University of Technology, Tampere, Finland.

^{****}LINVATEC BIOMATERIALS LTD., TAMPERE, FINLAND.

^{******}DEPARTMENT OF INFECTION CONTROL, OULU UNIVERSITY HOSPITAL, OULU, FINLAND.